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Spectral rigidity of group actions on

homogeneous spaces

Bachir Bekka∗

Abstract

Actions of a locally compact group G on a measure space X give rise to unitary
representations of G on Hilbert spaces. We review results on the rigidity of these
actions from the spectral point of view, that is, results about the existence of a
spectral gap for associated averaging operators and their consequences. We will
deal both with spaces X with an infinite measure as well as with spaces with
an invariant probability measure. The spectral gap property has several striking
applications to group theory, geometry, ergodic theory, operator algebras, graph
theory, theoretical computer science, etc.

2000 Mathematics Subject Classification: 22D40, 37A30, 28D05, 43A07

Keywords and Phrases: Ergodic group actions, spectral gap property, Kazhdan
property, co-amenable actions

1 Introduction

Let G be a separable locally compact group. The study of actions of G on various
spaces is of course of fundamental importance, both for the understanding of
properties of the groups and the spaces under consideration. When G acts on
such a space X , which might be a manifold or a graph, there is often a positive
measure m on the measurable subsets of X which is quasi-invariant under G and
sometimes even invariant. We will consider two kinds of actions, which require
different approaches:

(A) the case where m(X) = ∞, that is, m is an infinite measure;

(B) the case where m is a finite measure which is G-invariant.
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In case (B), we may of course assume that m is a probability measure. Attached to
these data, there is a natural unitary representation πX of G on the Hilbert space
L2(X,m); see Section 2. In case m is a probability measure and is G-invariant,
the space C1X of the constant functions on X is contained in L2(X,m) and is
G-invariant as well as its orthogonal complement

L2
0(X,m) =

{
f ∈ L2(X,m) :

∫

X

f(x)dm(x) = 0

}
.

In this survey, we will be concerned with the study of a spectral rigidity prop-
erty for actions G y X , in each of the two situations (A) and (B) above. We say
that the action of G on (X,m) has the Spectral Gap Property if the representa-
tion πX on L2

0(X,m) does not have almost invariant vectors, that is, if there is no
sequence of unit vectors ξn in L2

0(X,m) such that limn ‖πX(g)ξn − ξn‖ = 0 for all
g in G. Here, we have denoted the space L2(X,m) by L2

0(X,m) in the case where
m is an infinite measure.

Two classes of groups are distinguished with respect to this Spectral Gap Prop-
erty: amenable groups and Kazhdan groups. Indeed, an amenable group G never
has the Spectral Gap Property (in case (B), we have to assume that G is countable
and X non-atomic) and Kazhdan groups always have the Spectral Gap Property
for ergodic actions (see Corollary 5.16 and Theorem 7.1 as well as Corollary 5.17).
We will first recall some basic facts on these classes of groups. Then, we turn to
the negation of the Spectral Gap Property in case (A) above. Actions G y X
without the Spectral Gap Property are called co-amenable, as they are charac-
terized by the existence of an invariant mean on L∞(X,m). Such actions have
been studied, with various degrees of generality, by several authors (see [Eyma72],
[Gree69], [Guiv80], among others). We will give a comprehensive account about
the main characterizations of such actions in Section 5. In the case where G is
a non compact simple Lie group, the co-amenable proper subgroups H (that is,
such that G y G/H is co-amenable) are Zariski dense in G and are characterized
as the discrete subgroups with the maximal critical exponent (Theorems 5.22 and
5.27).

Next, we will deal with the Spectral Gap Property in case (B) above, that is,
for actions with an invariant probability measure. We will review some specific
examples for actions with the Spectral Gap Property on a homogeneous X =
H/Λ, where Λ is a locally compact group and Λ is a lattice in H ; here the action
of G on H/Λ is given by left translations or by automorphisms, that is, by a
homomorphism G → H or a homomorphism G → Aut(X), where Aut(X) is the
subgroup of continuous automorphisms ϕ of H such that ϕ(Λ) = Λ. Apart from a
few exceptions (such as Bernoulli actions), showing the Spectral Gap Property for
these actions is usually a difficult problem. As a novelty, we establish by completely
elementary means (using an idea from [BeLu11]) the Spectral Gap Property for the
action of G = PGL2(Fq((t

−1))) on X = PGL2(Fq((t
−1)))/PGL2(Fq[t]), where

Fq is the finite field with q elements and Fq((t
−1)) the local field of Laurent series

(see Section 8.3). As a crucial tool in our approach, we prove and use a Cheeger
type inequality for Markov chains established in [LaSo88] and [SiJe89].

We approach the Spectral Gap Property mainly in terms of averaging opera-
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tors, also known as Markov operators. Let µ be a probability measure on G and
πX(µ) the convolution operator defined on L2

0(X,m) by

πX(µ)f =

∫

G

πX(g)fdµ(g) for all f ∈ L2
0(X,m).

We have rspec(πX(µ)) ≤ 1 for the spectral radius rspec(πX(µ)) of πX(µ). Assume
that µ is adapted, that is, the support supp(µ) of µ generates a dense subgroup
of G. Then the action of G on X has the Spectral Gap Property if and only if
rspec(πX(µ)) < 1.

The point of view of Markov operators is relevant for applications in probability
theory. Given an action G y (X,m) and a probability measure µ on G, consider
a sequence of independent µ-distributed random variables Xn with values in G
and the corresponding random products Sn = Xn . . . X1 for n ∈ N. This defines a
random walk on X, given by the transitions probabilities

A 7→ p(x,A) =

∫

G

1A(g
−1x)dµ(g) = (πX(µ)1A)(x),

for x in X and A a measurable subset of X.
The Spectral Gap Property has several interesting applications in ergodic the-

ory; for instance, if m is a probability measure, then, for every f ∈ L2(X,m),
the sequence of functions x 7→ E(f(Sn(x))) converges to

∫
X fdm in the L2-norm,

with an exponentially fast rate of order λn with λ = ‖πX(µ)‖. Other ergodic the-
oretic applications to random walks (see [CoGu13], [CoLe11], [FuSh99], [GoNe10]
and [Guiv15]) include the rate of convergence in the random ergodic theorem,
pointwise ergodic theorems, analogues of the law of large numbers and of the cen-
tral limit theorem, etc. Another application of the Spectral Gap Property is the
uniqueness of m as G-invariant mean on L∞(X,m); for this as well as for further
applications, see [BHV], [BoGa10],[Lubo94], [Popa08], [Sarn90]. To illustrate the
use of the Spectral Gap Property in both situations (A) and (B), we present in the
last section of this survey (Section 10) two such applications: one to expanders
graphs and one to the escape rate of random matrix products. We also discuss
(Section 6) the question of quantifying the Spectral Gap Property, that is, giving
upper bounds for the norm or the spectral radius of the Markov operator πX(µ).

2 Group actions on measure spaces and associ-

ated representations

Let G be locally compact group, which we always assume to be second countable.
We will then say that G is a separable locally compact group. The group G has
an (essentially unique) Haar measure λ, that is, a σ-finite measure λ on the Borel
subsets of G which is invariant under left translations.

Let (X,m) be a measure space, where m is a positive σ-finite measure on a
fixed σ-algebra of subsets of X. We will only consider actions of G of X which are
measurable, that is, actions G y X for which

G×X → X (g, x) 7→ gx
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is measurable.
We will always assume that the measure m is quasi-invariant: m and its image

gm under g are equivalent measures (that is, m and gm have the same sets of
measure 0) for every g ∈ G.

Our actions will usually be ergodic group actions.

Definition 2.1. The action G y X on the measure space (X,m) is ergodic if
there are no nontrivial invariant subsets of X in the following sense: if A is a
measurable subset of X such that gA = A for all g ∈ G, then m(A) = 0 or
m(X \A) = 0.

Ergodicity can be expressed in terms of functions on X as follows. We say
that a measurable function f : X → R is G-invariant if, for every g ∈ G, we have
f(gx) = f(x) for m-almost every x ∈ X. An action G y X is ergodic if and only
if every G-invariant function is constant m-almost everywhere (see Theorem 1.3
in [BeMa00]).

2.1 Examples of group actions on measure spaces

We list some examples of group actions, which will appear throughout this survey.

1. Let Γ be a countable group, X = {0, 1}Γ, and m the probability measure
m =

⊗
γ∈Γ ν for the measure ν on {0, 1} given by ν({0}) = ν({1}) = 1/2.

The Bernoulli action of Γ is the measure preserving action Γ y X defined
by shifting coordinates:

γ(xδ)δ∈Γ = (xγ−1δ)δ∈Γ.

2. Let H be a separable locally compact group and L a closed subgroup of H.
The homogeneous space X = H/L has a unique (up to equivalence) non-zero
σ-finite measure m on its Borel subsets, which is quasi-invariant under the
action of H by left translations (see [Foll95, (2.59)]). Every subgroup G of
H acts on X by left translations.

3. An important special case in the previous example arises when L is a lattice
in the locally compact group H , that is, L is a discrete subgroup of H and
there exists a H-invariant probability measure m on the Borel subsets of
H/L. Every subgroup G of H acts in measure preserving way on X = H/L
by left translations. Examples are given by H = Rn and L = Zn, in which
case X = Tn is the n-torus or by H = SLn(R) and L = SLn(Z), in which
case X is the space of unimodular lattices in Rn.

4. Let H , L and m be as in Example 2. Let Aut(H) be the group of continuous
automorphisms of H. The subgroup Aut(H/L) of Aut(H), defined by

Aut(H/L) = {ϕ ∈ Aut(H) : ϕ(L) = L},

acts on H/L, leaving m quasi-invariant. If m is H-invariant and finite, then
m is also invariant under Aut(H/L).
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In the example given byH = Rn, L = Zn and X = Tn, the group Aut(H/L)
can be identified with GLn(Z). Other examples arise when H is a nilpotent
Lie group and L is a lattice in H (see Section 9).

2.2 Unitary representations associated to actions

Let G a separable locally compact group and G y X an action on a σ-finite
measure space (X,m), with m quasi-invariant.

For g ∈ G, denote by c(g, x) =
dgm

dm
(x) the Radon-Nikodym derivative of gm

with respect to m. The mapping πX : G → B(L2(X,m)), defined by

πX(g)f(x) = c(g−1, x)1/2f(g−1x) for all f ∈ L2(X,m), x ∈ X,

is a continuous unitary representation of G on L2(X,m), often called the Koopman
representation associated to G y X (for more details, see [BHV, A.6]).

Assume now that m is a G-invariant probability measure. Then

L2
0(X) = {f ∈ L2(X) :

∫

X

fdm = 0} = (C1X)⊥

is G-invariant. Denote again by πX the restriction of Koopman representation to
L2
0(X). Then G y X is ergodic if and only if πX has no non-zero invariant vectors:

L2
0(X)G = {0}.
Most of the actions we consider will be mixing in the following sense. The

probability measure preserving action G y X is called mixing if πX is a C0

representation: for all f1, f2 ∈ L2
0(X), the matrix coefficient

Cf1,f2 : G → C, g 7→ 〈πX(g)f1, f2〉

belongs to C0(G), that is, limg→∞ 〈πX(g)f1, f2〉 = 0. Of course, mixing actions
are ergodic.

Example 2.2. (i) The Bernoulli action of an infinite countable group Γ on X =
{0, 1}Γ is mixing.
(ii) Let Γ be a subgroup of GLn(Z). The action of Γ on the n-torus Tn = Rn/Zn

is ergodic if and only if every Γt-orbit in Zn is infinite; this action is mixing if and
only if every point stabilizer for the action of Γt on Zn is finite.

The claims in the previous examples follow from the next proposition, which
illustrates the power of the use of the Koopman representation. Concerning the
first example, observe that we can view {0, 1}Γ as the compact abelian group
A =

∏
γ∈ΓZ/2Z and Γ as a subgroup of Aut(A).

Proposition 2.3. Let A be a compact abelian group with normalized Haar measure
m and Γ a subgroup of Aut(A). Let Â be the (discrete) dual group of A (on which
Aut(A) acts naturally).

• The action Γ y A is ergodic if and only if every Γ-orbit in Â\{1} is infinite;
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• the action Γ y A is mixing if and only if Γ acts properly on Â \ {1} (that
is, point stabilizers are finite).

Proof By Fourier transform, we have isometric isomorphisms L2(A) ∼= ℓ2(Â)

and L2
0(A)

∼= ℓ2(Â \ {1}) as Γ-representations.
Now, ℓ2(Â \ {1})Γ consists exactly of the Γ-invariant ℓ2-functions on Â \ {1}.

Moreover, the Γ-representation on ℓ2(Â\{1}) is C0 if and only if all point stabilizers
are finite.�

The following result is the celebrated Howe-Moore theorem from [HoMo79],
which shows that, as a rule, ergodic actions of simple Lie groups are mixing.

Theorem 2.4. (Howe-Moore Theorem) Let G be a connected simple Lie group
with finite center and (π,H) a unitary representation of G on a Hilbert space H.
Assume that HG = {0}. Then π is a C0-representation: the matrix coefficients

Cξ,η : G → C, g 7→ 〈π(g)ξ, η〉

belong to C0(G) for all ξ, η ∈ H.

Here is one striking consequence of the Howe-Moore theorem.

Corollary 2.5. Let G be as in Theorem 2.4 and Λ a lattice in G. Let H be a
subgroup with a non-compact closure in G. Then H y G/Λ is ergodic. Morevover,
H y G/Λ is even mixing if H is closed.

Proof Set X = G/Λ. Obviously, we have L2
0(X)G = {0}. Let f ∈ L2

0(X)H .

Then f ∈ L2
0(X)H . Now, by Theorem 2.4, the matrix coefficient Cf,f belongs to

C0(G). Since H is not compact, it follows that f = 0. �

3 The Spectral Gap Property

Let G a separable locally compact group and G y X an action on a measure space
(X,m), with m quasi-invariant.

We set L2
0(X) = (C1X)⊥ in case m is a G-invariant probability measure, and

L2
0(X) = L2(X,m) otherwise. The corresponding unitary representation of G on

L2
0(X) will always be denoted by πX .

Definition 3.1. (Actions with the Spectral Gap Property) The action of
G on X has the Spectral Gap Property, if there exists a compact set Q of G and
ε > 0 such that

sup
s∈Q

‖πX(s)f − f‖ ≥ ε‖f‖ for all f ∈ L2
0(X).

We can extend this definition to arbitrary unitary representations.
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Definition 3.2. (Representations with the Spectral Gap Property) A
unitary representation (π,H) of G has the Spectral Gap Property, if there exists
a compact subset Q of G and ε > 0 such that

sup
s∈Q

‖π(s)ξ − ξ‖ ≥ ε‖ξ‖ for all ξ ∈ H.

Remark 3.3. (i) (Negation of the Spectral Gap Property) The unitary
representation (π,H) of G does not have the Spectral Gap Property if, for every
pair (Q, ε), where Q is a compact subset of G and ε > 0, there exists a unit vector
unit ξ ∈ H which is (Q, ε)-invariant:

sup
s∈Q

‖π(s)ξ − ξ‖ < ε.

Since G is σ-compact, observe that (π,H) does not have the Spectral Gap Property
if and only if there exists a sequence of unit vectors (ξn)n in H such that

lim
n

‖π(g)ξn − ξn‖ = 0 for all g ∈ G.

(The “if” part of the previous statement follows from a standard Baire category
argument.)
(ii) The negation of the Spectral Gap Property may be formulated in terms of Fell’s
notion of weak containment: π does not have the Spectral Gap Property if and
only if the trivial representation 1G is weakly contained in π. Recall that a unitary
representation ρ is said to be weakly contained in another unitary representation
σ, if every diagonal matrix coefficient Cρ

ξ,ξ of ρ can be approximated, uniformly
on compact subsets of G, by convex combinations of diagonal matrix coefficients
of σ (see Appendix F in [BHV]).

3.1 Spectral Gap Property in terms of averaging operators

Let (π,H) be a unitary representation of a locally compact group G and µ a
probability measure on the Borel subsets of G. Define the averaging operator
π(µ) ∈ B(H) by

π(µ)ξ =

∫

G

π(g)ξdµ(g) for all ξ ∈ H.

Then clearly ‖π(µ)‖ ≤ 1 and hence rspec(π(µ)) ≤ 1 for the spectral radius rspec(π(µ))
of π(µ).

We say that µ is adapted if the subgroup generated by the support supp(µ) of
µ is dense in G. We will also consider the stronger condition that supp(µ) is not
contained in the coset of a proper closed subgroup of G. In this case, we say that
µ is strongly adapted.

It is easy to see that µ is strongly adapted if and only if the convolution product
µ̌∗µ is adapted, where µ̌ is defined by dµ̌(g) = dµ(g−1). We say that µ is absolutely
continuous if it is absolutely continuous with respect to a Haar measure on G.
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Proposition 3.4. Let (π,H) be a unitary representation of the separable locally
compact group G. The following statements are equivalent:

(i) π has the Spectral Gap Property;

(ii) ‖π(µ)‖ < 1 for any (or for some) probability measure µ on G which is
strongly adapted and absolutely continuous;

(iii) 1 is not a spectral value of π(µ) for any (or for some) probability measure µ
on G which is adapted and absolutely continuous.

Proof We just give the proof of the equivalence of (i) and (ii) in the case where
G = Γ discrete, and refer to Proposition G.4.2 in [BHV] for the complete proof.

Assume that π does not have the Spectral Gap Property; so, there exists a
sequence ξn of unit vectors in H such that

lim
n

‖π(γ)ξn − ξn‖ = 0 for all γ ∈ Γ.

Summing against µ gives

lim
n

‖π(µ)ξn − ξn‖ ≤ lim
n

∑

γ∈Γ

µ(γ)‖π(γ)ξn − ξn‖ = 0.

So, 1 is in the spectrum of π(µ). Since ‖π(µ)‖ ≤ 1, we have ‖π(µ)‖ = 1.
Conversely, assume that ‖π(µ)‖ = 1. Since µ is strongly adapted, supp(µ̌ ∗ µ)

generates Γ. Now,

‖π(µ̌ ∗ µ)‖ = ‖π(µ)∗π(µ)‖ = ‖π(µ)‖2 = 1

and π(µ̌ ∗ µ) is a positive self-adjoint operator. Hence, 1 is a spectral value of
π(µ̌ ∗ µ) and there exists a sequence ηn in H of approximate eigenvectors, that is,
a sequence of unit vectors ηn with limn ‖π(µ̌ ∗ µ)ηn − ηn‖ = 0. Then

lim
n

‖π(γ)ηn − ηn‖ = 0

for all γ ∈ supp(µ̌ ∗ µ) and therefore for all γ ∈ Γ.�

3.2 Kazhdan’s Property (T)

We review a few basic facts on Kazhdan groups, with an emphasis on the existence
of a spectral gap for averaging operators. We refer to the monograph [BHV] for
missing details.

Definition 3.5. ([Kazh67]) A locally compact group G has Property (T) or is
a Kazhdan group, if every unitary representation (π,H) of G with HG = {0} has
the Spectral Gap Property.

Recall that a local field k is a locally compact non discrete field. As is well-
known, a local field is isomorphic either to R, to C, to a finite extension of the
field of p-adic numbers Qp, or to the field k((X)) of Laurent series over a finite
field k.
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Theorem 3.6. ([Kazh67]) Let k be a local field and G the group of k-rational
points of a simple algebraic group over k with k-rank at least two. Then G has
Property (T).

Example 3.7. The groups SLn(R) for n ≥ 3 and Sp2n(R) for n ≥ 2 have
Property (T).

When G has Property (T), we can find a uniform pair (Q, ε) as in Definition 3.2
for all representations without invariant vectors.

Proposition 3.8. Let G be a Kazhdan group. Then there exists a pair (Q, ε) with
ε > 0 and Q a compact subset of G so that, for every unitary representation (π,H)
of G with HG = {0}, we have

sup
s∈Q

‖π(s)ξ − ξ‖ ≥ ε‖ξ‖ for all ξ ∈ H.

The pair (Q, ε) is called a Kazhdan pair

Proof Assume, by contradiction, that no such a pair exists. Denote by I the set
of pairs (Q, ε) with ε > 0 and Q ⊂ G compact. So, for every i = (Q, ε) ∈ I, there
exists a unitary representation (πi,Hi) of G with HG

i = {0} and a unit vector
ξi ∈ Hi such that

sup
s∈Q

‖πi(s)ξi − ξi‖ < ε.

Then the direct sum
⊕

i∈I πi is a unitary representation of G in
⊕

i∈I Hi which
has almost invariant vectors and has no non-trivial invariant vectors. This is a
contradiction.�

Here is one important application of Kazhdan’s Property (T).

Theorem 3.9. ([Kazh67]) If G has Property (T), then G is compactly generated.
In particular, a discrete group with Property (T) is finitely generated.

Proof Let C be the family of open and compactly generated subgroups of G.
Consider the representation π =

⊕
H∈C πG/H , where πG/H is the regular represen-

tation on ℓ2(G/H). Then π does not have the Spectral Gap Property. So, π has a
non-zero invariant vector. This implies that G/H is compact for some H ∈ C and
hence that G is compactly generated. �

An important feature of Property (T) is that it is inherited by lattices. The
proof involves induced representations.

Let G a separable locally compact group and Γ a lattice in G. Let (π,H) be a
unitary representation of Γ. The induced representation π̃ = IndGΓ π is the unitary
representation of G which can be defined as follows. Let X ⊂ G be a Borel set
which is a fundamental domain for the action of Γ, so that

G =
∐

γ∈Γ

γX.
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Given g ∈ G and x ∈ X, there are uniquely determined elements c(x, g) ∈ Γ and
x · g ∈ X such that

xg = c(x, g)(x · g).
Then π̃ = IndGΓ π is defined on the space H̃ of measurable maps F ∈ L2(X,H) by

(π̃(g)F )(x) = π(c(x, g))(F (x · g)).

For more details on induced representations, see [Mack76].

Proposition 3.10. Let G a separable locally compact group and Γ a lattice in
G. Let (π,H) be a unitary representation of Γ. Assume that π does not have the
Spectral Gap Property. Then IndGΓ π does not have the Spectral Gap Property.

Proof Since π does not have the Spectral Gap Property, there exist a sequence
of unit vectors ξn ∈ H with limn ‖π(γ)ξn − ξn‖ = 0 for all γ ∈ Γ. Define Fn ∈ H̃
by Fn(x) = ξn for all x ∈ X. Then ‖Fn‖ = 1 and

‖π̃(g)Fn − Fn‖2 =
∫

X

‖π(c(x, g))ξn − ξn‖2dm(x),

where dm(x) denotes the Haar measure restricted to X, normalized by m(X) = 1.
Hence, limn ‖π̃(g)Fn − Fn‖ = 0. So, π̃ = IndGΓ π does not have the Spectral Gap
Property.�

We deduce from the previous proposition the following important theorem, a
key result for producing examples of discrete Kazhdan groups.

Theorem 3.11. ([Kazh67]) Let G a locally compact group and Γ a lattice in G.
If G has Property (T), then Γ has property (T).

Proof Let (π,H) be a unitary representation of Γ without the Spectral Gap
Property. Then π̃ = IndGΓπ does not have the Spectral Gap Property, by the

previous proposition. So, H̃G 6= {0}. On the other hand, it is immediate from

the definition of IndGΓ π that H̃G consists exactly of the constant mappings F in
L2(X,H) with F (x) ∈ HΓ for m-almost every x ∈ X. Hence, HΓ 6= {0}.�

Example 3.12. The discrete groups SLn(Z) for n ≥ 3 and Sp2n(Z) for n ≥ 2 have
Property (T), as they are lattices in the Kazhdan groups SLn(R) and Sp2n(R),
respectively.

3.3 Uniform Spectral Gap Property for Kazhdan groups

Let G be a locally compact group with Property (T) and π a unitary represen-
tation of G without non-zero invariant vectors. Then, by definition, π has the
Spectral Gap Property. Hence, given a strongly adapted and absolutely continu-
ous probability measure µ on G, we have ‖π(µ)‖ < 1, by Proposition 3.4. In fact,
we can find a uniform bound for ‖π(µ)‖, independent of π.
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Theorem 3.13. (Uniform Spectral Gap Property) Let G be a separable lo-
cally compact group with Kazhdan’s Property (T) and µ a strongly adapted and
absolutely continuous probability measure on G. Then there exists C < 1 such
that ‖π(µ)‖ < C for every unitary representation (π,H) of G without non-zero
invariant vectors.

Proof Assume, by contradiction, that this is not the case. Then there exists
a sequence (πn,Hn) of unitary representations of G without non-zero invariant
vectors such that limn ‖πn(µ)‖ = 1. Then π =

⊕
n πn is a unitary representation

of G on H =
⊕

n Hn which has no non-trivial invariant vectors and for which
‖π(µ)‖ = 1. This is a contradiction. �

Remark 3.14. Let G be a locally compact group with the following property:
every ergodic measure preserving action G y X on a probability space (X,m)
has the Spectral Gap Property. Of course, Kazhdan groups have this property.
In fact, it was shown in [CoWe80] that this property characterizes the class of
Kazhdan groups.

3.4 Amenable groups

Amenability of locally compact groups may be expressed in several equivalent
ways. We give a brief review of a few number of these equivalent reformulations.

Definition 3.15. Let G be a locally compact group and denote by m a left Haar
measure on G. The group G is amenable if there exists a G-invariant mean on
L∞(G,m), that is, a positive linear functionalM on L∞(G,m) such thatM(1G) =
1 and M(gϕ) = M(ϕ) for all g in G and ϕ in L∞(G,m), where gϕ(x) = ϕ(g−1x).

We mention the following useful characterizations of amenable groups and refer
to Appendix G in [BHV] for proofs.

Proposition 3.16. Let G be a locally compact group. The following properties
are equivalent:

(i) G is amenable;

(ii) every continuous action G y C by affine mappings on a non-empty compact
convex subset C of a locally convex topological vector space has a fixed point;

(iii) for every continuous action G y X on a compact non-empty set X, there
exists a G-invariant probability measure on the Borel subsets of X.

Examples of amenable groups include abelian groups and more generally solv-
able groups. On the other hand, free non-abelian groups are not amenable.

We now rephrase amenability of a group in terms of its regular representation.
Let G be a locally compact group with left Haar measure m. The left regu-

lar representation of G is the unitary representation πG which is defined by left
translations on L2(G,m). The following result is due to Hulanicki ([Hula66]) and
Reiter ([Reit65]).
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Theorem 3.17. (Hulanicki-Reiter’s Theorem) The following statements are
equivalent for a locally compact group G.

(i) The group G is amenable;

(ii) the regular representation πG does not have the Spectral Gap Property.

We will give the proof of Hulanicki-Reiter’s theorem in the much wider context
of co-amenable actions of groups on measure spaces in Section 5 (see Remark 5.9).

Følner’s theorem [Foel55] is a refinement of the Hulanicki-Reiter Theorem.
When G is amenable, we find a sequence of functions fn ∈ L2(G) with ‖fn‖2 = 1
and limn ‖πG(g)fn − f‖2 = 0 for all g ∈ G. One may ask whether the fn’s can
be chosen as normalized indicator functions of Borel sets in G. This is indeed the
case.

Theorem 3.18. (Følner’s theorem) Let G be an amenable locally compact
group with left Haar measure m. Then there exist so-called Følner sets: for every
compact subset Q of G and every ε > 0, there exists a Borel subset U of G with
0 < m(U) < ∞ such that

m(xU△U)

m(U)
≤ ε for all x ∈ Q,

where △ denotes the symmetric difference.

We will generalize Følner’s theorem to the context of co-amenable actions (The-
orem 5.11).

The following proposition on the relation between amenability and Property
(T) is an obvious consequence of Hulanicki-Reiter’s Theorem.

Proposition 3.19. An amenable locally compact group G has Property (T) if and
only if G is compact.

Amenability may be expressed in terms of averaging operators. Kesten proved
the following result in case G is a discrete group and µ a symmetric probability
measure on G ([Kest59a]). The general case is due to [DeGu73].

Theorem 3.20. ([Kest59a], [DeGu73]) Let G be a locally compact group.
and µ a strongly adapted probability measure on G. The following statements are
equivalent.

1. the group G is amenable;

2. ‖πG(µ)‖ = 1.

When µ is absolutely continuous, this is a consequence of the Hulanicki-Reiter
theorem and the characterization of the Spectral Gap Property for a unitary rep-
resentation π in terms of the averaging operator π(µ) from Proposition 3.4. We
will prove a more general result in the context of co-amenable actions in Section 5.
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Remark 3.21. (Spectral radius versus operator norm) It may happen that
‖πG(µ)‖ = 1 for an adapted probability measure µ even when the group G is
non-amenable (of course, we then have rspec(πG(µ)) < 1). Indeed, let G = F2 be
the free group on 2 generators a and b and µ the uniform distribution on {a, b}.
Then ‖πG(µ)‖ = 1. We have

‖πG(µ)‖ = ‖πG(δa−1 ∗ µ)‖ = ‖πG(ν)‖,
where ν = δa−1 ∗ µ is the uniform distribution on {e, a−1b}. Since the sub-
group generated by a−1b is cyclic and hence amenable, we have ‖πG(ν)‖ = 1.
So, ‖πG(µ)‖ = 1, although supp(µ) generates F2 and F2 is not amenable.

4 Random walks and spectral radius of averaging
operators

We introduce the spectral radius of a finitely generated group (that is, the spectral
radius of the simple random associated to a fixed generating set), determine its
exact value for free groups after Kesten and relate norms of averaging operators
of Bernoulli actions of groups to their spectral radius.

4.1 Random walks on groups

Let Γ be a finitely generated group. Let S be a finite generating set of Γ with
S−1 = S. Let G(Γ, S) be the associated Cayley graph, which is the graph defined
as follows: the vertex set is Γ and (x, y) ∈ Γ × Γ is an edge if and only if y = xs
for some s ∈ S.

The simple random walk on G(Γ, S) is the random walk Xn defined as follows:
every step consists in moving from a vertex x to a neighbour xs with probability
1/|S|. The associated Markov operator

M = πΓ(µS) =
1

|S|
∑

s∈S

πΓ(δs)

acts on ℓ2(Γ), where µS is the uniform distribution on S.
Then

〈Mnδe, δe〉 = µn
S(e)

is the probability P(Xn = e|X0 = e) of return to the group unit at time n, where
µn
S denotes n-fold convolution. Now, one can show (see Proposition 5.14) that

lim
n

µ2n
S (e)1/2n = ‖πΓ(µS)‖.

The number
ρ = lim

n
µ2n
S (e)1/2n

is usually called the spectral radius of the random walk (ρ is indeed the spectral
radius of the self-adjoint operator M). So

ρ = lim
n

P(X2n = e|X0 = e)1/2n.
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In the case where Γ is non-amenable, ρ < 1 and hence P(X2n = e|X0 = e) decreases
exponentially fast as n → +∞.

4.2 An example of the computation of the spectral radius

Kesten determined in [Kest59b] the exact value for the spectral radius of simple
random walk on a free group.

Let Γ = FN be the free group on N generators a1, . . . , aN . Let µ be the uniform
distribution on {a±1

1 , . . . , a±1
N } :

µ(ai) = µ(a−1
i ) =

1

2N
for all 1 ≤ i ≤ N.

We claim that the spectral radius of the associated random walk is

ρ = ‖πΓ(µ)‖ =

√
2N − 1

N
.

More generally, for d ≥ 2, let T be the d-regular tree. We consider the random
walk on the vertices of T with transition probability equal to 1/d to go from one
vertex to one of its neighbours. Let M : ℓ2(T ) → ℓ2(T ) be the associated Markov
operator, defined by

Mf(v) =
1

d

∑

w∼v

f(w),

where the sum is over the vertices w which are neighbours of v. (The Cayley
graph of (FN , {a±1

1 , . . . , a±1
N }) is the 2N -regular tree, and M can be identified

with πFN
(µ)). We are going to show that

‖M‖ =
2
√
d− 1

d
.

Apart from Kesten’s original one, there are several proofs of this formula (see
for instance Proposition 4.5.2 in [Lubo94]). We will follow a short argument from
[Frie91].

Since T is normal and since |〈Mf, f〉| ≤ 〈M |f |, |f |〉 and ‖f‖2 = ‖|f |‖2 for
f ∈ ℓ2(T ), we have

‖M‖ = sup
{
〈Mf, f〉 : f ∈ ℓ2(T ), f ≥ 0, ‖f‖2 = 1

}
.

Fix an origin o ∈ T and denote by δ(v) the graph distance of a vertex v to o.
Observe that every vertex v 6= 0 has exactly d−1 neighbours w with δ(w) = δ(v)+1
and one neighbour w = w(v) with δ(w) = δ(v)− 1 and that o has d neighbours w
all with δ(w) = 1.



Spectral rigidity of group actions on homogeneous spaces 15

Let f ∈ ℓ2(T ) with f ≥ 0 and ‖f‖2 = 1. Then

d〈Mf, f〉 =
∑

v∈T

(
∑

w∼v

f(v)f(w)

)

=
∑

w:δ(w)=1

f(o)f(w) +
∑

v 6=o


 ∑

w:δ(w)=δ(v)+1

f(v)f(w)


 +

∑

v 6=o

f(v)f(w(v))

= 2
∑

v∈T


 ∑

w:δ(w)=δ(v)+1

f(v)f(w)




Using the estimate

f(v)f(w) ≤ 1

2

(
1√
d− 1

f(v)2 +
√
d− 1f(w)2

)
,

we obtain

d〈Mf, f〉 ≤
∑

v 6=o

(
d− 1√
d− 1

f(v)2 +
√
d− 1f(v)2

)
+

d√
d− 1

f(o)2

≤
√
d− 1

∑

v∈T

2f(v)2 = 2
√
d− 1.

This proves that ‖M‖ ≤ 2
√
d− 1

d
.

To establish the lower bound, take an increasing sequence of real numbers
λn < 1 with limn λn = 1. Let fn be the radial function on T defined by fn(v) =(

λ√
d− 1

)m

if δ(v) = m. Then

‖fn‖22 = 1 +
∑

m≥1

(
d(d− 1)m−1

(
λn√
d− 1

)2m
)

= 1 +
d

d− 1

(
λ2
n

1− λ2
n

)

and

〈Mfn, fn〉 =
2

d

∑

m≥0

(
d(d − 1)m−1(d− 1)

(
λn√
d− 1

)m+1(
λn√
d− 1

)m
)

=
2√
d− 1

(
λn

1− λ2
n

)
.

So, limn
〈Mfn, fn〉
‖fn‖22

=
2
√
d− 1

d
and this proves the claim.

Remark 4.1. (i) With a little more effort, one can show that the spectrum of the

operator M as above is the whole interval

[
−2

√
d− 1

d
,
2
√
d− 1

d

]
(see [Frie91] or

[Kest59b]).
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(ii) For N ≥ 2, let Γ be a group generated by N elements a1, . . . , aN . For the
spectral radius ρ of the random walk on Γ defined by the uniform distribution on

{a±1
1 , . . . , a±1

N }, one has ρ ≥
√
2N−1
N . Indeed, Γ is a quotient of FN and the claim

follows from Proposition 5.15 below. Kesten (see [Kest59b]) proved that, if one

has equality ρ =
√
2N−1
N , then Γ is the free group on a1, . . . , aN .

(iii) Given a specific group Γ generated by a finite set S, it is usually difficult to
compute or even to find bounds for the spectral radius of the corresponding random
walk. For a recent result in the case where Γ is a surface group, see [Goue15]. The
monography [Woes00] provides a comprehensive overview on results about random
walks on infinite groups as well as on infinite graphs.

4.3 The norm of averaging operators for Bernoulli actions

Let Γ be an infinite countable group and Γ y X its Bernoulli action onX = {0, 1}Γ
(see Section 2.1). Let µ be a symmetric and adapted probability measure on Γ.
We claim that

‖πX(µ)‖ = ‖πΓ(µ)‖.
In particular, it will follow from the Hulanicki-Reiter theorem that Γ y X has the
Spectral Gap Property if and only if Γ is not amenable.

To prove the claim, view X as the compact abelian group X =
∏

γ∈ΓZ/2Z.

The dual group is the discrete group X̂ =
⊕

γ∈ΓZ/2Z. By Fourier transform,

we have L2
0(X) ∼= ℓ2(X̂ \ {0}) as Γ-representations. Let Ω ⊂ X̂ \ {0} be a set

of representatives for the Γ-orbits in X̂ \ {0}. Then ℓ2(X̂ \ {0}) decomposes as a
direct sum of Γ-invariant subspaces:

ℓ2(X̂ \ {0}) =
⊕

x∈Ω

ℓ2(Γx) ∼=
⊕

x∈Ω

ℓ2(Γ/Γx),

where Γx is the stabilizer of x. It is clear that Γx is finite for every x. Hence, we
have ℓ2(Γ/Γx) ⊂ ℓ2(Γ) in an obvious sense. So,

ℓ2(X̂ \ {0}) ⊂
⊕

x∈Ω

ℓ2(Γ).

Therefore, ‖πX(µ)‖ ≤ ‖πΓ(µ)‖. On the other hand, we have, for every x ∈ Ω

‖πΓ(µ)‖ ≤ ‖πX |ℓ2(Γ/Γx)(µ)‖,

as follows from Proposition 5.15 below.

5 Actions on homogeneous spaces with infinite
measure

In this section, we introduce and study a class of actions which we call co-amenable.
As for amenability of groups, these actions admit several characterizations, the
most notable one in our context being the absence of the Spectral Gap Property.
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5.1 Co-amenable actions

A useful generalization of amenable groups is the notion of amenable homogeneous
spaces in the sense of Eymard ([Eyma72]). One can extend this notion to actions
on measure spaces as follows. Let G y X be an action of the separable locally
compact group G on the measure space (X,m), where as always m is a σ-finite
quasi-invariant measure.

Definition 5.1. We say that the action of G on X is co-amenable if there ex-
ists a G-invariant mean on L∞(X,m), that is, a positive linear functional M on
L∞(X,m) such that that M(1X) = 1 and M(gϕ) = M(ϕ) for all g in G and ϕ in
L∞(X,m), where gϕ(x) = ϕ(g−1x).

Remark 5.2. (i) Consider the action of the locally compact group G by left
translation on (G,m), where m is a left Haar measure. This action is co-amenale
if and only if G is amenable.

(ii) Co-amenable actions G y X were first considered by Greenleaf ([Gree69]).
There were intensively studied by Eymard in the case of the action of G on a
homogeneous space X = G/H in [Eyma72], where such an action (or space) is
called amenable. We prefer to call them co-amenable in order to avoid confusion
with the well-established notion of an amenable action G y X due to Zimmer
([Zimm84]), which in the case X = G/H corresponds to the amenability of H ;
a unification of both notions by means of an appropriate definition of amenable
actions on pairs of measure spaces is given in [Zimm78]. For a further extension of
these notions to the context on non-commutative measure spaces (that is, to the
context of von Neumann algebras), see [Anan08].

(iii) If X is a locally compact space, one may define, as in [Gree69] or [Guiv80],
co-amenability of the action G y X through the existence of a G-invariant mean
on the space Cb(X) of continuous bounded functions on X ; as Example 5.10 below
shows, this is in general a weaker condition than co-amenability of the action of G
on the measure space (X,m), even in the case of a homogeneous space X = G̃/H

(for a group G̃ containing G), where a natural quasi-invariant measure (class) m
is given.

Let G y (X,m) be an action of G on the measure space m. Given a measure
space (X,m), a mean M on L∞(X,m) defines a finitely additive probability mea-
sure µM on the measurable subsets A of X, given by µM (A) = M(1A). Such a
finitely additive probability measure is absolutely continuous with respect to m, in
the sense that if m(A) = 0 then µM (A) = 0. Conversely, a finitely additive proba-
bility measure µ on X which is absolutely continuous with respect to m defines a
unique mean M on L∞(X,m), given by M(ϕ) =

∑m
i=1 αiµ(Ai), if ϕ =

∑m
i=1 αi1Ai

is a linear combination of indicator functions of measurable subsets Ai of X.

Remark 5.3. (i) Let X be a compact space. Then every mean M on L∞(X,m)
defines in a natural way a genuine (that is, σ-additive) probability measure on X.
Indeed, let Φ : C(X) → L∞(X,m) be the obvious mapping. Then M ◦ Φ is a
positive linear functional on C(X) with M ◦ Φ(1X) = 1. By Riesz representation



18 Bachir Bekka

theorem, there exists a probability measure µ on X such that

M ◦ Φ(f) =
∫

X

f(x)dµ(x) for all f ∈ C(X).

Observe that, if a locally compact group G acts on (X,m) and if M is G-
invariant, then the associated probability measure µ is G-invariant.

(ii) Recall that the space of probability measures P(X) on a compact space
X is compact for the weak topology σ(P(X)), C(X)); this is no longer true when
X is, say, a non compact locally compact space. However, for any measure space
(X,m), the spaceM(X) of means on L∞(X,m) has an equally useful compactness
property: M(X) is compact for the weak*-topology σ(L∞(X,m), L1(X,m)).

Means share with probability measures the property that they may be pushed
forward through measurable mappings.

Let (X,m) and (Y,m′) be σ-finite measure spaces and θ : X → Y a measurable
mapping such that m′ is absolutely continuous with respect to the push-forward
measure θ∗(m). Then

Φ : L∞(Y,m′) → L∞(X,m), ϕ 7→ ϕ ◦ θ
is a well-defined linear mapping which preserves positivity and maps 1Y to 1X .
So, if M is a mean on L∞(X,m), then θ∗(M) := M ◦ Φ is a mean on L∞(Y,m′),
which we call the push-forward mean or the image of M through θ.

An immediate consequence of the consideration of push-forward means is the
following useful fact.

Corollary 5.4. Let G y X and G y Y be actions of the locally compact group
G on measure spaces (X,m) and (Y,m′). Assume that there exists a measurable
mapping θ : X → Y which intertwines the respective G-actions and such that m′

is absolutely continuous with respect to θ∗(m). If G y X is co-amenable, then
G y Y is co-amenable.�

Proof If M is a G-invariant mean on L∞(X,m), then its push-forward θ∗(M)
is a G-invariant mean on L∞(Y,m′). �

Given an action G y (X,m), it will be convenient in the sequel to consider G-
invariant means on the subspace L∞(X)G,u of G-continuous functions in L∞(X),
that is, the space L∞(X)G,u of all ϕ ∈ L∞(X) for which the mapping

G → L∞(X), g 7→ gϕ

is norm-continuous.
The space L∞(X)G,u is a large subspace, obtained by averaging functions from

L∞(X,m). Indeed, it is easy to see that f∗ϕ ∈ L∞(X,m)G,u for every f ∈ L1(G, λ)
and ϕ ∈ L∞(X), where f ∗ ϕ(x) =

∫
G
f(g)gϕ(x)dλ(g) and λ is Haar left measure

on G. (In fact, using Cohen’s factorization theorem [HeRo63], one can show that
L∞(X)G,u = {f ∗ ϕ : f ∈ L1(G, λ), ϕ ∈ L∞(X)}.) It is obvious that L∞(X)G,u

is a G-invariant closed subspace of L∞(X) containing the constant functions.
Let L1(G)1,+ denote the convex set of all f ∈ L1(G, λ) with f ≥ 0 and ‖f‖1 =

1. Observe that L1(G)1,+ is closed under convolution.
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Lemma 5.5. The following properties are equivalent.

(i) There exists a G-invariant mean on L∞(X).

(ii) There exists a G-invariant mean on L∞(X)G,u.

(iii) There exists a topologically invariant mean on L∞(X), that is, a mean M
such that M(f ∗ ϕ) = M(ϕ) for all ϕ ∈ L∞(X) and f ∈ L1(G)1,+.

Proof The implication (i) ⇒ (ii) is trivial. To show that (ii) ⇒ (iii), let M be
a G-invariant mean on L∞(X)G,u. Since the mapping G → L∞(X)G,u, g 7→ gϕ is
norm continuous for ϕ ∈ L∞(X)G,u, one has

M(f ∗ ϕ) = M(ϕ) for all f ∈ L1(G)1,+, ϕ ∈ L∞(X)G,u.

Let (fn)n be an approximate identity in L1(G)1,+ for L1(G). Then, for each
ϕ ∈ L∞(X) and f ∈ L1(G)1,+, we have limn ‖f ∗ fn ∗ϕ− f ∗ϕ‖∞ = 0 and, hence,

M(f ∗ ϕ) = lim
n

M(f ∗ fn ∗ ϕ) = lim
n

M(fn ∗ ϕ).

This shows that M(f ∗ϕ) = M(f ′ ∗ϕ) for all f, f ′ ∈ L1(G)1,+ and all ϕ ∈ L∞(X).

Fix any f0 ∈ L1(G)1,+, and define a mean M̃ on L∞(X) by

M̃(ϕ) = M(f0 ∗ ϕ) for all ϕ ∈ L∞(X).

Then M̃ is topologically invariant, since, for f ∈ L1(G)1,+ and ϕ ∈ L∞(X), we
have

M̃(f ∗ ϕ) = M(f0 ∗ f ∗ ϕ) = M(f0 ∗ ϕ) = M̃(ϕ).

To show that (iii) ⇒ (i), let M be a topologically invariant mean on L∞(X).
Then M is G-invariant. Indeed, fix f ∈ L1(G)1,+. Then, for ϕ ∈ L∞(X) and
g ∈ G, we have f ∗ gϕ = fg ∗ ϕ and hence

M(gϕ) = M(f ∗ gϕ) = M(fg ∗ ϕ) = M(ϕ),

for fg ∈ L1(G)1,+ defined by fg(h) = ∆(g−1)f(hg−1), where ∆ is the modular
function of G.�

Recall that the unitary representation πX of G associated to the G-action on
X is defined on L2(X,m) by

πX(g)ξ(x) =

√
dm(g−1x)

dm(x)
ξ(g−1x), g ∈ G, x ∈ X, ξ ∈ L2(X).

(Observe that G y X is trivially co-amenable if m is a G-invariant probability
measure; so, our interest is in the case where m is either infinite or not invariant.)

We will need the following general fact concerning the spectral radius of a
convolution operator acting on L2(X,m).
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Lemma 5.6. Let µ be a probability measure on G with rspec(πX(µ)) = 1. Then
1 belongs to the spectrum σ(πX(µ)) of πX(µ); more precisely, 1 is an approximate
eigenvalue of πX(µ).

Proof Set T := πX(µ). Since rspec(T ) = 1, there exists λ ∈ σ(T ) with |λ| = 1.
We claim that λ is an approximate eigenvalue of T. Indeed, otherwise, Im(T −

λI) would be a proper closed subspace of L2(X). So, we would have ker(T ∗ −
λI) 6= {0}. However, since T is a contraction, the equality case of Cauchy-Schwarz
inequality shows that ker(T ∗−λI) = ker(T−λI). Hence, λ would be an eigenvalue
of T and this would be a contradiction.

So, there exists a sequence (ξn)n in L2(X) with ‖ξn‖ = 1 such that limn ‖Tξn−
λξn‖ = 0 or, equivalently,

lim
n

∫

G

〈πX(g)ξn, ξn〉dµ(g) = lim
n
〈Tξn, ξn〉 = λ.

In particular, we have

lim
n

∣∣∣∣
∫

G

〈πX(g)ξn, ξn〉dµ(g)
∣∣∣∣ = 1.

Since

1 =

∫

G

‖πX(g)ξn‖‖ξn‖dµ(g) ≥
∫

G

〈πX(g)|ξn|, |ξn|〉dµ(g)

≥
∫

G

|〈πX(g)ξn, ξn〉|dµ(g) ≥
∣∣∣∣
∫

G

〈πX(g)ξn, ξn〉dµ(g)
∣∣∣∣ ,

it follows that

lim
n
〈T |ξn|, |ξn|〉 = lim

n

∫

G

〈πX(g)|ξn|, |ξn|〉dµ(g) = 1,

that is, limn ‖T |ξn| − |ξn|‖ = 0. Hence, 1 is an approximate eigenvalue of T. �

The following result, which is the main result of this section, was obtained by
Guivarc’h in [Guiv80, Proposition 1]. The equivalence (i) ⇔ (ii) is due to Eymard
([Eyma72]) in the case of an action G y G/H for a closed subgroup H of G.
The equivalence (ii) ⇔ (iv) (or (ii) ⇔ (v)) has been extended to a class of more
general unitary representations in [BeGu06].

Theorem 5.7. ([Guiv80]) Let G y X be an action of the separable locally com-
pact group G on the measure space (X,m), where m is a σ-finite quasi-invariant
measure on X. The following properties are equivalent:
(i) The action G y X is co-amenable;
(ii) the representation πX of G does not have the Spectral Gap Property;
(iii) we have rspec(πX(µ)) = 1 for every probability measure µ on G;
(iv) we have ‖πX(µ)‖ = 1 for some strongly adapted probability measure µ on G;
(v) we have rspec(πX(µ)) = 1 for some adapted probability measure µ on G.
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Proof (i) ⇒ (ii) : The set M of all means on L∞(X) is a weak* closed (and
hence compact) convex subset of the unit ball of L∞(X)∗. We can view the set
L1(X)1,+ of densities as a subset of M, since every ξ in L1(X)1,+ defines an ele-
ment inM, via integration against ξ. Hahn-Banach’s theorem shows that L1(X)1,+
is weak* dense in M.

The group G acts by isometries on L1(X,m), through the formula

πX(g)ξ(x) =
dm(g−1x)

dm(x)
ξ(g−1x) for all g ∈ G, ξ ∈ L1(X,m), x ∈ X,

and so L1(X) is a continuous L1(G)-module, via

f ∗ ξ(x) :=
∫

G

f(g)(πX(g)ξ)(x)dλ(g) for all f ∈ L1(G), ξ ∈ L1(X).

One checks that, for f ∈ L1(G), ξ ∈ L1(X) and ϕ ∈ L∞(X), one has

∫

X

(f ∗ ξ)(x)ϕ(x)dm(x) =

∫

X

ξ(x)(f̌ ∗ ϕ)(x)dm(x),

where f̌ ∈ L1(G) is defined by f̌(g) = ∆(g−1)f(g−1).
Let L be a countable dense subset of L1(G)1,+ for the L1-norm. For each

f ∈ L, take a copy of L1(X) and consider the product space E =
∏

f∈L L1(X),
with the product of the norm topologies. Then E is a locally convex space, and the
weak topology on E is the product of the weak topologies. Consider the convex
set

Σ = {(f ∗ ξ − ξ)f∈L : ξ ∈ L1(X)1,+} ⊂ E.

Since G y X is co-amenable, there exists a G-invariant mean M on L∞(X),
which is even topologically invariant (see Lemma 5.5). Take a net (ξi)i in L1(X)1,+
with

M(ϕ) = lim
i

∫

X

ξi(x)ϕ(x)dm(x) for all ϕ ∈ L∞(X).

Then, since M is topologically invariant, we have limi f ∗ ξi − ξi = 0 in the weak
topology of L1(X), for every f ∈ L1(G)1,+. So, 0 belongs to the closure of Σ for the
product of the weak topologies and hence for the product of the norm-topologies,
since Σ is convex. Therefore, we can find a sequence (ξn)n in L1(X)1,+ such that,
for every f ∈ L, we have

lim
n

‖f ∗ ξn − ξn‖1 = 0.

It follows that limn ‖f ∗ ξn − ξn‖1 = 0 for every f ∈ L1(G)1,+, by density of L.
Since

‖πX(g)(f ∗ ξn)− f ∗ ξn‖1 ≤ ‖(gf) ∗ ξn − ξn‖1 + ‖f ∗ ξn − ξn‖1,

we have therefore

lim
n

‖πX(g)(f ∗ ξn)− f ∗ ξn‖1 = 0 for all g ∈ G.
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Choose f ∈ L and set ηn =
√
f ∗ ξn. Then ‖ηn‖22 = ‖f ∗ ξn‖1 = 1; moreover,

for every g ∈ G, we have

lim
n

‖πX(g)ηn − ηn‖2 = 0,

since
‖πX(g)ηn − ηn‖22 ≤ ‖πX(g)(f ∗ ξn)− (f ∗ ξn)‖1,

using the elementary inequality |a−b|2 ≤ |a2−b2| for all non-negative real numbers
a and b. It follows then that limn ‖πX(g)ηn − ηn‖2 = 0 uniformly on compact
subsets of G (see Remark 3.3.i). This proves (ii).
(ii) ⇒ (iii) : Assume that πX has does not have Spectral Gap Property. So, there
exists a sequence ηn ∈ L2(X) with ‖ηn‖2 = 1 and limn ‖πX(g)ηn − ηn‖2 = 0 for
all g ∈ G. Set ξn = |ηn|2. Then ξn ∈ L1(X)1,+ and limn ‖πX(g)ξn − ξn‖1 = 0 for
all g ∈ G, since

‖πX(g)ξn − ξn‖1 ≤ 2‖πX(g)ηn − ηn‖2,
by Cauchy-Schwarz inequality.

Let µ be any probability measure on G. Since

‖πX(µ)ηn − ηn‖2 ≤
∫

G

‖πX(g)ηn − ηn‖2dµ(g),

it follows from Lebesgue convergence theorem that limn ‖πX(µ)ηn − ηn‖2 = 0.
Hence, rspec(πX(µ)) = 1.
(iii) ⇒ (iv) is obvious.
(iv) ⇒ (v) Let µ be a strongly adapted probability measure on G with ‖πX(µ)‖ =
1. Then µ̌ ∗ µ is adapted and πX(µ̌ ∗ µ) is a self-adjoint operator on L2(X) with
‖πX(µ̌ ∗ µ)‖ = ‖πX(µ)‖2 = 1. Hence, rspec(πX(µ̌ ∗ µ)) = 1.
(v) ⇒ (i) : Let µ be an adapted probability measure on G with rspec(πX(µ)) = 1.

By Lemma 5.6, 1 belongs to σ(πX (µ)) and is an approximate eigenvalue.
Hence, there exists a sequence of unit vectors ηn in L2(X) with

lim
n

‖πX(µ)ηn − ηn‖2 = 0.

So, limn〈πX(µ)ηn, ηn〉 = 1, that is,

lim
n

∫

G

〈πX(g)ηn, ηn〉dµ(g) = 1.

It follows that there exists a subsequence, again denoted by ηn, such that

lim
n
〈πX(g)ηn, ηn〉 = 1.

for µ-almost every g ∈ G. Since

‖πX(g)|ηn| − |ηn|‖2 ≤ ‖πX(g)ηn − ηn‖2,

we can assume that ηn ≥ 0. Set

H = {g ∈ G : lim
n
〈πX(g)ηn, ηn〉 = 1} = {g ∈ G : lim

n
‖πX(g)ηn − ηn‖2 = 0}.
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Then H is a measurable subgroup of G with µ(H) = 1. Hence, H contains supp(µ)
and it follows that H is dense in G.

Set ξn =
√
ηn ∈ L1(X)1,+. Let now M be a mean on L∞(X)G,u which is a

limit of (ξn)n in the weak-*-topology. Then M is H-invariant. Since, g 7→ gϕ
is norm-continuous for ϕ ∈ L∞(X)G,u, it follows that M is G-invariant. Hence,
G y X is co-amenable by Lemma 5.5. �

The following consequence of the equivalence between (i), (iii) and (v) in the
previous theorem is worth mentioning.

Corollary 5.8. Let G y X be an action of the separable locally compact group G
on the measure space (X,m). Let H be a separable locally compact group, j : H →
G a continuous homomorphism and H y X the corresponding action.
(i) If G y X is co-amenable, then H y X is co-amenable. In particular, H y X
is co-amenable if H is a closed subgroup or a countable dense subgroup of G.
(ii) Assume that G y X is not co-amenable and that j(H) is dense in G. Then
H y X is not co-amenable.

Remark 5.9. (i) Considering the action G y G given by left translation, we see
that Theorem 3.20 is a special case of Theorem 5.7.
(ii) For an extension of Theorem 5.7 to amenable pair of actions (including actions
on von Neumann algebras), see [Anan03] and [Anan08]).

Example 5.10. Identify the groupG = SL2(R) with the subgroup




1 0 0
0 ∗ ∗
0 ∗ ∗




ofH = SL3(R); the standard action ofG onX = R3\{0} (which is a homogeneous
space of the form H/L), preserves the Lebesgue measure m on X, and fixes the
first unit vector e1 ∈ R3. The Dirac measure δe1 is a G-invariant mean on the
space Cb(X); however, there exists no G-invariant mean on L∞(X,m). Indeed,
otherwise, the corresponding unitary representation πX of G on L∞(X) = L2(R3)
would have almost invariant vectors (by Theorem 5.7). On the other hand, upon
neglecting a set of m-measure 0, the G-orbits in X are the sets

Xx =








x
y
z


 | y, z ∈ R





for x ∈ R, which all are isomorphic to G/N where N is the subgroup of unipo-
tent upper-triangular matrices. So, πX is weakly equivalent to the quasi-regular
representation πG/N in G/N. Since, N is amenable, πG/N is weakly contained
in the regular representation πG (see Theorem F.3.5 in [BHV]). Therefore, πG

would have almost invariant vectors and this impossible, since G = SL2(R) is not
amenable.

5.2 Følner sequences

We now prove the existence of Følner sequences in X for co-amenable actions
G y (X,m), provided the measure m is G-invariant. More precisely, the following
extension of Theorem 3.18 holds (see also [Gree69] and [IoNe96]).



24 Bachir Bekka

Theorem 5.11. (Existence of Følner sequences) Let G be a separable locally
compact group and let G y X be a co-amenable action of G on the measure space
(X,m). Assume that m is G-invariant. Then, for every compact subset Q of G
and every ε > 0, there exists a measurable subset U of X with 0 < m(U) < ∞
such that

m(gU△U)

m(U)
≤ ε for all g ∈ Q.

Proof We follow the proof given in [BHV, Theorem G.5.1] for the group case
(Theorem 3.18), which carries over mutatis mutandis in our situation.

Let Q be a compact subset of G containing e, and let ε > 0. Set K := Q2.
Since πX does not have the Spectral Gap Property, we can find ξ ∈ L2(X) with
‖ξ‖2 = 1 such that

sup
g∈K

‖πX(g)ξ − ξ‖2 ≤ ε|Q|
2|K| ,

where we denote by |A| the Haar measure of a subset A of G.
Set f = |ξ|2. Then f ∈ L1(X)1,+ and

sup
g∈K

‖g−1f − f‖1 ≤
ε|Q|
2|K| .

For t ≥ 0, let Et := {y ∈ X : f(y) ≥ t}. Then

gEt = {y ∈ X : g−1f(y) ≥ t}.

By the lemma below, we have

‖g−1f − f‖1 =
∫ ∞

0

m(gEt△Et)dt.

for every g ∈ G. Hence, for every g ∈ K, we have

∫ ∞

0

m(Et)

(∫

K

m(gEt△Et)

m(Et)
dg

)
dt =

∫

K

‖g−1f − f‖1dg ≤ ε|Q|
2

.

Since
∫∞
0

m(Et)dt = ‖f‖1 = 1, it follows that there exists t with 0 < m(Et) < ∞
and such that ∫

K

m(gEt△Et)

m(Et)
dg ≤ ε|Q|

2
.

Set

A = {g ∈ K :
m(gEt△Et)

m(Et)
≤ ε}.

Then |K \A| < |Q|/2 and we claim that Q ⊂ AA−1.
To show this, let g ∈ Q. Then |gK ∩K| ≥ |gQ| = |Q| and, hence,

|Q| ≤ |gK ∩K| ≤ |gA ∩ A|+ |K \A|+ |g(K \A)| = |gA ∩A|+ 2|K \A|
< |gA ∩ A|+ |Q|.
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Therefore, |gA ∩A| > 0, and this implies that g ∈ AA−1, as claimed.
Now, for g1, g2 ∈ A, we have

g1g
−1
2 Et△Et ⊂ (g1g

−1
2 Et△g1Et) ∪ (g1Et△Et),

and hence

m(g1g
−1
2 Et△Et) ≤ m(g−1

2 Et△Et) +m(g1Et△Et)

= m(g2Et△Et) +m(g1Et△Et) ≤ 2εm(Et).�

The following formulas, which are versions of the area and co-area formulas
from Lemma 8.6, have a similar elementary proof (see Lemma G.5.2 in [BHV]).

Lemma 5.12. Let (X,m) be a measure space. Let f, f ′ be non-negative functions
in L1(X). For every t ≥ 0, let Et = {x ∈ X : f(x) ≥ t} and E′

t = {x ∈ X :
f ′(x) ≥ t}. Then

‖f − f ′‖1 =

∫ ∞

0

m(Et△E′
t)dt.

In particular, ‖f‖1 =
∫∞
0

m(Et)dt.

Remark 5.13. As noticed in [Gree69], the previous theorem may fail if one drops
the assumption that the measure m on X is G-invariant. Indeed, consider for
example the action of G = Z on X = Z by translations, where X is equipped with
the measure defined by m({n}) = 2|n| for all n ∈ Z. It is easy to see that, for

Q = {±1} and for every finite set U of Z, we have supg∈Q
m(gU△U)

m(U) ≥ 1.

5.3 Norm of averaging operators under the regular repre-
sentation

Let G be a separable locally compact group, and denote by m a left Haar measure
on G. We consider the action of G on itself by left translation.

The associated unitary representation πG is the left regular representation of
G on on L2(G,m). It is a remarkable fact that, given a probability measure µ on
G, the norm of πG(µ) under the regular representation gives a lower bound for
πX(µ) for every action G y X on a measure space X . This fact, which may be
viewed as a version of Herz’s majoration principle from [Herz70], was proved by
Shalom (see Lemma 2.3 in [Shal00]).

We first give a formula, due to Kesten in the discrete case and to Berg and
Christensen in general, for the norm of the convolution operators defined by prob-
ability measures on G.

Proposition 5.14. ([Kest59b], [BeCh74]) Let µ be a probability measure on
the separable locally compact group G. Then, for every compact neighbourhood U
of the group unit e, we have

‖πG(µ)‖ = lim
n→+∞

〈πG(µ̌ ∗ µ)n1U ,1U 〉1/2n = lim
n→+∞

((µ̌ ∗ µ)n(U))
1/2n

.

In particular, if G is discrete, we have

‖πG(µ)‖ = lim
n→+∞

(µ̌ ∗ µ)n(e)1/2n = lim
n→+∞

〈πG(µ̌ ∗ µ)n)δe, δe〉1/2n.
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Proof We give the proof of the formula in the case where G is discrete.
First, we observe that the sequence (µ̌ ∗ µ)n(e)1/2n converges. Indeed, set

an = (µ̌ ∗ µ)n(e). Let T be the square root of the positive selfadjoint operator
πG(µ̌ ∗ µ). Then

an = ‖T nδe‖2 = 〈T nδe, T
nδe〉

and, using Cauchy-Schwarz inequality, we see that a2n ≤ an+1an−1.Hence (an+1/an)n

is increasing and therefore convergent. It follows that (a
1/2n
n )n converges (to the

same limit).
Next, since πG(µ̌ ∗ µ) is selfadjoint, we have

‖πG(µ̌ ∗ µ)‖ = lim
n

‖πG(µ̌ ∗ µ)n‖1/n,

so that

‖πG(µ)‖2 = sup
f∈C[G]

(
lim sup

n
〈πG(µ̌ ∗ µ)nf, f〉1/n

)
,

where C[G] is the group algebra of G, that is, the linear span of {δx : x ∈ G}.
Now

lim sup
n

〈πG(µ̌ ∗ µ)n
k∑

i=1

ciδxi
,

k∑

i=1

ciδxi
〉1/n ≤ k

max
i=1

(
lim sup

n
〈πG(µ̌ ∗ µ)nδxi

, δxi
〉1/n

)
,

for all x1, . . . , xk ∈ G and c1, . . . , ck in C. Since

〈πG(µ̌ ∗ µ)nδxi
, δxi

〉 = (µ̌ ∗ µ)n(e),

this proves the claim. �

Proposition 5.15. ([Shal00]) Let G y X be an action of the separable lo-
cally compact group G on the measure space (X,m), where m is a σ-finite quasi-
invariant measure on X. For every probability measure µ on G, we have

‖πX(µ)‖ ≥ ‖πG(µ)‖.

Proof Set ν = µ̌ ∗ µ and let ξ be a unit vector in L2(X) with ξ ≥ 0. The
non-negative function

G 7→ R, g 7→ 〈πX(g)ξ, ξ〉
is continuous and takes the value 1 at e. Hence, there exists a compact neighbour-
hood U of e such that

〈πX(g)ξ, ξ〉 ≥ 1

2
for all g ∈ U.

For every n ≥ 1, we have

〈πX(ν)nξ, ξ〉 = 〈πX(νn)ξ, ξ〉 =
∫

G

〈πX(g)ξ, ξ〉dνn(g)

≥ 1

2
νn(U).
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Since
‖πX(µ)‖ ≥ 〈πX(µ)nξ, πX(µ)nξ〉1/2n = 〈πX(ν)nξ, ξ〉1/2n,

it follows from Proposition 5.14 that

‖πX(µ)‖ ≥ ‖πG(µ)‖.�

As a consequence of the previous proposition and the spectral characterization
of amenability (Theorem 3.20), we see that an action of an amenable group on a
measure space never has the Spectral Gap Property.

Corollary 5.16. Let G be an amenable separable locally compact group. Then
every action G y X on a measure space (X,m) is co-amenable. �

Alternatively, the previous corollary follows also from the fixed point property
of amenable groups (Proposition 3.16.ii), applied to the convex set of means on
(X,m).

In contrast to this, the co-amenable actions of a Kazhdan group are the actions
which are co-amenable for trivial reasons. More precisely, the following result
holds.

Corollary 5.17. Let G be locally compact group with Kazhdan’s Property (T)
and G y X a co-amenable ergodic action on a measure space (X,m). Then m is
equivalent to a G-invariant probability measure on X.

Proof Indeed, the assumptions imply that there exists a function f ∈ L1(X,m)1,+
which is G-invariant, that is,

dgm

dm
(x)f(gx) = f(x) for all g ∈ G, x ∈ X.

One checks that the density f(x)dm(x) is a G-invariant measure on X. Moreover,
since the action the action is ergodic, f > 0 almost everywhere.�

5.4 Linear actions with the Spectral Gap Property

Given a separable locally compact group G and an action G y X on a measure
space (X,m), there are only few general results ensuring the Spectral Gap Property
for this action.

We will consider linear actions on a vector spaces V = kd over an arbitrary local
field k. Let G be a subgroup of GL(V ) = GLd(k). We have the following sufficient
condition for the Spectral Gap Property for the linear action G y V \ {0}, where
V is equipped with a translation invariant measure m. This condition involves
the induced action of G on the projective space P(V ) of V. Recall that P(V ) is
compact for the quotient topology induced from that of V.

Lemma 5.18. Let G is a locally compact group which embeds continuously in
PGL(V ) = PGLd(k). Assume that there exists no G-invariant probability measure
on P(V ). Then the action G y V \ {0} has the Spectral Gap Property.



28 Bachir Bekka

Proof Indeed, assume, by contraposition, that the action G y V \ {0} is co-
amenable. The canonical mapping p : V \ {0} → P(V ) is G-equivariant and the
Lebesgue measure m′ on P(V ) is absolutely continuous with respect to p∗(m).
Hence, G y P(V ) is co-amenable (see Corollary 5.4). So, there exists a G-
invariant mean M on L∞(P(V ),m′). Since P(V ) is a compact space, M defines a
a probability measure on P(V ), which is G-invariant (see Remark 5.3.i ). �

The following result is a consequence of Furstenberg’s celebrated lemma (see
[Furs76] or [Zimm84, Corollary 3.2.2]) on stabilizers of probability measures on
projective spaces. A subgroup G of GL(V ) is said to be totally irreducible if every
finite index subgroup of G acts irreducibly on V.

Theorem 5.19. Let G be a totally irreducible subgroup in SL(V ). Assume that
G is not relatively compact in SL(V ). Then G y V \ {0} has the Spectral Gap
Property.

Proof By the previous lemma, it suffices to show that there exists no G-invariant
probability measure on P(V ).

Since G is not relatively compact, there exists a sequence (gn)n in G with

limn ‖gn‖ = ∞ (for any norm on End(V )). Set un =
gn
‖gn‖

. Then ‖un‖ = 1

and limn det(un) = limn 1/‖gn‖d = 0. Upon passing to a subsequence, we can
therefore assume that u = limn un exists in End(V ) with ‖u‖ = 1 and det(u) = 0.
So, ker(u) and u(V ) are proper non-zero subspaces of V. Denote by X1 and X2

their images in P(V ).
Assume now, by contradiction, that there exists a G-invariant probability mea-

sure ν on P(V ). Write ν = ν1+ν2, where ν1 and ν2 are positive measures on P(V )
with

ν1(P(V ) \X1) = 0 and ν2(X1) = 0.

By compactness of the set of bounded positive measures on P(V ), we can assume
that limn gnν1 = m1 and limn gnν2 = m2 exist. Then

ν = lim
n

gnν = m1 +m2.

Since ν2 is supported on P(V ) \ X1 and since limn gnx = ux ∈ X2 for every
x ∈ P(V ) \ X1, the measure m2 is supported on X2. We can also assume that
X ′ = limn gnX1 exists, where X ′ is the image in P(V ) of a subspace of V of
the same dimension as ker(u). So, ν is supported on the union X ′ ∪ X2 of two
proper projective subspaces. This contradicts the fact that G is totally irreducible.
Indeed, let F be a projective subspace of minimal dimension with ν(F ) > 0. If
ν(gF ∩ F ) > 0, then gF = F by the minimality of dimension of F . Since ν is
a probability measure, it follows that {gF : g ∈ G} is a finite set of projective
subspaces. Therefore, the proper projective subspace F is fixed by a subgroup of
G of finite index. �

Remark 5.20. The proof of Theorem 5.19 shows that actually the following
stronger statement holds (see Lemma 3 in [Furs76]). Let G be locally compact
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group which is minimally almost periodic (that is, every continuous homomor-
phism of G into a compact group is trivial) and let π : G 7→ GL(V ) be a repre-
sentation of G on a finite dimensional vector space V over a local field. Consider
the action of G on P(V ) associated to π. If G preserves a probability measure ν
on P(V ), then ν is concentrated on the G-fixed points in P(V ).

Remark 5.21. Shalom obtained in [Shal99] the following nice characterization of
co-amenable actions of an algebraic group G over a local field k on an arbitrary
algebraic k-variety: there exists an amenable quotient of G through which every
such action factorizes.

5.5 Co-amenable subgroups of semisimple groups

Given a locally compact group G, one may ask which closed subgroups H are co-
amenable in G, that is, for which closed subgroups H is G y G/H co-amenable.
Observe that, by Corollary 5.17, if G has Kazhdan property, then G y G/H is
co-amenable if and only H has finite covolume in G (that is, G/H has a non trivial
finite G-invariant Borel measure). So, the only simple real Lie groups interesting
for this question are the isometry groups of real or complex hyperbolic spaces. As
we will see (Theorem 5.27), in this case, the co-amenability of a subgroup can be
read off from its critical exponent.

It is a remarkable fact that co-amenable subgroups of semi-simple algebraic
groups are Zariski-dense, a result established in [Guiv80, Corollaire, p. 192] for
the case of real algebraic groups and in [Shal99, Corollary 1.7] in general (this
generalizes a result from [Stuc92]; see also [IoNe96]).

Theorem 5.22. ([Guiv80],[Shal99]) Let G = G(k) be the group of k-rational
points of a semi-simple connected algebraic group over the local field k without
compact factors. Let H be a closed co-amenable subgroup of G. Then H is Zariski
dense in G.

Proof Let L ⊂ G be the Zariski-closure of H in G. By a well-known result of
Chevalley (see Theorem 5.1 in [Bore91]), there exist a k-rational representation
G → GL(V ) over a finite dimensional k-vector space V and a line ℓ ⊂ V such that
L is the stabilizer of ℓ in G. The next proposition shows that ℓ is G-fixed and so
L = G.�

Proposition 5.23. Let G be as in Theorem 5.22 and let π : G → GL(V ) be
a continuous representation of G on a finite dimensional vector space V over k.
Let H be a closed co-amenable subgroup of G and let ℓ ⊂ V be a line which is
H-invariant. Then ℓ is G-invariant (and hence G fixes every point in ℓ).

Proof We proceed by induction on dim V. The case dimV = 1 being trivial,
assume that dimV ≥ 2.

Let x ∈ P(V ) be the image of ℓ in P(V ). The orbital mapping

G → P(V ), g 7→ gx
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induces a G-equivariant continuous mapping f : G/H → P(V ). If M be an in-
variant mean on L∞(G/H), then f∗(M) defines a G-invariant probability measure
ν on P(V ). Since G is minimally almost periodic, ν is supported by the G-fixed
points in P(V ); see Remark 5.20 above. So, G fixes a line ℓ′ in V.

Consider now the representation π : G → GL(V/ℓ′) associated to π. Since
dim(V/ℓ′) < dimV, the induction hypothesis shows that the image of ℓ in V/ℓ′ is
π(G)-invariant.

Let W = ℓ + ℓ′. Then W is a G-invariant subspace of V. Moreover, the
corresponding homomorphism G → GL(W ) has its image contained in a solvable
group. Hence, G acts trivially on W and the claim is proved.�

Corollary 5.24. Let G be a connected simple non compact real Lie group with
trivial center and let H be a proper closed co-amenable subgroup of G. Then H is
a discrete subgroup of G.

Proof Let g be the Lie algebra of G and Ad : G → GL(g) the adjoint represen-
tation. Then G can be identified with the connected component (in the Hausdorff
topology) of the real points of the simple algebraic group Aut(g) over R.

The Lie subalgebra h corresponding to H is Ad(H)-invariant and hence Ad(G)-
invariant, since H is Zariski dense in G. So, h is an ideal in g. Since g is a simple
Lie algebra, it follows that either h = g or h = {0}. The first case does not occur
as H would be an open proper subgroup of the connected group G. So, h = {0}
and this means that H is discrete.�

We give below examples of co-amenable subgroups H in SL2(R) which are not
lattices. These examples are based on the following proposition about “transitiv-
ity” of co-amenability.

Proposition 5.25. Let G be a locally compact group and H ⊂ L be closed sub-
groups of G. If L is co-amenable in G and H is co-amenable in L, then H is
co-amenable in G.

Proof Since H is co-amenable in L, the regular representation πL/H of L in
L2(L/H) weakly contains the trivial representation 1L. By continuity of induction
(see Theorem F.3.5 in [BHV]), the induced representation IndGL (πL/H) weakly

contains IndGL1L. Now, IndGL(πL/H ) is equivalent to the regular representation

πG/H in L2(G/H) and IndGL1L to the regular representation πG/L in L2(G/L). It
follows that 1G is weakly contained in πG/H , since 1G is weakly contained in πG/L

by the co-amenability of L in G. So, H is co-amenable in G.�

Example 5.26. Let G be a locally compact group and Γ a lattice in G. Let
ϕ : Γ → S be a surjective homomorphism into an amenable discrete group S. The
previous proposition shows that H = ker(ϕ) is a co-amenable subgroup in G.

For instance, if G = PSL2(R) and Γ = F2 is the free group on two generators
realized as lattice in G, then H = [Γ,Γ] is co-amenable in G and is not a lattice.
This is also true for every co-compact lattice Γ in G = PSL2(R). For other
examples, see [IoNe96] and [Stuc92].
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As a consequence of results from [Corl90] and [Sull87], we now characterize
the co-amenability of a (discrete) subgroup of SO(n, 1) or SU(n, 1) in terms of
the value of its critical exponent. Fix a G-invariant Riemannian metric d on the
hyperbolic space Hn(R) in case G = SO(n, 1) or Hn(C) in case G = SU(n, 1),
normalized to have constant (respectively, maximal) sectional curvature equal to
−1 in the real case (respectively, in the complex case).

Recall that the critical exponent δ(Γ) of a discrete subgroup Γ of G = SO(n, 1)
or G = SU(n, 1), is defined as

δ(Γ) := inf



s ∈ R :

∑

γ∈Γ

e−sd(γx,x) < ∞



 ,

where x is an arbitrary point in Hn(R) or Hn(C). If Γ is a lattice in G, then
δ(Γ) = n− 1 in case G = SO(n, 1) and δ(Γ) = 2n in case G = SU(n, 1); these are
the maximal possible values of δ(Γ) for a discrete subgroup Γ.

Theorem 5.27. Let G = SO(n, 1) for n ≥ 2 or G = SU(n, 1) for n ≥ 1.
The closed proper subgroups of G which are co-amenable are exactly the discrete
subgroups Γ with maximal critical exponent, that is, such that δ(Γ) = n−1 in case
G = SO(n, 1) and δ(Γ) = 2n in case G = SU(n, 1).

Proof Let Γ be a closed co-amenable proper subgroup of G; in view of Corol-
lary 5.24, we can assume that Γ is discrete,

Let λ0 ≥ 0 be the bottom of the spectrum of the Laplace-Beltrami operator on
the locally symmetric space Γ\X, where X = Hn(R) or Hn(C). It is well-known
and easy to prove that 1G is not weakly contained in the regular representation
πΓ\G on L2(Γ\G) if and only if λ0 > 0. Now, it is shown in [Corl90, §4] (see also
[Sull87, 2.17]) that λ0 = d2/4 if δ(Γ) ≤ 1/2d and λ0 = δ(Γ)(d − δ(Γ)) if δ(Γ) ≥
1/2d, where d = n− 1 in case G = SO(n, 1) and d = 2n in case G = SU(n, 1). So,
λ0 = 0 if and only if δ(Γ) = d.�

6 Quantifying the Spectral Gap Property

Let G be a separable locally compact group and G y X an action on a measure
space (X,m). Assume that the corresponding representation πX has the Spectral
Gap Property. (Recall that in case m is G-invariant probability measure, πX

denotes the corresponding representation in L2
0(X).) So, given a strongly adapted

probability measure µ on G, we have ‖πX(µ)‖ < 1. For various applications (see
Section 10), it is important to have an upper bound for ‖πX(µ)‖. Such a bound
may involve the norm of µ under some “known” representations of the group G,
such as the regular representation πG. As we now see, estimates of this kind are
available when G is a subgroup of a simple Lie group, as a consequence of the
strong decay of the matrix coefficients of their unitary representations.

Let (π,H) be a unitary representation of the locally compact group G. For a
real number p with 1 ≤ p < +∞, the representation π is said to be strongly Lp, if
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there is dense subspace D ⊂ H. such that, for every ξ, η ∈ D, the matrix coefficient

Cπ
ξ,η : G → C, g 7→ 〈π(g)ξ, η〉

belongs to Lp(G). Observe that then π is strongly Lq for any q > p, since Cπ
ξ,η is

bounded.
Strongly Lp-representations for p = 2 or p ≥ 2+ε are closely tied to the regular

representation πG.

Proposition 6.1. Let (π,H) be a unitary representation of the locally compact
group G.

(i) If π is strongly L2, then π is contained in an infinite multiple of the regular
representation πG.

(ii) If π is strongly Lp for every p > 2, then π is weakly contained in the regular
representation πG.

Concerning the proofs, see Proposition 1.2.3 in Chapter V of [HoTa92] for (i)
and Theorem 1 in [CHH88] for (ii). Representations which are strongly Lp for
every p > 2 also often called tempered representations.

A crucial fact for the sequel is the following theorem; part (i) is due to Cowling
(Theorem 2.4.2 in [Cowl79]) and part (ii) to Moore (Proposition 3.6 in [Moor87]).

Theorem 6.2. Let G be a simple real Lie group with finite center.

(i) ([Cowl79]) If the real rank of G is at least two, then there exists p(G) in
(2,+∞) such that every unitary representation of G with no no-zero invari-
ant vectors is strongly Lp for every p > p(G).

(ii) ([Moor87]) If the real rank of G is one, then every unitary representation
of G with the Spectral Gap Property is strongly Lp for some p ∈ [2,+∞)

Remark 6.3. Part (i) of the previous theorem holds more generally when G is
the group of k-rational points of a simple algebraic group over a local field k, with
k-rank at least two (see Theorem 5.6 in [HoMo79]). Estimates for the optimal
bounds p(G) in (i) have been given in [Howe82], [Li95], [LiZh96] and [Oh02]. For
instance, one has p(SLn(R)) = 2n− 2 for n ≥ 3. Cowling’s result also covers the
case where G has R-rank one and is a Kazhdan group (that is, when G is locally
isomorphic to Sp(1, n) or F−20

4 )).
To our knowledge, it is not known whether (ii) is true for all local fields k and

all simple algebraic groups with k-rank 1. We suspect that it is indeed the case.
The results above are derived using pointwise estimates for matrix coefficients

of the involved unitary representation, and this provides a more precise and often
useful information about them (see [Cowl79], [HoTa92]).

Combining Theorem 6.2 with Proposition 6.1, we obtain the following remark-
able result. Recall that, for an integer k ≥ 1, the k-fold tensor product π⊗k of
a unitary representation (π,H) is the unitary representation of G defined on the
tensor product Hilbert space H⊗k by

π⊗k(g)(ξ1 ⊗ · · · ⊗ ξk) = π(g)ξ1 ⊗ · · · ⊗ π(g)ξk for all g ∈ G, ξ1, . . . , ξk ∈ H.
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Corollary 6.4. Let G be a simple real Lie group with finite center and π a unitary
representation of G with the Spectral Gap Property. Then there exists N ≥ 1 such
that π⊗N is contained in an infinite multiple of the regular representation πG.
Moreover, in case G has Property (T), the integer N can be chosen independently
of π.

Proof Let 1 ≤ p < ∞ be such that π is strongly Lp. Let N be an integer with
N ≥ p/2. Then π⊗N is strongly L2 and the claim follows. �

Given a probability measure, we now deduce from the previous corollary esti-
mates for the norm π(µ) in terms of πG(µ), For this, we will use in a crucial way
the following estimate which appears in the proof of Theorem 1 in [Nevo98]. Recall
that, for a unitary representation (π,H) of G, the contragredient (or conjugate)
representation π acts on the conjugate Hilbert space H.

Proposition 6.5. ([Nevo98]) Let µ be a probability measure on the locally com-
pact group G. Let (π,H) be a unitary representation of G. For every integer k ≥ 1,
we have

‖π(µ)‖ ≤ ‖ (π ⊗ π)
⊗k

(µ)‖1/2k,

Proof Using Jensen’s inequality, we have for every vector ξ ∈ H,

‖π(µ)ξ‖4k = |〈π(µ̌ ∗ µ)ξ, ξ〉|2k =

∣∣∣∣
∫

G

〈π(g)ξ, ξ〉d(µ̌ ∗ µ)(g)
∣∣∣∣
2k

≤
∫

G

〈|π(g)ξ, ξ〉|2kd(µ̌ ∗ µ)(g)

=

∫

G

|〈(π ⊗ π)(g)(ξ ⊗ ξ), ξ ⊗ ξ〉|kd(µ̌ ∗ µ)(g)

=

∫

G

〈(π ⊗ π)⊗k(g)(ξ ⊗ ξ)⊗k, (ξ ⊗ ξ)⊗k〉d(µ̌ ∗ µ)(g)

= |〈(π ⊗ π)⊗k(µ̌ ∗ µ)(ξ ⊗ ξ)⊗k, (ξ ⊗ ξ)⊗k〉|
= ‖(π ⊗ π)⊗k(µ)(ξ ⊗ ξ)⊗k‖2.

and the claim follows. �

Corollary 6.6. Let G be a simple real Lie group with finite center and π a unitary
representation of G with the Spectral Gap Property. Then there exists N ≥ 1 such
that, for every probability measure µ on G, we have

‖π(µ)‖ ≤ ‖πG(µ)‖1/N .

Moreover, in case G has Property (T), the integer N can be chosen to be indepen-
dent of π.

Proof Let 1 ≤ p < ∞ be such that π is strongly Lp. Let k be an integer with
k ≥ p/4. Then (π ⊗ π)

⊗k
is strongly L2 and is hence is contained in a multiple of

πG. The claim follows now from Proposition 6.5. �
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Remark 6.7. Results about decay of matrix coefficients of semisimple algebraic
groups G as described in Theorem 6.2 and Corollary 6.6 have been used in the
monograph [GoNe10] in order to prove impressive quantitative ergodic theorems
for families of averaging operators on G or on a lattice in G as well as results
on counting lattice points (with explicit error term), with various applications to
counting problems from number theory.

7 Probability measure preserving actions

From now on, we will deal only with group actions which preserve a probability
measure. So, let G be a locally compact group acting on a measure space (X,m),
wherem is a G-invariant probability measure. Recall that G y X has the Spectral
Gap Property if the Koopman representation πX on L2

0(X) = (C1X)⊥ does not
have almost invariant vectors.

7.1 Amenability as obstruction to the Spectral Gap Prop-
erty

The following result shows that amenability is an obstruction to the Spectral Gap
Property also in the probability measure preserving case, at least for discrete
groups.

Theorem 7.1. ([JuRo79]) Let Γ be a countable amenable group with a measure
preserving action on a non atomic probability space (X,m). Then Γ y X does
not have the Spectral Gap Property.

Proof Let S be a finite symmetric subset of Γ and ε > 0. We want to construct
a function f ∈ L2

0(X) which is (S, ε)-invariant. Since Γ is amenable, there exists a
finite subset F of Γ with |Fs△F | ≤ ε|F | for all s ∈ S, by Følner’s Theorem 3.18.

Since m is not atomic, there exists a measurable subset A of X with m(A) =
1/2|F |. Consider the function ξ : X → N defined by ξ =

∑
γ∈F πX(γ−1)(1A) :

ξ(x) =
∑

γ∈F

1γ−1A(x) for all x ∈ X.

We have

‖ξ‖1 =
∑

γ∈F

∫

X

πX(γ−1)(1A)dm(x) =
∑

γ∈F

m(A) = |F |m(A) =
1

2
.



Spectral rigidity of group actions on homogeneous spaces 35

Let s ∈ S be fixed. Then

‖πX(s−1)ξ − ξ‖1 =

∥∥∥∥∥∥

∑

γ∈F

1(γs)−1A − 1γ−1A

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥

∑

γ∈Fs

1γ−1A −
∑

γ∈F

1γ−1A

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥

∑

γ∈Fs\F
1γ−1A −

∑

γ∈F\Fs

1γ−1A

∥∥∥∥∥∥
1

≤ |Fs△F |m(A) ≤ ε|F |m(A) = ε/2.

Let g =
√
ξ. Then ‖g‖22 = ‖ξ‖1 = 1/2 and

‖πX(s−1)g − g‖22 ≤ ‖πX(s−1)ξ − ξ‖1 ≤ ε/2.

for all s ∈ S. Since ξ takes its values in N, we have g =
√
ξ ≤ ξ. Hence,

(

∫

X

gdm)2 ≤ (

∫

X

ξdm)2 = ‖ξ‖21 = 1/4

and so ‖g −
∫
X gdm1X‖22 ≥ 1

2
− 1

4
=

1

4
. Set now

f :=
g −

∫
X
gdm1X

‖g −
∫
X gdm1X‖2

.

Then ‖f‖2 = 1 and

‖πX(s−1)f − f‖22 ≤ 4ε

2
= 2ε.�

Remark 7.2. Theorem 7.1 may fail when G is amenable and not discrete. Indeed,
when G is a compact infinite group, the action G on itself by left translation has
the Spectral Gap Property (as probability measure preserving action).

Let Γ y X be a measure preserving action on a probability space (X,m). A
factor of the triple (X,m,Γ) is a triple (Y,m′,Γ′) where Γ′ is a group acting on
a probability space (Y,m′) such that there exists a homomorphism Γ → Γ′ and a
measurable map Φ : X → Y with Φ∗(m) = m′ and intertwining the two actions.
Here is a corollary of Theorem 7.1.

Corollary 7.3. Let (Y,m′,Γ′) be a factor of (X,m,Γ). Assume that m′ is non
atomic and that Γ′ is amenable. Then Γ y X does not have the Spectral Gap
Property.

Proof Observe that {f ◦ Φ : f ∈ L2
0(Y,m

′)} is a Γ-invariant closed subspace of
L2
0(X,m).�
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Remark 7.4. The previous corollary shows that, given a discrete group Γ and an
action Γ y X on a probability space (X,m), the existence of a factor (Y,m′,Γ′)
of (X,m,Γ), with Γ′ amenable and m′ non atomic, is an obstruction to the Spec-
tral Gap Property for Γ y X . In some cases, such as Γ ⊂ SLn(Z) acting by
automorphisms on X = Tn, this is the only obstruction (see Theorem 9.1).

7.2 Spectral Gap Property and Orbit Equivalence

Orbit Equivalence is a subject where one aims to study groupsG and group actions
G y X on measure spaces through the equivalence relation on X defined by the
partition into G-orbits (for a recent survey on this theme, see [Gabo10]).

Definition 7.5. Two measure preserving ergodic actions of two countable groups
Γ1 and Γ2 on probability spaces (X1,m1) and (X2,m2) are orbit equivalent if
there exist measurable subsets X ′

1 and X ′
2 with measure 1 in X1 and X2 and a

Borel isomorphism f : X ′
1 → X ′

2 with f∗(m1) = m2 such that, for m1-almost every
x ∈ X ′

1, we have

f(Γ1x) = Γ2f(x).

A natural question is whether the Spectral Gap Property is an invariant of orbit
equivalence. This is the not case, as is shown by the following result of Hjorth and
Kechris (Theorem A. 3.2 in [HjKe05]). Recall that, if Γ is a non amenable group,
its Bernoulli action Γ y {0, 1}Γ has the Spectral Gap Property (see Example 4.3).

Theorem 7.6. ([HjKe05]) The Bernoulli action of the free group Γ = F2 on 2
generators on X = {0, 1}Γ is orbit equivalent to another action of Γ on X which
does not have the Spectral Gap Property.

There is however a property related to the Spectral Gap Property which is an
invariant of orbit equivalence, namely strong ergodicity in the sense of Schmidt
(see [Schm80], [Schm81]),

Let Γ y X be a measure preserving action of a countable group Γ on the
probability space (X,m). If this action is ergodic, there is no non-trivial invariant
measurable subset of X. Nevertheless, there might exist non-trivial asymptotically
invariant subsets in the following sense.

Definition 7.7. A sequence of measurable subsets (An)n ofX is said to be asymp-
totically invariant if

lim
n

m(γAn△An) = 0 for all γ ∈ Γ.

An asymptotically invariant sequence (An)n is said to be non-trivial if

inf
n

m(An)(1 −m(An)) > 0.

The action of Γ onX is strongly ergodic if there exists no non-trivial asymptotically
invariant sequence in X.
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Strong ergodicity is an invariant of orbit equivalence. Indeed, let [Γ] denote the
full group of Γ, that is, the group of all measure preserving measurable bijections
ϕ : X → X with ϕ(x) ∈ Γx for m-almost every x ∈ X. The following lemma shows
that the collection of asymptotically invariant sequences for Γ and hence strong
ergodicity only depends on the equivalence relation on X defined by the action of
Γ.

Lemma 7.8. Let (An)n be an asymptotically invariant sequence for Γ. Then
limn m(ϕ(An)△An) = 0, for every ϕ ∈ [Γ].

Proof Let ε > 0. There exist Borel subsets X1, . . . , Xk of X with

m(X \
k⋃

i=1

Xi) ≤ ε/4

and elements γ1, . . . , γk in Γ such that ϕ(x) = γix for all x ∈ Xi and i = 1, . . . , k.
Let N ∈ N be such that

m(γiAn△An) ≤ ε/4k for all n ≥ N, i = 1, . . . , k.

Since

ϕ(An) \An ⊂
k⋃

i=1

(γiAn \An) ∪ ϕ(X \
k⋃

i=1

Xi),

it follows that

m(ϕ(An) \An) ≤ ε/2 for all n ≥ N, i = 1, . . . , k.

As m(An \ ϕ(An)) = m(ϕ−1(An) \An) and, similarly,

ϕ−1(An) \An ⊂
k⋃

i=1

(γ−1
i An \An) ∪ ϕ−1(X \

k⋃

i=1

γiXi),

we obtain m(ϕ(An)△An) ≤ ε for all n ≥ N.�

The following elementary proposition shows that the Spectral Gap Property
implies strong ergodicity and this is often the way strong ergodicity is established
in specific examples.

Proposition 7.9. Let Γ y X be a measure preserving action of a countable group
Γ on the probability space (X,m). If Γ y X has the Spectral Gap Property, then
Γ y X is strongly ergodic.

Proof Assume, by contradiction, that there exists a non-trivial asymptotically
invariant sequence (An)n of measurable subsets of X. Set

fn = 1An
−m(An)1X .

Then fn ∈ L2
0(X,m) and, for every γ ∈ Γ, we have

‖fn‖2 = m(An)(1−m(An)) and ‖πX(γ)fn − fn‖2 = m(γAn△An).
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So, π0
X has almost invariant vectors and this is a contradiction. �

The following example, due to K. Schmidt, shows that the converse does not
hold in the previous proposition (that is, strong ergodicity and the Spectral Gap
Property do not coincide). Of course, since strong ergodicity is an invariant of
orbit equivalence, this also follows from Theorem 7.6 above.

Example 7.10. ([Schm81]) Let Γ = F3 be the free group on the three genera-
tors a, b, c. Let Γ2 be the free subgroup of Γ generated by a, b and let Y = T2 be
the 2-torus endowed with Lebesgue measure λ. Then Γ2 acts as a group of auto-
morphisms on Y through a surjective homomorphism Γ2 → SL2(Z). The action
Γ2 y Y has the Spectral Gap Property (see Example 9.4) and is hence strongly
ergodic by the previous proposition.

Set X = Y ×N and define a finite positive measure m on X by

m(A) =

∞∑

n=1

1

n2
λ ({y ∈ Y : (y, n) ∈ A})

for every Borel subset A of X. We define a measure preserving action of Γ2 on
(X,m) by

(γ, (y, n)) 7→ (γy, n) for all γ ∈ Γ2, (y, n) ∈ X.

Let T : X → X be a measure preserving bijection with T (Xn) ⊂ Xn−1 for all
n ≥ 2, where Xn = Y ×{n}. Such a mapping T can be constructed as follows. For
every n ≥ 2, choose a Borel subset Zn−1 of Xn−1 with m(Zn−1) = m(Xn) = 1/n2.
There exist a measure preserving bijection Tn : Xn → Zn−1 for every n ≥ 2 as
well as a measure preserving bijection T1 : X1 → X \∪n≥2Zn−1. This gives rise to
a measure preserving bijection T : X → X defined by T |Xn

= Tn for all n ≥ 1.
We extend the action of Γ2 on X to a measure preserving action of Γ by letting

c act as T. As we are going to show, the action Γ y X is strongly ergodic and
does not have the Spectral Gap Property.

Let (Ak)k be an asymptotically invariant sequence for Γ. For every n ≥ 1,
let Ak,n = Ak ∩ Xn. Since Γ2 leaves Xn invariant, (Ak,n)k is an asymptotically
invariant sequence for Γ2. Hence,

lim
k

m(Ak,n)(m(Xn)−m(Ak,n)) = 0

and therefore, for every n ≥ 1, we have either limk m(Ak,n) = 0 or limk m(Ak,n) =
m(Xn). We claim that we have either limk m(Ak,n) = 0 for all n or limk m(Ak,n) =
m(Xn) for all n.Once proved, this will imply that limk m(Ak) = 0 or limk m(Ak) =
m(X)

To prove the claim, assume that limk m(Ak,n) = m(Xn) for some n. Then
limk m(Ak,n−1) = m(Xn−1) and limk m(Ak,n+1) = m(Xn+1) in case n ≥ 2 and
limk m(Ak,l) = m(Xl) for all l ≥ 1, in case n = 1.

Indeed, let n ≥ 2. Since T (Ak,n) ⊂ Xn−1 and T−1(Ak,n) ⊂ Xn+1 and since
limk m(T±1Ak△Ak) = 0, it follows that limk m(Ak,n−1) 6= 0 and limk m(Ak,n+1) 6=
0 and so limk m(Ak,n−1) = m(Xn−1) and limk m(Ak,n+1) = m(Xn+1). The case
n = 1 is treated similarly. This proves that the action Γ y X is strongly ergodic.



Spectral rigidity of group actions on homogeneous spaces 39

For every n ≥ 2, let Cn = ∪k≥nXk. Then Cn is Γ2-invariant,

m(T (Cn)△Cn) =
1

(n− 1)2
,

and

m(Cn) =
∑

k≥n

1

k2
= O

(
1

n

)
.

Hence, a(Cn)△Cn = ∅, b(Cn)△Cn = ∅, and

lim
n

m(T (Cn)△Cn)

m(Cn)
= 0.

This implies that

lim
n

m(γCn△Cn)

m(Cn)
= 0 for all γ ∈ Γ.

With fn := 1Cn
−m(Cn)1X ∈ L2

0(X,m), we have, for every γ ∈ Γ,

lim
n

‖πX(γ)fn − fn‖2
‖fn‖2

= lim
n

m(γCn△Cn)

m(Cn)(1 −m(Cn))
= 0,

and this shows that Γ y X does not have the Spectral Gap Property.

Schmidt proved in [Schm81, (2.4) Theorem] the following stronger version of
Theorem 7.1.

Theorem 7.11. ([Schm81]) Let Γ be a countable amenable group. Then no
measure preserving action Γ y X on a non-atomic probability space (X,m) is
strongly ergodic.

8 Spectral gap property for homogeneous spaces

In this section, we will deal with the class of probability measure preserving actions
arising from homogeneous spaces associated to lattices. The setting we consider
is as follows.

Let G be a locally compact group (for instance, a connected Lie group) and
Γ a lattice in G. Let G/Γ be equipped with its unique G-invariant probability
measure m. We consider the action of G y G/Γ and the corresponding Koopman
representation πG/Γ of G on L2

0(G/Γ). We then ask: does the action G y G/Γ
have the Spectral Gap Property?

8.1 The case of a cocompact lattice

As we now see, the question above has a positive answer for uniform lattices.

Proposition 8.1. Let G be a locally compact group and Γ a cocompact lattice in
G. Then G y G/Γ has the Spectral Gap Property.
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Proof We denote by π the Koopman representation on L2(G/Γ) (and not on
L2
0(G/Γ)).

We first check the crucial fact that, for every f ∈ Cc(G), the convolution
operator π(f) : L2(G/Γ) → L2(G/Γ) is a compact operator. Indeed, let X ⊂ G
be a compact fundamental domain for the action of Γ on G. Thus, X is a compact
subset of G such that

G =
∐

γ∈Γ

Xγ.

We denote by m a Haar measure on G. (Observe that G is unimodular, since it
contains a lattice and so m is right and left invariant; see Proposition B.2.2 in
[BHV].)

View ξ ∈ L2(G/Γ) as a function on G which is Γ-invariant on the right; then,
for every x ∈ X ∼= G/Γ,

π(f)ξ(x) =

∫

G

f(g)ξ(g−1x)dm(g)

=

∫

G

f(xg−1)ξ(g)dm(g)

=

∫

X

∑

γ∈Γ

f(xγ−1y−1)ξ(yγ)dm(y)

=

∫

X

K(x, y)ξ(y)dm(y),

where K(x, y) =
∑

γ∈Γ f(xγ
−1y−1). Observe that there are only finitely many γ in

Γ for which xγ−1y−1 is in the compact support of f for some (x, y) ∈ X ×X . So,
K is continuous on X ×X and hence π(f) is an integral operator with continuous
kernel. Since, X is compact, π(f) is therefore a Hilbert-Schmidt operator on
L2(X) = L2(G/Γ).

Now, let f ∈ Cc(G) with f ≥ 0,
∫
G f(g)dm(g) = 1 and f̌ = f and such that

supp(f) generates G. Then π(f) is a compact self-adjoint operator. Hence, 1 is an
isolated spectral value of π(f) and so G y G/Γ has the Spectral Gap Property,
by Proposition 3.4.�

Remark 8.2. In fact, pushing the analysis a bit further, one can show that
L2(G/Γ) decomposes as a Hilbert space direct sum L2(G/Γ) =

⊕
i miHi of irre-

ducible G-invariant subspaces Hi, each of which occuring with finite multiplicity
mi (see Theorem in Chap. I, Section 2.3 in [GGPS90]).

8.2 The case of a non cocompact lattice

. The problem of establishing the Spectral Gap Property for G y G/Γ is much
harder in the case of a non cocompact lattice Γ. Only partial results are known.

Part (i) of the following theorem has been conjectured in [Marg91, Chapter
III. Remark 1.12] and proved in [BeCo08]; part (ii) is from [BeLu11].
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Theorem 8.3. ([BeCo08], [BeLu11]) Let G be a locally compact group and
Γ a lattice in G. Then G y G/Γ has the Spectral Gap Property in the following
cases:

(i) G is a real Lie group;

(i) G = G(k) is the group of k-rational points of a simple algebraic group G
over a local field k.

Concerning part (ii) of the theorem, observe that when k is non-archimedean
with characteristic 0, every lattice Γ in G(k) is cocompact (see [Serr, p.84]) and the
result follows from Proposition 8.1. By way of contrast, G has many non uniform
lattices when the characteristic of k is non zero (see [Serr] and [Lubo91]). So, for
the proof, it suffices to consider the case where the characteristic of k is non-zero
and where k− rank(G) = 1. (Recall that G(k) has Kazhdan’s Property (T) when
k− rank(G) ≥ 2; see Theorem 3.6.) In this situation, it is known that G = G(k)
acts by automorphisms on the associated Bruhat-Tits tree T (see [Serr]), which
is a regular or a bi-partite bi-regular tree. The proof then is reduced to showing
that the projection on the quotient graph X = Γ\T of the standard random walk
on T has a spectral gap.

8.3 An example: the case of PGL2(Fq((t
−1)))/PGL2(Fq[t])

We will give in this section a complete proof of part (ii) of Theorem 8.3 for the
special case G = PGL2(Fq((t

−1))) and Γ = PGL2(Fq[t]), where Fq((t
−1)) is

the local field of formal Laurent series with coefficients in the finite field with q
elements. Following an idea from [BeLu11], the proof uses a version of Cheeger’s
inequality for Markov chains on a countable state space for which we give a full
proof.

8.3.1 A Cheeger inequality for Markov chains on a countable state
space

Let X be a countable set and let µ be a Markov kernel on X, that is, a mapping
µ : X ×X → R+ such that

∑
y∈X µ(x, y) = 1 for all x ∈ X . Such a kernel defines

a Markov chain (Zn)n≥0 on X , with transition probabilities

P(Zn+1 = y|Zn = x) = µ(x, y).

We assume that µ is irreducible, that is, given any pair (x, y) of distinct points
in X , there exist an integer n ≥ 1 and a sequence x = x0, x1, . . . , xn = y in X such
that µ(xj−1, xj) > 0 for any j ∈ {1, . . . , n}. We also assume that µ is reversible:
there exists a stationary measure m for µ, that is a function m : X → R∗

+ such
that

m(x)µ(x, y) = m(y)µ(y, x) for all x, y ∈ X.

The corresponding Markov operator Mµ on ℓ2(X,m) is defined by

Mµf(x) =
∑

(x,y)∈X2

µ(x, y)f(y) for all f ∈ ℓ2(X,m).
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Since m is stationary measure for µ, one checks that the operatorMµ is self-adjoint
with ‖Mµ‖ ≤ 1.

From now on, we assume that the stationary measure is a finite measure and,
hence without loss of generality, that m is a probability measure. Then 1 is an
eigenvalue of Mµ, with 1X as eigenfunction. We will be concerned with finding
upper bounds for the spectrum σ(Mµ) of Mµ restricted to ℓ20(X,m) = (C1X)⊥.

It is convenient to consider the Laplacian ∆µ = I−Mµ, which is a nonnegative
operator on ℓ2(X,m) with ‖∆µ‖ ≤ 2. So, we seek a lower bound for

λ1 = inf σ
(
∆µ|ℓ2

0
(X,m))

)
.

Such a bound will be given in terms of the Cheeger constant h(X) of the random
walk µ which is defined as follows.

Let µ̃ be the (symmetric) measure on X ×X defined by

µ̃(x, y) = m(x)µ(x, y) for all (x, y) ∈ X ×X.

Set

h(X) := inf
µ̃(S × Sc)

m(S)m(Sc)
,

where the infimum is taken over all non empty subsets S ofX and where Sc = X\S.
The Cheeger inequality is an isoperimetric inequality originally proved for the

Laplacian acting on the L2-space of a compact Riemannian manifold (see [Chee70],
[Chav93]) and carried over to the setting of Markov chains in [LaSo88],[SiJe89].
Versions of Cheeger’s inequality for weighted graphs were considered by sev-
eral authors (see, for instance, [Alon86], [DiSt91], [Dodz84], [Mokh03], [Morg94],
[BKW15]).

Theorem 8.4. ([LaSo88],[SiJe89]) We have

h(X)2

8
≤ λ1.

Consequently, if h(X) > 0 then λ1 > 0.

We now proceed with the proof of Cheeger’s inequality. The first ingredient is
the following lemma, which is straightforward to check.

Lemma 8.5. (i) λ1 is the infimum of the Rayleigh quotients
〈∆µf,f〉
‖f‖2 over all

f ∈ ℓ20(X), f 6= 0 and f real valued.
(ii) For every f ∈ ℓ2(X,m), we have

〈∆µf, f〉 =
1

2

∑

(x,y)∈X2

|f(y)−f(x)|2m(x)µ(x, y) =
1

2

∑

(x,y)∈X2

|f(y)−f(x)|2µ̃(x, y).�

The next ingredient in the proof are the so-called area and co-area formulas.
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Lemma 8.6. Let u : X → R+ be in ℓ1(X,m) and set St = {x ∈ X : u(x) > t}
for t ≥ 0. Then the following formulas holds:
(i) (Area formula)

∑

x∈X

u(x)m(x) =

∫ ∞

0

m(St)dt.

(ii) (Co-area formula)

1

2

∑

(x,y)∈X2

|u(y)− u(x)|µ̃(x, y) =
∫ ∞

0

µ̃(St × Sc
t )dt.

Proof (i) For x ∈ X, we have x ∈ St if and only if 1(t,∞)(u(x)) = 1 and hence

∫ ∞

0

m(St)dt =

∫ ∞

0

(
∑

x∈X

m(x)1(t,∞)(u(x))

)
dt =

∑

x∈X

m(x)

∫ ∞

0

1(t,∞)(u(x))dt

=
∑

x∈X

m(x)

∫ ∞

0

1[0,u(x))(t)dt =
∑

x∈X

m(x)u(x).

(ii) For (x, y) ∈ X ×X, denote by Ix,y ⊂ R+ the interval between u(x) and u(y).
So, |Ix,y| = |u(y) − u(x)|. We have (x, y) ∈ (St × Sc

t ) ∪ (Sc
t × St) if and only if

t ∈ Ix,y, that is if and only if 1Ix,y
(t) = 1. Since µ̃ is symmetric, we have

µ̃ ((St × Sc
t ) ∪ (Sc

t × St)) = 2µ̃(St × Sc
t )

and hence

2

∫ ∞

0

µ̃(St × Sc
t )dt =

∫ ∞

0

(
∑

x,y

µ̃(x, y)1Ix,y
(t)

)
dt

=
∑

x,y

µ̃(x, y)

∫ ∞

0

1Ix,y
(t)dt

=
∑

x,y

µ̃(x, y)|u(y)− u(x)|. �

Proof of Cheeger’s inequality (Theorem 8.4) Let f ∈ ℓ20(X,m) with real
values. In view of Lemma 8.5, we have to prove the following inequality:

h(X)2

4
‖f‖2 ≤

∑

(x,y)∈X2

|f(y)− f(x)|2µ̃(x, y). (∗)

Let c ∈ R be such thatm({x ∈ X : (f+c)(x) > 0}) ≤ 1/2. Since
∑

x∈X f(x)m(x) =
0, one checks that ‖f + c‖2 ≥ ‖f‖2. So, upon replacing f by f + c, we can assume
that m({x ∈ X : f(x) > 0}) ≤ 1/2 (observe that the right hand side of (∗) does
not change when f is replaced by f + c).

Let f+ and f− be the positive and negative parts of f, so that f = f+−f− and
‖f‖2 = ‖f+‖2 + ‖f−‖2. Set u = f2

+ or u = f2
−. Writing St = {x ∈ X : u(x) > t},
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observe that m(St) ≤ 1/2 for all t > 0 (and hence m(Sc
t ) ≥ 1/2). Using first the

area formula, then the definition of h = h(X) and finally the co-area formula, we
have

h
∑

x∈X

u(x)m(x) = h

∫ ∞

0

m(St)dt

≤ 2

∫ ∞

0

µ̃(St × Sc
t )dt =

∑

x,y

|u(y)− u(x)|µ̃(x, y).

So,

h‖f‖2 ≤
∑

x,y

|f2
+(y)− f2

+(x)|µ̃(x, y) +
∑

x,y

|f2
−(y)− f2

−(x)|µ̃(x, y)

By Cauchy-Schwarz inequality, we have
∑

x,y

|f2
±(y)− f2

±(x)|µ̃(x, y)

≤
(
∑

x,y

|f±(y)− f±(x)|2µ̃(x, y)
)1/2(∑

x,y

|f±(y) + f±(x)|2µ̃(x, y)
)1/2

.

Now, using the symmetry of µ̃, the fact that
∑

y µ̃(x, y) = m(x) and again Cauchy-
Schwarz inequality, we have

∑

x,y

|f±(y) + f±(x)|2µ̃(x, y) =
∑

x,y

(f2
±(y) + 2f±(x)f±(y) + f2

±(x))µ̃(x, y)

= 2
∑

x,y

f2
±(x)µ̃(x, y) + 2

∑

x,y

f±(x)f±(y)µ̃(x, y)

≤ 4‖f±‖2

Hence,

h‖f‖2 ≤ 2‖f+‖
(
∑

x,y

|f+(y)− f+(x)|2µ̃(x, y)
)1/2

+

+ 2‖f−‖
(
∑

x,y

|f−(y)− f−(x)|2µ̃(x, y)
)1/2

Now, it is straightforward to check that
∑

x,y

|f±(y)− f±(x)|2µ̃(x, y) ≤
∑

x,y

|f(y)− f(x)|2µ̃(x, y).

Hence,

h2‖f‖4 ≤ 4‖f‖2
∑

x,y

|f(y)− f(x)|2µ̃(x, y)

and inequality (∗) follows.�
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Remark 8.7. There is also an upper bound which is almost trivial, namely

λ1 ≤ 2h(X).

Indeed, it is straightforward to check that, for a non empty subset S of X, we have

〈∆µf, f〉
‖f‖2 =

µ̃(S × Sc)

m(S)m(Sc)

for the function f = 1S − m(S)1X in ℓ20(X) and the inequality follows from
Lemma 8.5.

8.3.2 Spectral Gap Property for PGL2(Fq((t
−1)))/PGL2(Fq[t])

Let Fq be the finite field with q elements and Fq((t
−1)) the local field of Laurent

series, which is the the completion of Fq(t) with respect to the valuation at infinity
defined by v(a/b) = deg(b) − deg(a) for a, b ∈ Fq[t], b 6= 0. The corresponding
compact subring is the ring of formal series Fq[[t

−1]].
Let G = PGL2(Fq((t

−1))). The subgroup K = PGL2(Fq[[t
−1]]) is compact

and open in G. As described in II.1.1 and II.1.6 of [Serr] (see also [Efra91]), T =
G/K can be endowed with the structure of a q + 1-regular tree: one can take as
set of representatives for the cosets in G/K the set of matrices

(
tn α
0 1

)
,

with n ∈ Z and α from a set of representatives of Fq[[t
−1]]/(tn); the neighbours

of the vertex

(
tn α
0 1

)
are the q + 1 vertices

(
tn+1 α
0 1

)
,

(
tn−1 α+ βtn

0 1

)
, β ∈ Fq.

The group G acts on T by isometries on the left.
Let Γ = PGL2(Fq[t]), which is a discrete subgroup of G. The quotient graph

X := Γ\T ∼= Γ\G/K is a half-line tree

◦
x0

◦
x1

◦
x2

◦
x3

. . .

given by (the cosets of) the elements

xn =

(
tn 0
0 1

)
n ≥ 0.

The q + 1 edges (x0, y) ∈ E(T ) are mapped to the edge (x0, x1) ∈ E(X); for

n ≥ 1, the q-edges (xn, y) with y =

(
tn−1 βtn

0 1

)
for β ∈ Fq are mapped to the

edge (xn, xn−1) ∈ E(X) and the edge (xn, y) with y =

(
tn+1 0
0 1

)
is mapped
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to (xn, xn+1) ∈ E(X). Let λ be the Haar measure on G normalized by λ(K) = 1.
We have a decomposition of Γ\G as disjoint union

Γ\G =
∐

n≥0

xnK,

where xnK ⊂ Γ\G is the K-orbit of xn in Γ\G. So, xnK ∼= (x−1
n Γnxn)\K, where

Γn = Γ ∩ xnKx−1
n is the stabilizer in Γ of xn for the action Γ y T . One checks

that |Γ0| = q(q2 − 1) and |Γn| = qn+1(q − 1) for n ≥ 1. Let m be the measure on
the set X defined by

m(x0) =
1

|Γ0|
=

1

q(q2 − 1)
, m(xn) =

1

|Γn|
=

1

qn+1(q − 1)
for n ≥ 1.

Since
∑∞

n=1

1

qn+1(q − 1)
< ∞, X has finite measure and hence we have

vol(Γ\G) = λ


∐

n≥0

xnK


 = m(X) < ∞,

showing that Γ is a (non-uniform) lattice in G.
The simple random walk on T, which is given by the transition probabilities

µ(x, y) =





1

q + 1
if (x, y) ∈ E(T )

0 otherwise,

is reversible, with stationary measure m : x 7−→ 1. The associated projected
random on X is given by the transition probabilities µ(x0, x1) = 1 and

µ(xn, xn+1) =
1

q + 1
, µ(xn, xn−1) =

q

q + 1
for n ≥ 1.

As is easily checked, one has

m(xn)µ(xn, xn−1) = m(xn−1)µ(xn−1, xn)

for all n ≥ 1, which means that m is a stationary measure for µ. The Markov
operator MT on ℓ2(T,m) for the random walk on T , which is defined by

MT f(x) =
1

q + 1

∑

(x,y)∈E(T )

f(y), for all f ∈ ℓ2(T ),

commutes with the Γ-action; it induces the Markov operator MX on ℓ2(X,m)
corresponding to the projected random walk on X and is given by

MXf(xn) =





q

q + 1
f(xn−1) +

1

q + 1
f(xn+1) for n ≥ 1

f(x1) for n = 0
f ∈ ℓ2(X,m).
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The operator MX is self-adjoint; the corresponding Laplacian operator ∆X =
IdX − MX is a non-negative operator with spectrum contained [0, 2]. It is easy
to show that G y Γ\G has the Spectral Gap Property if and only if 1 does not
belong to the spectrum of the restriction of MX to ℓ20(X), the orthogonal space
to the constants (see Proposition 6 in [BeLu11]; here the compactness of K is
crucial). So, by Theorem 8.4, it suffices to show that the Cheeger constant h(X)
of the random walk on X is strictly positive. This is indeed the case.

Proposition 8.8. We have h(X) ≥ min

{
q − 1

q + 1
,

4q2

(q + 1)(q2 − 1)

}
> 0. Hence,

the action G y Γ\G has the Spectral Gap Property.

Proof Recall that

h(X) := inf
S⊂X,S 6=∅

µ̃(S × Sc)

m(S)m(Sc)
,

where µ̃(x, y) = m(x)µ(x, y). In order to simplify the computations, we rescale m
by

m(x0) =
1

q + 1
, m(xn) =

1

qn
for all n ≥ 1.

Let S be a non empty subset of X ; replacing S by Sc if necessary, we can assume
that m(S) ≤ m(X)/2.

One checks that m(X) =
2q

q2 − 1
and that

m(x0) +m(x1) =
2q + 1

q(q + 1)
> m(X)/2,

since q ≥ 2. So, two cases may occur.
•First case: x0 ∈ S. Then x1 /∈ S and hence (x0, x1) ∈ S × Sc. Therefore,

µ̃(S × Sc)

m(S)m(Sc)
≥ 2

µ̃(x0, x1)

m(X)2
=

2

(q + 1)m(X)2
.

•Second case: x0 /∈ S. Let n ≥ 0 be minimal with the property that xn+1 ∈ S.
Then (xn+1, xn) ∈ S × Sc. Hence,

m(S) ≤
∑

k≥n+1

m(xk) =
1

qn(q − 1)

and so

µ̃(S × Sc)

m(S)m(Sc)
≥ µ̃(xn+1, xn)

m(X)
∑

k≥n+1 m(xk)
=

1/qn(q + 1)

m(X)/qn(q − 1)

=
q − 1

(q + 1)m(X)
.

Normalizing m to a probability measure, we obtain

h(X) ≥ min{q − 1

q + 1
,

2

(q + 1)m(X)
} = min{q − 1

q + 1
,

4q2

(q + 1)(q2 − 1)
}.�
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Remark 8.9. The precise spectral decomposition ofMX (or ∆X) acting on ℓ2(X)
is determined in [Efra91]. In particular, it is shown there that the spectrum of MX

is
[
−2

√
q/(q + 1), 2

√
q/(q + 1)

]
∪ {±1}. (Observe that −1 is indeed an eigenvalue

of MX with eigenfunction f : X → R defined by f(xn) = (−1)n for all n ≥ 0; this
is related to the fact that G = PGL2(Fp((t

−1)) has a a one dimensional character
6= 1G, as its abelianization PGL2(Fp((t

−1)))/PSL2(Fp((t
−1))) is a group of order

2.)

8.4 Lattices without the Spectral Gap Property

In view of Theorem 8.3, one might think that G y G/Γ has the Spectral Gap
Property for any locally compact group G and any lattice Γ in G. This is however
not the case, as the following result from [BeLu11] shows.

Theorem 8.10. ([BeLu11]) For an integer k > 2, let Tk be the k–regular tree
and G = Aut(Tk). Then G contains a lattice Γ such that G y G/Γ does not have
the Spectral Gap Property.

The proof here is based on the (easy) inequality λ1 ≤ 2h(X) between the
Cheeger constant and the bottom of the spectrum of the Laplacian λ1 of an ap-
propriate random walk which is determined as follows. We can find a reversible
random walk on a countable graph X with transition probability µ : X ×X → R
and stationary measure m with the following properties: m(X) < ∞, the Cheeger
constant h(X) of X is 0 and, moreover, kµ(x, y) and 1/m(x) are integers for all
x, y. By the “inverse Bass–Serre theory” of groups acting on trees (see [BaLu01]),
there exists a lattice Γ in G = Aut(Tk) such that the projection of the stan-
dard random walk on Γ\Tk can be identified with (X,µ,m). For more details, see
[BeLu11].

9 Actions on tori and nilmanifolds with the Spec-
tral Gap Property

We review the main results from [BeGu15], concerning actions of a (countable)
group Γ by automorphisms (or affine transformation) on a compact nilmanifold.
First, we state the result for actions on the torus.

Let T = Rd/Zd be the d-dimensional torus. Observe that Aut(T ) can be
identified with GLd(Z). Set V = Rd and Λ = Zd. If W is a rational linear
subspace of V, then S = W/(W ∩Λ) is a subtorus of T and we have a torus factor
T = T/S. Let Γ be a subgroup of Aut(T ) and assume that W is Γ-invariant. Then
Γ leaves S invariant and the induced action of Γ on T is a factor of the action of Γ
on T. We will say that T is a Γ-invariant torus factor of T. Here is our main result
for actions by torus automorphisms.

Theorem 9.1. Let Γ be a subgroup of GLd(Z). The following properties are
equivalent.

(i) The action of Γ y T = Rd/Zd has the Spectral Gap Property.
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(ii) There exists no non-trivial Γ-invariant torus factor T such that the projection
of Γ on Aut(T ) is amenable.

(ii) There exists no non-trivial Γ-invariant torus factor T of T such that the
projection of Γ on Aut(T ) is a virtually abelian group (that is, it contains
an abelian subgroup of finite index).

The following corollary gives a large class of examples of groups of automor-
phisms of the torus with the Spectral Gap Property.

Corollary 9.2. Let Γ be a subgroup of GLd(Z). Assume that is Γ is not virtually
abelian and that Γ acts Q-irreducibly on Rd (that is, there are no non trivial Q-
rational subspaces which are invariant under Γ). Then Γ y T = Rd/Zd has the
Spectral Gap Property.

Remark 9.3. The previous corollary was obtained in [FuSh99] under the stronger
assumption that Γ acts R-irreducibly on Rd.

Example 9.4. Let Γ be a subgroup of GLd(Z) = Aut(T ). We identity the dual
group of T = Rd/Zd with Zd in the usual way. As in the proof of Proposition 2.3,
the Fourier transform sets up a unitary equivalence between the Koopmann repre-
sentation πT on L2

0(T ) and the natural representation of Γ on ℓ2
(
Zd \ {0}

)
defined

by the dual action of Γ on Zd, which is given by (γ, x) 7→ (γt)−1x. So, Γ y T
has the Spectral Gap Property if and only if the action Γ y Zd \ {0} is not
co-amenable.

Choose a set of representatives S for the Γ-orbits in Zd \ {0}; we have a direct
sum decomposition

ℓ2
(
Zd \ {0}

)
=
⊕

s∈S

ℓ2(Γ/Γs),

into Γ-invariant subspaces, where Γs is the stabilizer of s. Therefore,

‖πT (µ)‖ = sup
s∈S

‖πΓ/Γs
(µ)‖

for every probability measure µ on Γ.
Let d = 2. Then every subgroup Γs is amenable, as it is conjugate inside

GL2(R) to a subgroup of N =

{(
1 x
0 1

)
: x ∈ R

}
. Hence, ‖πΓ/Γs

(µ)‖ =

‖πΓ(µ)‖ and so ‖πT (µ)‖ = ‖πΓ(µ)‖. In particular, Γ y T has the Spectral Gap
Property if and only if Γ is not amenable.

Actions by automorphisms on nilmanifolds are a natural generalization of ac-
tions by torus automorphisms. The setting is as follows.

Let N be a connected and simply connected nilpotent Lie group. Let Λ be a
lattice in N ; the associated nilmanifold N/Λ is known to be compact. Observe that
not every nilpotent Lie group has a lattice: a necessary and sufficient condition
for this to happen is that N is an algebraic group defined over Q (see [Ragh72]).

Let Aut(N) be the group of continuous automorphisms of N and denote by
Aut(N/Λ) the subgroup of continuous automorphisms g of N such that g(Λ) =
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Λ. Every g ∈ Aut(N/Λ) preserves the translation invariant probability measure
m on N/Λ induced by a Haar measure on N. The nilsystem (N/Λ,m) has a
natural maximal torus factor (T,m′); every automorphism g ∈ Aut(N/Λ) induces
a torus automorphism g ∈ Aut(T ) and the mapping g 7→ g is a homomorphism
Aut(N/Λ) → Aut(T ); see [Parr69] for this, as well as for other results on the
ergodic theory of automorphisms of nilmanifolds.

The following theorem reduces the question of the Spectral Gap Property for
groups of automorphism of nilmanifolds to the same question for groups acting on
tori.

Theorem 9.5. Let N/Λ be a compact nilmanifold, with associated maximal torus
factor T. Let Γ be a subgroup of Aut(N/Λ). The following properties are equivalent.

(i) The action of Γ y N/Λ has the Spectral Gap Property.

(ii) The action of Γ y T has the Spectral Gap Property.

Example 9.6. Let N = H3(R) be the 3–dimensional real Heisenberg group.
Recall that N can be realized as the group with underlying set R3 = R2 ×R and
product

((x, y), s)((x′, y′), t) = ((x+ x′, y + y′), s+ t+ xy′ − x′y))) .

The Lebesgue measurem onR3 is a (left and right) Haar measure onN. The group
N is a two-step nilpotent Lie group; its centre Z coincides with its commutator
subgroup and is given by Z = {((0, 0), s) : s ∈ R}. The group SL2(R) acts by
automorphisms on N, via

g((x, y), t) = (g(x, y), t) for all g ∈ SL2(R), (x, y) ∈ R2, t ∈ R.

The discrete subgroup Λ = {((x, y), s) : x, y ∈ Z2, s ∈ Z} is a lattice in N .
The group SL2(Z) ⊂ Aut(N) preserves Λ and acts therefore on the Heisenberg
nilmanifold X := N/Λ.

The maximal torus factor T can be identified with R2/Z2, via the SL2(Z)-
equivariant mapping X → R2/Z2, [((x, y), s)] 7→ [(x, y)]. Identifying L2(T ) with a
closed πX(Γ)-invariant subspace of L2(X), we have a decomposition

L2(X) = L2(T )⊕H

into πX(Γ)-invariant subspaces, where H the orthogonal complement of L2(T ) in
L2(X).

Let µ be a symmetric probability measure on SL2(Z) and Γ = Γ(µ) the sub-
group generated by the support of µ. By Example 9.4, the restriction of πX(µ) to
L2
0(T ) has norm

‖πX(µ)‖L2

0
(T ) = ‖πΓ(µ)‖.

On the other hand, it can be shown that the restriction of πX(µ) to H has norm

‖πX(µ)‖H ≤ ‖πΓ(µ)‖1/4.
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The proof of this inequality involves the consideration of the so-called Weil repre-
sentation of (a two-fold cover of) the simple Lie group SL2(R) and estimates of
its matrix coefficients, much in the spirit of Section 6. Summarizing, we have

‖πX(µ)‖ ≤ ‖πΓ(µ)‖1/4.

In particular, Γ y X has the Spectral Gap Property if and only if Γ is non-
amenable. For more details on this example, see [BeHe11].

10 Some applications of the Spectral Gap Prop-
erty

We give two applications of the Spectral Gap Property of group actions, one to
the construction of expander graphs and the other to the escape rate of random
walks on linear groups.

10.1 Expander graphs

Let G = (X,E) be a finite k-regular graph, where X is the set of vertices and
E ⊂ X × X the set of edges of G. We consider the simple random walk on X
defined by the transition probabilities p : X × X → R given by p(x, y) = 1

k
if (x, y) ∈ E and p(x, y) = 0 otherwise. The map m : X → R, x 7→ 1/|X |
is a stationary measure for µ. The Cheeger constant (also known as expanding
constant) of X or G, as defined in Section 8.3.1, is

h(X) =
|X |
k

min

{ |∂S|
|S||S|c : S ⊂ X,S 6= ∅

}
,

where the boundary ∂S of a subset S of X is the set of edges (x, y) with x ∈ S and
y /∈ S. A more commonly used constant is the so-called expanding or isoperimetric
constant of the graph, defined by

h̃(X) = min

{ |∂S|
|S| : 0 < |S| < |X |/2

}
;

h̃(X) and h(X) are related by h̃(X)/k ≤ h(X) ≤ 2h̃(X)/k.
Expander graphs are families of graphs which are both sparse and strongly

connected. More precisely, a sequence of finite k-regular graphs Gn = (Xn,En)
with limn→∞ |Xn| = ∞ is a family of expanders if infn h(Xn) > 0. A constant
ε > 0 with infn h(Xn) ≥ ε is called an expanding constant for the sequence of
expanders (Gn)n.

Let Gn = (Xn,En) be a family of finite k-regular graphs with limn→∞ |Xn| =
∞. Let ∆n be the corresponding Laplacian on Xn; recall that ∆n is defined on
ℓ2(Xn) by

∆nf(x) = f(x)− 1

k

∑

(x,y)∈En

f(y).
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Let λ
(n)
1 denote the smallest eigenvalue 6= 0 of ∆n. In view Cheeger’s inequalities

(Theorem 8.4 and Remark 8.7), we see that (Xn)n is a family of expanders if and

only if infn λ
(n)
1 > 0.

The existence of expander graphs is settled by elementary counting arguments
(see [Lubo94, Proposition 1.2.1]). However, their constructions seem to require
sophisticated mathematical tools. We will give the explicit construction of a family
of expander graphs using Kazhdan’s Property (T), following the original idea of
Margulis; recently, families of expanders have been found using the so-called zig-
zag construction (see [RVW02], [ALW01]).

Let G be a finitely generated group, with a fixed finite generating set S with
S−1 = S. The Cayley graph G(G,S) is a connected k-regular graph for k = |S|
(see Section 4.1).

We assume now that G is a finite group. Let πG be the right regular represen-
tation of G on ℓ2(G). Denote by π0

G the corresponding representation of G on the
G-invariant subspace ℓ20(G) = {1G}⊥.

Let µ be the probability measure µ = 1
|S|
∑

s∈S δs on G. The following crucial

lemma establishes a link between the norm of π0
G(µ) and the smallest eigenvalue

λ1 in ℓ20(G) of the Laplace operator ∆ associated to the simple random walk on
G(G,S).

Lemma 10.1. We have λ1 ≥ 1

2
(1− ‖π0

G(µ)‖)2.

Proof Let f ∈ ℓ20(G) be an eigenfunction of ∆ with ‖f‖ = 1, for the eigenvalue
λ1. Denoting by E the set of edges of G(G,S), and using Lemma 8.5 as well as
Jensen’s inequality, we have

2λ1 = 2〈∆f, f〉 = 1

k

∑

(x,y)∈E

|f(y)− f(x)|2 =
1

k

∑

s∈S

∑

x∈G

|f(xs)− f(x)|2

=
1

k

∑

s∈S

‖π0
G(s)f − f‖2 ≥

(
1

k

∑

s∈S

‖π0
G(s)f − f‖

)2

≥
∥∥∥∥∥
1

k

∑

s∈S

(π0
G(s)f − f)

∥∥∥∥∥

2

= ‖π0
G(µ)f − f‖2 ≥ (1− ‖π0

G(µ)‖)2.�

As a consequence of the previous lemma, we obtain a construction scheme for
expanders.

Theorem 10.2. Let Γ be a group with Kazhdan’s Property (T), and S a finite
generating set of Γ with S−1 = S. Let (Nn)n be a sequence of normal subgroups of
Γ of finite index with limn |Γ/Nn| = ∞. Then the sequence of the Cayley graphs
G(Γ/Nn, ϕn(S)) is an expander family, where ϕn(S) is the image of S under the
canonical projection ϕn : Γ → Γ/Nn.

Proof Let µ = 1
|S|
∑

s∈S δs. By Proposition 3.13, that there exists a constant

δ > 0 such that 1−‖π(µ)‖ ≥ δ for every unitary representation π of Γ without non-
zero invariant vectors. This holds in particular for the representations π0

Γ/Nn
◦ ϕn

acting on ℓ20(Γ/Nn). The result follows now from the previous lemma.�
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Remark 10.3. With the notation as in the previous theorem, let λ
(n)
1 denote the

first non-zero eigenvalue of the Laplacian on Xn = Γ/Nn. Since h(Γ/Nn) ≥
λ
(n)
1

2
,

we see that an expanding constant for the family G(Γ/Nn, pn(S)) is ε = δ2/2,
where δ = infπ(1 − ‖π(µ)‖) with π running over all unitary representations of Γ
without non-zero invariant vectors.

Example 10.4. Let Γ = SL3(Z). Then S = {E±1
ij : 1 ≤ i, j ≤ 3, i 6= j} is a

generating set of Γ, where the Eij ’s are the usual elementary matrices. For every
prime integer p, let Γ(p) be the so-called principal congruence subgroup, that is,

Γ(p) = {A ∈ Γ : A ≡ I mod p}

is the kernel of the surjective homomorphism ϕp : SL3(Z) → SL3(Z/pZ) given
by reduction modulo p. Since Γ/Γ(p) ∼= SL3(Z/pZ), the subgroup Γ(p) has finite
index p3(p3 − 1)(p2 − 1) ≈ p8. The family of Cayley graphs (G(Γ/Γ(p), ϕp(S))p is

a family of k-regular expanders with k = 12. It can be shown that ε ≈ 10−6

4
is an

expanding constant for this family (see Example 6.1.11 in [BHV]).

For a comprehensive account on expander graphs and their applications, see
[HLW06]. An overview of recent developments in this subject is given in [Breu14].

10.2 Growth of products of random matrices

We now give an application of the Spectral Gap Property to a result of Furstenberg
from [Furs63] about random walks on linear groups. The setting is as follows.

Let µ be a probability measure on the special linear group G = SLd(R). We
set V = Rd. We will consider the operator norm on End(V ) = Md(R) associated
to the Euclidean norm ‖ · ‖ on V.

Let Sn(ω) = Xn(ω) · · ·X1(ω) be a sequence of random products, where (Xn)n≥1

is a sequence of independent random variables defined on a common probability
space (Ω,P), with values in G and identically distributed according to µ. One is
interested in a non-commutative analogue of the Law of Large Numbers describing
the top Lyapunov exponent λ1(µ) of the random matrix products which is defined
as follows.

Assume that µ has finite first moment, that is,
∫
G log ‖g‖dµ(g) < ∞. It follows

from Kingman’s subadditive ergodic theorem (see Theorem 10.1 in [Walte82]) that

lim
n→∞

1

n
log ‖Sn(ω)‖ = lim

n→∞
1

n
log ‖Xn(ω) · · ·X1(ω)‖

exists P-almost surely and is P-almost everywhere constant; we denote by λ1(µ)
this limit, which may also be computed as

λ1(µ) = lim
n→∞

1

n

∫

G

log ‖g‖dµn(g) = inf
n≥1

1

n

∫

G

log ‖g‖dµn(g).

For more details on random matrix products, see the survey [Furm02].
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We give in the following proposition a lower bound for λ1(µ) in terms of a
Spectral Gap Property. For this, we follow [Guiv15, Corollary 2.2] (see also the
proof of Corollaire 1 in [Guiv15] and Theorem 1.19 in [Furm02] ).

Let πV be the unitary representation of G = SLd(R) on L2(V,m) given by the
natural action of G on V equipped with the Lebesgue measure m.

Proposition 10.5. The following inequality holds:

λ1(µ) ≥
1

d
log

(
1

rspec(πV (µ))

)
.

Proof For n ≥ 1, set un =
∫
G log ‖g‖dµn(g). So, λ1(µ) = limn un/n.

Since 1 = det g ≤ ‖g‖d, we have ‖g‖ ≥ 1 for every g ∈ G. Fix ε > 0. Let

fε ∈ L2(V ) be defined by fε(x) = 1 if ‖x‖ ≤ 1 and fε(x) =
1

‖x‖d+ε
if ‖x‖ ≥ 1.

For A = {x ∈ V : 1 ≤ ‖x‖ ≤ 2} and n ≥ 1, we have 1A ∈ L2(V ) and

〈πV (µ
n)1A, fε〉 = 〈πV (µ̌

n)fε,1A〉

=

∫

A

∫

G

1

‖gx‖d+ε
dm(x)dµn(g)

≥
∫

A

∫

G

1

(‖g‖‖x‖)d+ε
dm(x)dµn(g)

≥ m(A)
1

2d+ε

∫

G

1

‖g‖d+ε
dm(x)dµn(g).

Hence, by concavity of the logarithm, we obtain

log(〈πV (µ
n)1A, fε〉) ≥ log

(
m(A)

2d+ε

)
− (d+ ε)

∫

G

log ‖g‖dm(x)dµn(g),

that is,

(d+ ε)un ≥ − log(〈πV (µ
n)1A, fε) + log

(
m(A)

2d+ε

)
.

Since

lim sup
n

|〈πV (µ
n)1A, fε〉|1/n ≤ lim sup

n
‖πV (µ

n)‖1/n(‖1A‖|fε‖)1/n = rspec(πV (µ)),

we have therefore
(d+ ε) lim

n

un

n
≥ − log rspec(πV (µ)).

Letting ε → 0, we obtain the claim.�

The following result is an immediate consequence of the previous proposition
in combination with Theorem 5.7.

Corollary 10.6. Let µ be probability measure on SLd(R) and denote by Γ(µ) the
subgroup generated by the support of µ. Assume that the linear action of Γ(µ) on
V = Rd is not co-amenable. Then λ1(µ) > 0.
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So, under the assumption of the previous corollary, the norm ‖Sn(ω)‖ grows
exponentially almost surely, where Sn(ω) = Xn(ω) · · ·X1(ω) is the product of
independent random unimodular matrices identically distributed according to µ.

Applying Theorem 5.19, we recover the following result of Furstenberg (Theo-
rem 8.6 in [Furs63]).

Corollary 10.7. ([Furs63]) Assume that Γ(µ) is not bounded and that the action
of Γ(µ) on V is totally irreducible. Then λ1(µ) > 0.

Example 10.8. Let µ be the probability measure on G = SL2(R) given by

µ =
1

4
(δa + δb + δa−1 + δb−1) for the matrices

a =

(
1 2
0 1

)
and b =

(
1 2
0 1

)
.

We claim that

λ1(µ) ≥
1

2
log

(√
2√
3

)
≈ 0.015617

for the corresponding top Lyapunov exponent λ1(µ).
Indeed, the subgroup Γ generated by the support of µ is the free group on a

and b and is a subgroup (of index 12) of SL2(Z). Moreover, the representation
πV of G = SL2(R) on L2(V ), for V = R2, is weakly contained in the regular
representation πG; indeed, G acts transitively on V \{0}with stabilizers conjugated

to N =

{(
1 ∗
0 1

)}
. It follows that πV is equivalent to the quasi representation

πG/N
∼= IndGN (1N) on L2(G/N). Since N is amenable, πV is weakly contained in

πG (see Theorem F.3.5 in [BHV]). So, πV is strongly Lp for every p > 2 and
hence (see Proposition 6.1) πV ⊗ πV is contained in a multiple of πG. Therefore,
by Proposition 6.5,

‖πV (µ)‖ ≤ ‖πG(µ)‖1/2.
Now, since Γ is a discrete subgroup of G, the restriction of πG to Γ is a multiple
of the regular representation πΓ and so

‖πV (µ)‖ ≤ ‖πΓ(µ)‖1/2.

Finally, as Γ is a free group on two generators, we have ‖πΓ(µ)‖ =
√
3/2 (see

Section 4.2) and the claim follows from Proposition 10.5.

Acknowledgments

Above all, I thank Yves Guivarc’h for countless discussions concerning this survey;
thanks are also due to Pierre de la Harpe for helpful comments and suggestions.
I would like to express my gratitude to both of them as well as to my other co-
authors Yves de Cornulier, Jean-Romain Heu, Alex Lubotzky, and Alain Valette,
for joint work on which a substantial part of this paper is based. I would also like



56 Bachir Bekka

to thank Athanase Papadopoulos for the invitation to write this survey. Finally, I
am grateful to Shin Nayatani for his invitation to the Rigidity School in Tokyo in
January 2013, during which part of this work was done.

References

[Alon86] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.

[ALW01] N. Alon, A. Lubotzky, and A. Wigderson, Semi-direct product in
groups and zig-zag product in graphs: connections and applications
(extended abstract), 42nd IEEE Symposium on Foundations of Com-
puter Science (Las Vegas, NV, 2001), IEEE Computer Soc., 630–637,
Los Alamitos, CA 2001.

[Anan03] C. Anantharaman-Delaroche, On spectral characterizations of
amenability, Israel J. Math. 137(2003), 1–33.

[Anan08] C. Anantharaman-Delaroche, On the comparison of norms of convo-
lutors associated with noncommutative dynamics, Illinois J. Math.
52 (2008), 91–119.

[BaLu01] H. Bass and A. Lubotzky, Tree Lattices, Birkhäuser 2001.
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1984.


