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Abstract—Cardiovascular diseases are the world’s top leading
causes of death. Real time monitoring of patients who have
cardiovascular abnormalities can provide comprehensive and
preventative health care. We investigate the role of the complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and sensor fusion for automatic heart rate detection
from a mat with embedded Fiber Bragg Grating (FBG) sensor
arrays. The fusion process is performed in the time domain by
averaging the readings of the sensors for each sensor array.
Subsequently, the CEEMDAN is applied to obtain the interbeat
intervals. Experiments are performed with 10 human subjects
(males and females) lying on two different positions on a bed
for a period of 20 minutes. The overall system performance is
assessed against the reference ECG signals. The average and
standard deviation of the mean relative absolute error are 0.049,
0.019 and 0.047, 0.038 for fused and best sensors respectively.
Sensor fusion together with CEEMDAN proved to be robust
against motion artifacts caused by body movements.

I. INTRODUCTION

As published by the World Health Organization, cardio-
vascular diseases (CVDs) were the top leading reasons of
death all around the world during the past decade. In 2012,
approximately 17.5 million people died by reason of CVDs
accounting for 31% of all worldwide deaths [1]. Continuous
monitoring of patients affected by CVDs at home can provide
early diagnosis and prophylaxis [2]. One possible way to
measure, the mechanical vibration of heart activities in a
noninvasive and unobtrusive manner is the ballistocardiogram.
In principle, ballistocardiogram (BCG) is a technique that
measures the mechanical vibrations arising from the recoil of
the body, caused by the ventricular ejection of blood from
the heart into the arterial tree along with each heartbeat [3].
The most common approach to assess cardiac and respiratory
signals simultaneously, is the polysomnogram (PSG). Usually,
the PSG systems include, but not limited to electrocardio-
gram (ECG), electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), respiratory effort, airflow,
and oxygen saturation (SpO2) [4]. Although these systems pro-
vide accurate and recurrent measurements, they are bulky and
expensive to be available as home based systems. Fortunately,
over the last several years, the introduction of inexpensive and
easily implemented BCG devices at home is becoming feasible
and viable [5]. Recently, a number of approaches have been
evolved including chairs or beds equipped with piezoelectric
sensors, force plates, and weighing scales [6]. Nearly all of

these sensors, yield a single channel BCG signal representing
the entire forces affecting the whole surface or a large part of it
[7]. Alternatively, BCG signal acquisition performance can be
improved thanks to the redundancy afforded by multichannel
BCG sensors. For example, Fiber Bragg Grating (FBG) sensor
combines several sensors on a single optical fiber, thereby
increasing the probability of acquiring BCG signals at different
locations [8]. Raw BCG signals are normally very noisy and
non-stationary for many reasons such as body movements,
respiratory efforts, and the properties of the equipment itself.
Therefore, interbeat interval or heart rate estimation is a very
challenging task [9].
The objective of this research paper is to calculate the heart
rate from multichannel Fiber Bragg Grating sensor arrays
using complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) and sensor fusion.

II. RELATED WORK

In the literature, most approaches use a preprocessing step
to separate respiratory component from BCG component using
standard time domain filtering methods [10]. However, in [11]
respiration information is employed to enhance the detection
of the BCG signal. In general, sensor fusion from multichannel
BCG sensors has been used in different ways. In [7] four
channel optical sensor array is used, where BCG signals are
fused before (A/D) conversion. The authors compute the heart
rate by analyzing the periodicity of the signal using an adaptive
moving window. In [12] measurements from multiple pressure
sensitive contacting electrodes are averaged in the frequency
domain using a sliding Fourier transform. In [13] multichannel
pressure sensing emfit foil is introduced. Afterward, data from
different sensors is averaged in the frequency domain, and then
FFT is applied for short time windows. In [14] Bayesian fusion
is utilized to estimate the heart rate by means of capacitive
ECG sensors with an integrated optical sensor. In [8] data from
multiple FBG sensors are summed up in the cepstral domain,
where signals are fused by computing the maximum value of
each time lag between all sensors to be fused. On the other
hand, the conventional empirical mode decomposition (EMD)
along with two modulation based approaches are used in [15]
to surpass generated noise when a single channel emfit sensor
is placed in the backrest of a moving wheelchair. Although
the EMD approach helps to remove generated noise in the



BCG signal, it has two limitations i.e., end effects and mode
mixing. Ensemble EMD (EEMD) is used in [16] to eliminate
generated noise as well as to solve the mode mixing problem.
Nevertheless, the EEMD still does not completely solve the
mode mixing problem and requires high computational time.
We propose to use the CEEMDAN as a noise removal tool
since it provides a complete reconstruction of the signal and
lowers the required computational time.

III. METHODOLOGY

A. BCG Signal Acquisition

The BCG signal is acquired using FBG sensor mat as
previously discussed in [8]. However, in our case, the sensor
mat consists in four FBG sensor arrays or channels (six
sensors each one) instead of three. The 4th channel was a
noisy channel, so it was neglected in the previous work. In
our work we want to study if it is possible to extract the
heart rate from this noisy channel. The four sensor arrays are
connected to FBG sensor interrogator through four optical
channels. Subsequently, BCG signals are sampled with a
sampling frequency of 250 Hz, and then they are sent to a
personal computer for heart rate measurement. Ten subjects
participated in this experiment (males and females with ages
ranging from 20 to 50 years). The FBG sensor mat is placed
over a bed, under a thin bed sheet, where the locations of
the arrays are under the head, under the chest, under chest
and abdomen, and under hips respectively. The experiment is
divided into two phases such as 10 minutes of a supine lying
position and 10 minutes of a sideways lying position.

B. CEEMDAN

The EMD [17] is an adaptive method, which can be used
to break down a nonlinear and a non-stationary signal as an
amalgamation of amplitude and frequency modulated func-
tions named intrinsic mode functions (IMFs) without leaving
the time domain. IMF should fulfill two conditions: (1) in the
entire dataset, the number of extrema and the number of zero
crossings must be equal or vary at most by one; (2) at any time
instant, the mean value of the upper and lower envelope is zero.
Even though EMD proved to be applicable in several areas of
research, such as biomedical signal processing, it encounters
some limitations as follows: first, end effects that destroy the
IMFs at its endpoints. Second, mode mixing, which causes
very similar oscillations to exist in different modes. In order to
solve these problems a new approach is introduced: the EEMD
[18], the basic idea is to carry out the EMD over an ensemble
of the signal besides white Gaussian noise (WGN). Adding
WGN overcomes the mode mixing problem by processing the
entire time frequency space to make use of the dyadic filter
bank behavior of the EMD. Nonetheless, different number of
modes may be generated. Instead, the CEEMDAN can provide
precise reconstruction of the original signal in addition to
reducing the computational complexity [19]. It further solves
the boundary problems by mirrorizing extrema close to the
edges [20]. Given a target signal x, assume w(l) is a WGN of
zero mean and unit variance i.e., with N(0, 1), ε is the noise

standard deviation, and Ek(.) is an operator responsible for
getting the kth mode of a given signal by EMD. The algorithm
for obtaining a kth mode by EMD can be explained as follows
[17]:

1) Initialize k = 0 and detect all local extrema (i.e., all
local maxima and local minima) of r0 = x.

2) Obtain the maximum and minimum envelopes of the
local extrema (emax, emin) by means of cubic spline
interpolation.

3) Compute the mean of the maximum and minimum
envelopes m = (emax + emin)/2.

4) Extract the IMF candidate dck+1 = rk −m.
5) Repeat steps 1− 4 on dck+1 until it can be identified as

IMF.
6) Iterate on the final residual rk until some predefined

stopping criteria are fulfilled.
Following the EMD algorithm, the CEEMDAN can be illus-
trated in following steps:

1) Each x(l) = x + ε0w(l) is decomposed similar to EMD
for l = 1, ..., L to obtain its first mode (d̃c1):

d̃c1 = 1
L

L∑
l=1

dc
(l)
1 = dc1. (1)

2) For k = 1, compute the first residue (r1):
r1 = x− d̃c1. (2)

3) Decompose r1 + ε1E1(wl), l = 1, ..., L until its first
EMD mode, and then define the second mode:

d̃c2 = 1
L

L∑
l=1

E1(r1 + ε1E1(wl)). (3)

4) For k = 2, ..., K, compute the kth residue:
rk = r(k−1) − d̃ck. (4)

5) Decompose realizations rk + εkEk(wl), l = 1, ..., L
until their first mode by EMD, and then determine the
(k + 1)th mode:

d̃ck+1 = 1
L

N∑
n=1

E1(rk + εkEk(wl)). (5)

6) Go to step 4 for next k

Steps 4 − 6 are repeated until the obtained residue cannot
be decomposed anymore by EMD (it contains less than three
local extrema). Thus, the final residue fulfills:

rk = x−
K∑

k=1
d̃ck. (6)

Where K is the total number of decomposition modes. As a
result, the target signal can be represented as:

x =
K∑

k=1
d̃ck + rk. (7)

C. Heart Rate Calculation

For the 20 minutes recording, the heart rate is estimated
using a moving window of a size 60 seconds/15,000 samples
for both BCG and ECG signals. The heart rate from the ECG



is treated as a reference to analyze the performance of the
proposed algorithm. Recall that four FBG sensor arrays or
channels are employed, where each sensor array combines
six sensors, the overall system design for a single channel
is shown in Fig. 1. The main steps of the proposed approach
can be summarized as follows:

1) For a particular channel, measurements from the six
sensors are fused by averaging their values in the time
domain. Assume {D1, ..., D6} denote the sensed data of
the six sensors. Thus, the BCG signal is computed such
as x = 1

6
∑6

i=1 Di.
2) The BCG signal is extracted using a Butterworth high-

pass filter (5th order with a cutoff frequency of 0.2 Hz)
followed by a Butterworth low-pass filter (10th order
with a cutoff frequency of 30 Hz) as shown in Fig. 2.

3) The BCG signal is decomposed using CEEMDAN as
shown in Fig. 3.

4) The 9th component is selected for heart rate estimation,
since each local maximum is assumed to represent a
cardiac cycle.

5) Steps 1− 4 are repeated for the other three channels.

Fig. 1 Overall system flowchart for a single channel.

IV. RESULTS AND DISCUSSION

The proposed approach is assessed according to a noise
standard deviation of 0.2, a number of realizations of 100,
and a maximum number of iterations of 30. These parameters
are referred to as Nstd, NR, and MaxIter, which should be
tuned carefully as they have a strong impact on the detection
performance as well as the processing time. The heart rate
is computed for both ECG and BCG in beat per minute.
The average and the standard deviation of the mean relative
absolute error (MRAE) are computed for the 10 subjects over
the 20 minutes recording. The MRAE is the sum of absolute
errors with respect to the sum of measured data and it is
computed as follows:

MRAE =
∑n

i=1 |Mi −Ri|∑n
i=1 Mi

. (8)

Where M , R, and n denote measured data, reference data, and
number of data. Fig. 4 presents a fused BCG signal from the

Fig. 2 BCG signal from a male subject and its corresponding ECG
signal (10 sec), red downward-pointing triangles represent heart beats
in both signals.

Fig. 3 BCG signal and its decomposition results. The 9th component
shows a match for the cardiac cycle.

3rd channel of the 2nd subject along with its 9th decomposition
component, we can notice that the local maxima of the 9th

decomposition component agree with the periodicity of the J-
peaks of the fused BCG signal. In order to evaluate how the
sensor fusion process influences the detection performance,
for each channel we compute the error metrics for each
individual sensor then the best sensor is selected (lowest error).
Subsequently, these error metrics are compared with the error
metrics of the fused sensors. Table I shows the average and
standard deviation of the errors for the fused sensors, whereas
Table II shows the average and standard deviation of the errors
for the best sensor with respect to each channel.



Fig. 4 Fused BCG signal and its 9th decomposition component (3rd

channel, 2nd subject).

Table. I The average and standard deviation of the MRAE for the
10 subjects (Fused Sensors/Channel).

Fused Ch1 Fused Ch2 Fused Ch3 Fused Ch4

Sub.1 0.069 0.052 0.065 0.079
Sub.2 0.075 0.068 0.056 0.079
Sub.3 0.088 0.075 0.035 0.059
Sub.4 0.031 0.033 0.035 0.035
Sub.5 0.04 0.046 0.052 0.05
Sub.6 0.039 0.02 0.025 0.046
Sub.7 0.069 0.095 0.067 0.138
Sub.8 0.064 0.068 0.084 0.11
Sub.9 0.029 0.02 0.03 0.021
Sub.10 0.038 0.024 0.038 0.046

Mean 0.054 0.05 0.049 0.066

Std 0.021 0.026 0.019 0.035

Table. II The average and standard deviation of the MRAE for the
10 subjects (Best Sensor/Channel).

Best Ch1 Best Ch2 Best Ch3 Best Ch4

Sub.1 0.087 0.068 0.077 0.093
Sub.2 0.033 0.029 0.025 0.029
Sub.3 0.016 0.035 0.021 0.047
Sub.4 0.024 0.024 0.024 0.023
Sub.5 0.044 0.043 0.037 0.039
Sub.6 0.039 0.015 0.013 0.023
Sub.7 0.122 0.141 0.122 0.135
Sub.8 0.086 0.098 0.098 0.115
Sub.9 0.018 0.027 0.031 0.031
Sub.10 0.026 0.018 0.019 0.028

Mean 0.0498 0.05 0.047 0.056

Std 0.035 0.04 0.038 0.041

The best heart rate readings are obtained from the 3rd

channel (sensor array is placed under the chest and abdomen),
where the average and standard deviation of the error are
0.049, 0.019 and 0.047, 0.038 for fused and best sensors
respectively. The average of the error for fused sensors (0.049)
is quite close to best sensor average error (0.047). Furthermore,
the standard deviation of the error for fused sensors (0.019) is
less than the best sensor standard deviation error (0.038). On
the contrary, the highest errors resulted from the 4th channel
are such as 0.066, 0.035 and 0.056, 0.041 for fused and
best sensors accordingly as shown in Fig. 5. This indicates

that CEEMDAN together with sensor fusion can effectively
enhance the overall performance of the heart rate detection
system by reducing the effect of generated noise produced
because of body movements. Moreover, for the fused sensors,
it can be noticed that all MRAE values are less than 0.1 except
for subjects 7 and 8 in the 4th channel. However, for the best
sensors, MRAE values of subject 7 are greater than 0.1 in all
channels, and only in the 4th channel for subject 8 as indicated
by underline in Table I and Table II. Although it was difficult
to extract the interbeat intervals of the BCG signal from the
4th channel (because of body movements), the CEEMDAN is
able to detect most of the intervals as shown in Fig. 6.

Fig. 5 Box plot of the average and standard deviation of errors for
fused and best sensors.

Fig. 6 Fused BCG signal and its corresponding ECG (4th channel, 2nd

subject). ECG is shown in 1st row, while BCG signal and detected
peaks are shown in 2nd row.

V. CONCLUSION

In this research work, an automatic method is introduced
to detect heart rate from FBG sensors using CEEMDAN and
sensor fusion. The proposed method proved to be powerful
against motion artifacts induced due to body movements. The
average and standard deviation of the mean relative absolute
error are computed for fused and best sensors per each channel
respectively. The third sensor array placed under the chest
and abdomen provides us with the best heart rate readings
for all subjects. Although CEEMDAN is faster than EEMD,
a bit more time was required for large samples. In the future,



different combinations of decomposition components might be
involved to get more details about the BCG morphology.
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