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Abstract

Denoising and contrast enhancement play key roles in optimizing the trade-off
between image quality and X-ray dose. However, these tasks present multiple
challenges raised by noise level, low visibility of fine anatomical structures, het-
erogeneous conditions due to different exposure parameters, and patient char-
acteristics. This work proposes a new method to address these challenges. We
first introduce a patch-based filter adapted to the properties of the noise cor-
rupting X-ray images. The filtered images are then used as oracles to define non
parametric noise containment maps that, when applied in a multiscale contrast
enhancement framework, allow optimizing the trade-off between improvement
of the visibility of anatomical structures and noise reduction. A significant
amount of tests on both phantoms and clinical images has shown that the pro-
posed method is better suited than others for visual inspection for diagnosis,
even when compared to an algorithm used to process low dose images in clinical
routine.

Keywords:

Low Dose X-ray imaging, Non Local Means, Noise containment, Contrast
enhancement.

1. Introduction

Medical imaging based on X-rays is the main source of exposure to artificial
radiation (Smith-Blindman et al., 2012), which, as highlighted in some recent
studies, entails negative secondary effects for the patient health. Shuryak et al.
(2010) have pointed out that all age groups run the risk of developing radio-
induced cancers, and Ronckers et al. (2008) have shown that the patients af-
fected by scoliosis have a higher probability of developing a cancer because they
undergo more X-ray exams.

The way clinical image quality is perceived depends on how raw X-ray image
quality is improved through the different steps of the image processing chain.
In particular, the noise level on the outcome indirectly indicates if an image
has been acquired in good conditions (Shepard et al., 2009). Therefore, it is
important to define an algorithm robust to changes in the amount of signal at
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the detector, i.e. stable to changes in the amount of skin entrance dose and to
inter-patient variability. The dose could be for instance reduced and still achieve
the same diagnostic goal for a given study. Alternatively, the same amount of
input signal could be used despite an increase in patient’s size.
In this paper we consider X-ray images acquired with a low dose, and as a typ-
ical example we process images acquired with the stereo-radiographic imaging
system EOS (Wybier and Bossard, 2013), that allows simultaneously acquiring
full body frontal and lateral images of a patient in weight-bearing position. The
density of the tissues significantly changes according to different anatomical re-
gions (see Figure 1a), which considerably affects signal values and noise levels.
This intra-patient variability is another important factor that needs to be taken
into account to optimally process the acquired data.
X-ray images present both components of noise and signal that cannot be clearly
distinguished because the local contrast at the acquisition is low. Therefore, the
image quality enhancement requires to both reduce the noise and increase the
visibility of fine anatomical details. In some works (Sakata and Ogawa, 2009;
Loza et al., 2014) the authors propose to restore the input image by using
wavelet-based approaches and, then, to enhance it. Nevertheless, this type of
approach can lead to a loss of spatial resolution that is not acceptable in clinical
routine. The use of more advanced denoising filters that represent an image in
a patch space could overcome the aforementioned issue. The patches are sub-
images that capture local characteristics and, hence, the noise can be attenuated
while preserving edges and texture. These filters have been also used in medical
applications (Cerciello et al., 2012) showing promising results. Nevertheless, as
pointed out by Lebrun et al. (2012) in a survey on this denoising technique,
very fine texture, e.g. fine bone texture, may be flattened out. The use of highly
performing noise reduction filters is then only a partial solution in radiography
applications: the resulting images may risk to be perceived as unnatural by the
clinicians due to a lack of information in the bone structures. The noise con-
tainment maps (Stahl et al., 1999) are an alternative approach that consists in
defining, in a multiscale framework, whether a coefficient can be fully enhanced
as associated with signal information, or not. Stahl et al. (1999) use density
and activity measures to define the noise containment maps. However, the def-
inition of these maps depends on global user-defined parameters, which is the
main drawback of this method. Indeed, the capacity of containing the noise re-
lies on these parameters. Finally, given the heterogeneity of digital X-ray data,
parametric noise containment maps are sub-optimal.

Contributions. This work proposes a general framework for joint denoising
and enhancement of X-ray full body images that addresses the aforementioned
drawbacks of existing methods. The main contribution of this paper consists
in showing how the output of a denoising filter applied to an X-ray image well
approximates the ground truth image and can be then exploited to increase
the visibility of anatomical details while containing the noise. We propose an
extension of the Non Local Means (NLM) filter (Buades et al., 2005) that can
be easily adapted to our noise model and is called X-ray Non Local Means
(XNLM) filter. The result of this filter is exploited to define non-parametric
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noise containment maps that are used in a multiscale framework to robustly limit
the presence of the noise in the final solution. Note that the independence from
manually set parameters is a crucial element, which makes the method robust
to the heterogeneity of the data to be processed. While the tests presented in
this paper have specifically been carried out on EOS images, the approach could
likely be applied to any image exhibiting similar characteristics.

The main scope of the validation consists in quantifying how much our work
can help clinicians in their diagnosis. The provided outcomes are meant to
be suitable for diagnosis without any further manual user interaction. Manual
windowing can optimize contrast and brightness, however these adjustments can
cause noise to raise and further slow down diagnosis process. For these reasons,
the results that optimize the trade-off between contrast and amount of noise
should be automatically obtained.
The quality of clinical images is not easy to objectively assess and this aspect
is studied in this work. Therefore, two new validation approaches are proposed.
In particular, classical measures of contrast (average local variance (Chang and
Wu, 1998) and contrast improvement index (Laine et al., 1995)) are revisited
by associating them with anatomically meaningful regions. Moreover, the im-
age quality evaluation is completed with clinical assessments according to the
feedbacks of a radiologist.

Some aspects introduced in this paper are partially related with two of our
former works. The first one (Irrera et al., 2013) has allowed showing that the
denoising filter parameters need to be tuned for different anatomical regions
in order to efficiently restore a full body X-ray image. However, while in this
previous work the parameters were set by manually adjusting the shape of a
curve, this is not the case for the XNLM filter here introduced, that now exploits
automatic estimates of the noise levels. In the second paper (Irrera et al., 2014)
the denoising process has been combined with a multiscale decomposition with
the aim of reducing the spatial resolution loss on EOS images used in follow-
up examinations. This is very different from the noise containment approach
proposed here, which has the advantage of not being limited to a specific clinical
case as it is free from critical parameter setting.

The paper is organized as follows. Section 2 explains how to estimate a curve
that gives the noise standard deviation as a function of the signal and, then, how
to exploit it to formulate the XNLM filter. Section 3 outlines how to estimate
the noise containment maps and to increase the visibility of anatomical details.
Section 4 presents some results on both phantom and clinical images. Section 5
concludes the paper, and summarizes the achieved objectives and perspectives.

2. X-ray Non Local Means filter

2.1. Overview of the Non Local Means filter

The Non Local Means (NLM) filter estimates the intensity value of a pixel xi

by means of a weighted average that depends on the similarity between patches
(Buades et al., 2005). The result of the filter is good as long as the information

3



in the image is redundant, i.e. similar structures can be found at different spots.
This hypothesis is valid for X-ray images. Given the input image I, the gray
level of the filtered image Î at a pixel xi is formally defined as follows (Buades
et al., 2005):

Î (xi) =

∑|Ω|
j=1 ς(i, j)I (xj)
∑|Ω|

j=1 ς(i, j)
(1)

where ς(i, j) is the weight associated with I(xj) in the estimation of Î(xi). The
domain Ω represents the search space for similar patches. In practice, this is a
window of half-size w (i.e. |Ω| = (2w + 1)2) centered at pixel xi. The weight
ς(i, j) quantifies the distance in the patch space between spatially near pixels.
Formally, let Pi and Pj denote patches of half-size p (i.e. |P | = (2p + 1)2)
centered, respectively, at xi and xj . The corresponding weight is defined as:

ς(i, j) = exp

(

−d(Pi, Pj)

h2

)

(2)

where d(Pi, Pj) is the distance between the patches Pi and Pj and h is a smooth-
ing parameter controlling the decay of the exponential function. In the original
formulation (Buades et al., 2005), d was a Gaussian-weighted Euclidean dis-
tance. However, in more recent works (Darbon et al., 2008; Coupé et al., 2008),
the convolution with the Gaussian is avoided and the normalized Euclidean
distance is used without noticeable effect on the final quality:

d(Pi, Pj) =
‖I(Pi)− I(Pj)‖2

2|Pi|
(3)

where I(Pi) are the intensities of I in the patch centered at pixel xi and, thus,
‖.‖2 is the Euclidean norm in R

|P |.
The NLM filter in its naive formulation is computationally expensive. The com-
plexity is of order O(N |Ω||Pi|) where N is the number of pixels of I. Darbon
et al. (2008) have addressed this issue by making the computation independent
of the patch size. Basically, the weights are computed from the discrete inte-
gration between the difference of the image I and its shifted versions by using
integral images. Therefore, the computational load is reduced to O(N |Ω||4|).

We propose an extension of the classical NLM filter that takes into account
the noise model which is described in the following section.

2.2. Noise model estimation

An appropriate model of noise affecting the input image is a key element in
the denoising procedure. In medical X-ray images, the noise is signal-dependent.
Specifically, the noise at the detector is a combination of quantum and electronic
noise that can be described, respectively, by Poisson and Gaussian distributions.
However, as shown by Damet et al. (2014), in EOS images the quantum noise
contribution is predominant and, even at very low doses, the electronic noise
is negligible. Therefore, the noise model can be approximated by a Poisson
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distribution. Nevertheless, such a model is rarely observed in X-ray images
(Hensel et al., 2006), as the raw image is mapped into a logarithmic domain to
compensate for the exponential attenuation of X-rays passing through the body.
This operation gives sense to the gray levels that are then linearly dependent
on the matter thickness and density. Consequently, the relation between signal
and noise standard deviation does not follow anymore a root square function.
Hensel et al. (2006) have verified that the noise in this case can be modeled with
an additive zero mean normal-distribution η with signal-dependent standard
deviation ση(S). Then, if I and S are the observed data and the ground truth
signal, respectively, then I = S + η and the probability density function of the
variable η is:

f(η;S) =
1

ση(S)
√
2π

exp

(

− η2

2ση(S)
2

)

(4)

Then, in order to properly characterize the problem, ση(S) needs to be esti-
mated. Colom and Buades (2013) have recently proposed a noise estimation
method that does not require the assumption of homoscedastic (i.e. signal-
independent) noise and consists of a block-based formulation of the percentile
method (Ponomarenko et al., 2007), which is very robust for rating the noise
standard deviation from a single image (Lebrun et al., 2012; Colom and Buades,
2013). The first step of the percentile method consists in computing a high-pass
filtered version of I, that we denote HI . This allows for the elimination of
the deterministic component due to the signal and, so, to find a predominant
component of noise in many small windows of half-size b. Some examples of
suitable high-pass filters are the discrete Laplacian, the Discrete Cosine Trans-
form (DCT) and the Wavelet coefficients. Then, a local variance image V is
computed from HI using windows of half-size b. The key idea of the percentile
is that signal components, e.g. edges, are present only in the rightmost part of
the histogram of V . This allows for a biased value of the noise standard devia-
tion to be obtained by computing a low percentile of the histogram. The bias is
corrected by applying a linear correction factor that depends on the percentile
value, the window half-size b and the choice of the high-pass filter. We use a
10% percentile, b = 7 and the first detail level of the multiscale decomposition
(see Section 3.1.1) as high pass filter in all our tests.
In order to extend the method beyond the homoscedastic case, the input im-
age is divided according to the intensity levels into n not overlapped and not
necessarily connected regions i = 1, 2, . . . , n of equal size. It is assumed that
in each region i, the noise follows a Gaussian distribution and is signal inde-
pendent. The classical percentile method is then used to determine the noise
standard deviation σi in a region i. A signal level µi is also computed as the
median of the average gray levels of the blocks in the region i. Finally the n
points {(µ1, σ1), (µ2, σ2), . . . , (µn, σn)} (see Figure 1b) are linearly interpolated
to obtain the noise curve.

The assumptions made by Colom and Buades (2013) are respected by the
formula in Equation 4 and, hence, this method can be used to estimate a noise
map for describing the noise strength in digital X-ray images. For example,
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(a) (b) (c)

Figure 1: Noise estimation using the percentile method: (a) Input image I. (b) Interpolated
noise curve from the n points (µi, σi). (c) Resulting map of noise standard deviation (σ(S)).

given an EOS image (Figure 1a)1 the percentile method allows estimating a
noise curve (Figure 1b) that is used to obtain the corresponding noise map
(Figure 1c). It is worth noting that the noise level increases with the amount
of absorption, which is expected after the logarithmic conversion (Hensel et al.,
2006) and has been observed on all the processed images. Figure 1c shows that
the estimated σ values change significantly and coherently according to the body
tissue thickness. For example, the noise level in a low density level region such
as the lungs is 4 times lower than that in the pelvis.

2.3. X-rays Non Local Means filter

The noise model so characterized is used to propose a patch-based filter
adapted to X-ray image denoising. The noise is signal-dependent and the same
parameters cannot be used to denoise the whole image. However, in a small
region the ση value is approximately stable because the density of the tissues
therein is practically constant, i.e. the map ση changes smoothly. It should be
noted that the smoothing parameter h is proportional to the noise standard
deviation σ (Buades et al., 2005), i.e. h2 = 2kσ2. The proportional factor k is
meant to adjust the automatic estimation of σ. Coupé et al. (2008) have pointed
out that the optimal value of k depends on the strength of the noise affecting
the data, e.g. k = 0.5 for low noise levels and k = 1 for medium and high noise
levels. However, this is mainly due to the tendency of over-estimating σ at low
noise levels (Colom and Buades, 2013). Considering that the percentile method
suffers less from this issue (Lebrun et al., 2012) and that, in the worst case,
the only region affected by over-smoothing would be the background where the

1The image I is obtained after the following sequence of steps: system calibration, loga-
rithmic mapping and LUT inversion. The latter operation associates high gray levels to high
absorption regions.
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(a) (b) (c)

Figure 2: Zoom of XNLM filter output: (a) input image I; (b) denoised image Î; (c) absolute

difference ‖I − Î‖.

X-rays are not absorbed, k has been fixed to 1. Formally, h is integrated in the
patch distance definition in order to take into account the dependency on the
X-ray absorption:

dX(Pi, Pj) =
‖I(Pi)− I(Pj)‖2

2σi
2|P | (5)

Note that in this equation the noise level is the one associated with the window
Ω centered at the pixel xi. This implies that σi ≃ σj ∀j ∈ Ω, which is coherent
with the assumption on the smooth transition of the tissue density values. The
weights are then computed as follows:

ςX(i, j) = exp (−dX(Pi, Pj)) (6)

In conclusion, considering the signal-dependent nature of the noise (Sec-
tion 2.2), the NLM filter can be formulated to denoise X-ray images. The pro-
posed filter is called XNLM, which stands for X-rays Non Local Means filter.
It is worth noting that the automatic definition of σ avoids manual parameter
tuning and, hence, it is more robust to changes in X-ray acquisition settings (see
Section 4.1) and patient morphotypes. However, the patch and window size still
need to be defined by the user. In this work patch and window half-sizes are,
respectively, fixed to p = 2 and w = 7. Besides, note that the similarity between
patches is quantified with an Euclidean distance which allows implementing the
XNLM filter by using integral images (Darbon et al., 2008).

Figure 2c shows the absolute difference between a region of the noisy image
I (Figure 2a) and the corresponding denoised image Î (Figure 2b), which indi-
cates that the noise is mainly removed while the structures are well preserved.
Moreover, the filter adapts to different levels of absorption. For example the
noise reduction is stronger in the spine region than in the pulmonary one. In
the following sections we explain how the image Î can be used to define noise
containment maps that are then applied in a multiscale contrast enhancement
approach.
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3. Local noise containment maps

3.1. Overview of multiscale contrast enhancement methods

3.1.1. Multiscale analysis

The multiscale (MS) decomposition allows modifying separately fine and
coarse details (Li et al., 2005) and is often used to enhance the contrast of digi-
tal X-ray images (Stahl et al., 1999; Dippel et al., 2002; Fan and Han, 2011). The
Laplacian Pyramid (Burt and Adeldon, 1983) (LP) is a classical MS decomposi-
tion technique. An image is encoded in k band-pass images {D0, D1, . . . , Dk−1}
and its low frequency residual Lk by recursive filtering:







Lt =↓ (g(Lt−1))
t > 1

Dt = Lt−1− ↑ (Lt)
(7)

where L0 = I, ↓ and ↑ are, respectively, the down-sampling and up-sampling
operators, and g(.) is the smoothing filter, e.g. a binomial filter. The smooth
transition between scales causes redundancy. This allows avoiding strong halo
artifacts that appear when decomposing with an orthogonal basis (Dippel et al.,
2002). The sub-sampling, used to double the spatial scale at each iteration, is
the reason of aliasing artifacts due to non linear operations in the reconstruction
(Li et al., 2005). Therefore, in this work an undecimated version of the LP, also
known as Isotropic Undecimated Wavelet (IUWT) (Starck et al., 2007), is used.

3.1.2. Multiscale synthesis

An image decomposed using IUWT is rebuilt by adding all the detail images
Dt to the low frequency residual Lk. Consequently, the enhanced image Y is
obtained by adding the boosted detail images Λt:

Y = Lk +

k−1
∑

t=0

Λt (8)

where Λt = ft(Dt) and ft(.) is a non-linear boosting remapping function. Dippel
et al. (2002) give an example of such a function and study how its parameters
affect the X-ray image quality. Basically, these functions confine the enhance-
ment in low activity regions, which are defined according to a contrast measure
(Mantiuk et al., 2006). This allows limiting the halo artifacts, which are a known
drawback of linear MS decomposition techniques (Li et al., 2005). Finally, the
parameters of the boosting functions are set to well balance coarse and fine
details (Dippel et al., 2002).

3.1.3. The noise

Since the detail images are obtained by recursively smoothing, the noise is
progressively reduced at coarser scales. Nevertheless, the noise equally contam-
inates all frequencies. Therefore, by fully enhancing the band-pass images Dt,
the noise is increased.
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The noise containment maps address this problem by considering that the
amount of noise in the output image Y can be limited by not enhancing the
detail coefficients that are corrupted by noise. Formally, a noise containment
map is a function wt(xi) ∈ [0, 1]. The 0 and 1 values are associated with a noise
free and full noise coefficient, respectively. Therefore, the boosted output level
at scale t is the result of the coefficient-wise weighted sum between the input
band-pass image Dt and its fully enhanced version f(Dt):

Λt = wtDt + (1 − wt)ft(Dt) (9)

The advantage of noise containment maps compared to filters is that no informa-
tion is lost, as nothing from Dt is erased. For this reason, this approach is often
preferred to process X-ray images. However, it is not trivial to define correct
wt maps. While an overestimation of noise would cause a reduction of visibility
of anatomical structures, an underestimation would overshoot the detail coeffi-
cients by hence giving an unnatural effect. Stahl et al. (1999) define wt by using
local density (gray level) and activity (e.g. local standard deviation) maps. Fan
and Han (2011) implicitly estimate noise containment maps by comparing Peli’s
contrast measure (Peli, 1990) before and after boosting. The main drawback
of these methods is that the results depend on some global user-defined pa-
rameters, e.g. the level of activity associated with noise and structures. This
is particularly tricky in digital radiography for two reasons. First, there is a
high intra-patient variability because the noise level changes significantly in a
full body X-ray image (Section 2.2) and therefore globally defined parameters
are sub-optimal. Secondly, there is a high inter-patient variability in age, size
and acquisition conditions. Consequently, different parameter settings should
be defined to address this large heterogeneity, which is very difficult to validate.

3.2. Definition of local noise containment maps

The band-pass images DI
t obtained by decomposing an X-ray image I with

the IUWT contain both signal and noise components. Figure 3b and 3f show
the detail levels DI

0 in lung (Figure 3a) and lumbar spine (Figure 3e) regions,
respectively. These examples confirm that the anatomical structures are merged

with noise. On the other hand, the corresponding detail levels DÎ
t (Figures 3c

and 3g) are noise-free. This does not imply that all the relevant information is
preserved, but it is easier to identify which coefficients should be fully enhanced.
In other words, the restored image Î is used as an oracle for the definition of
the noise containment maps. The examples also exhibit that the difference
between the original and restored band-pass images depends on the properties
of the anatomical regions. This is due to the fact that the XNLM filter does not
uniformly restore an image I but rather depending on the estimated σ values.

These observations are quantitatively studied by associating an energy mea-
sure with the band-pass images. Given a detail image Dt, only a few coefficients
are significantly not null, i.e. the signal is sparse in the MS decomposition. This
has led many researchers to use statistical models to describe detail coefficients.
Further information on this aspect can be found in the work by Loza et al.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Estimation of the LNC-maps from analysis of noisy and denoised images. Top row:
lung ROI. Bottom row: spine ROI. (a,e): I manually windowed for better visibility. (b,f):

DI
0
. (c,g): DÎ

0
. (d,h): LNC-maps, the interval of gray levels is [0, 1].

Table 1: Percent energy loss δt in a lung region (R1) and in a lumbar spine one (R2).

δ0 δ1 δ2 δ3 δ4 δ5
R1 0.78 0.35 0.18 0.05 0.02 0.00

R2 0.97 0.85 0.56 0.27 0.09 0.03

(2010) and references therein. This paper simply assumes that the coefficients
can be modeled by a Laplacian distribution with zero mean and scale parame-
ter β. Given the maximum likelihood estimation of β of a zero mean Laplacian
distribution, the energy Ξ(Dt) of the detail level Dt distribution is:

Ξ(Dt) = 2

(

1

M

N
∑

i=1

|Dt(zi)|
)2

(10)

where M is the number of detail coefficients at scale t and zi are the coordinates
of the coefficient i. The percent energy loss at a band-pass image DÎ

t is then
computed as follows:

δt = 1− Ξ(DÎ
t )

Ξ(DI
t )
. (11)

Table 1 indicates that δt monotonically decreases to zero as a function of t. This
happens because the XNLM filter removes only the high frequency component
of the noise as it is patch-based (Lebrun et al., 2012). Besides, the detail band-
pass images are obtained by applying an iterative smoothing filter (Equation 7),
which progressively reduces the noise importance. From the δt values in Table 1,
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where the lung and lumbar spine region are denoted by R1 and R2, respectively,
we deduce that the percent energy loss decays faster in low density regions. For
example, the noise in the lumbar spine region needs to be taken into account up
to the third decomposition level, while in the lung region it is negligible at the
second level. As a consequence, by comparing the input and noise-free detail
coefficients it is possible to automatically decide up to which decomposition level
the noise needs to be contained while avoiding relying on empirically defined
parameters.

Figures 3c and 3g show that the energy is preserved in correspondence of
edges and structures, such as the ribs or the internal parts of a vertebra, because
the XNLM tends to preserve locally redundant information. As a consequence,
we can estimate local noise containment maps (LNC-maps), where the term local

highlights the fact that the measures come from an analysis in local patches.
The LNC-maps wt are computed by comparing a measure of local contrast

of DI
t and DÎ

t . This measure, denoted by Ct, is the average magnitude of
coefficients in a patch of size |P |, i.e. the same patch size used by the XNLM
filter. It is preferable to use the average within a small window rather than single
coefficients in order to avoid taking into account aberrant values, especially at
fine levels. The LNC-map at scale t is then computed as follows:

wt = δt

(

1− 2CI
t C

Î
t + ǫ

CI
t

2
+ C Î

t

2
+ ǫ

)

(12)

where CI
t is the contrast measure from DI

t , ǫ is a scalar factor used to avoid
singularities, in this case fixed to 1, and δt is the percent energy loss at a level
t (Equation 11). In Equation 12 wt is computed as the product of a local term
that measures the correlation between local contrast measures and a global one.
The local term represents the probability of a coefficient being pure noise. The
probability is low when the contrast values are similar because the XNLM filter
detects a structure of interest preserving the most of its energy. The global
term δt indirectly quantifies the amount of redundancy in the image and can
help distinguishing a small morphotype from a big one, because the higher the
signal at the detector the more visible are the structures. The relevance of this
global term has been confirmed by gathering the feedback from experts who
concluded that, by defining the LNC-map using only the local one, the outcome
presented a slight smoothing effect. Finally, it is worth noting that the LNC-
maps do not depend on user-defined parameters.
The resulting LNC-maps at scale 0 for the two ROIs taken as examples are
shown in Figure 3. According to Equation 9, by using these noise containment
maps the anatomical structures of interest, such as the ribs and the bronchi,
the vertebral edges in the lungs (Figure 3d) and the lumbar spine (Figure 3h),
are fully enhanced.

3.3. Proposed boosting technique

The detail coefficients are modified according to an activity map in order to
increase the contrast. In particular, while the detail coefficient values associated
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(a) (b)

Figure 4: Activity map: (a) Computed using CI
t . (b) Computed using C Î

t .

with low activity are increased, those at high activity are preserved. We use an
activity map that is a variant of Peli’s formula (Peli, 1990) that measures the
contrast on complex images:

At =
C Î

t

LÎ
t + ǫ̃

(13)

where C Î
t is the contrast measure computed from DÎ

t (Section 3.2), Lt is the
low frequency residual at scale t and ǫ̃ is a scalar value, fixed to 100 for all
the tests, that is used to avoid singularities and dependency from very low
coefficient magnitudes. With respect to the original formulation (Peli, 1990),
we introduce two variants. First, the contrast is computed within a small local
window and not by considering coefficient-wise magnitude because as shown
by Li et al. (2005) a smooth gain enhances better the contrast with less halo

artifacts. Secondly, C Î
t is considered rather than CI

t . Figures 4a and 4b show two

examples of activity maps at scale 0 computed using CI
t and C Î

t , respectively.
While Figure 4a shows very similar activity values for noise and structures, in
Figure 4b the underlying anatomical structures are well highlighted and this
type of activity maps is preferred here.
Given the activity maps at each scale, the relative gain functions are computed
as follows:

Gt(zi) =

{

(γt − 1)
(

1− At(zi)
αt

)2

+ 1 if At(zi) < αt

1 otherwise
(14)

where γt is the maximal gain at scale t, αt is the activity cut off value beyond
which the coefficients D(zi) are not enhanced. The cut off values are defined as
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follows:
αt = min

(

cĀt,max(At)
)

(15)

where Āt is the average activity at scale t, and c is a constant value, defined by
the user, that avoids to take into account aberrant activity values and is set to
25 in the validation tests.
As for the maximal gain parameters, they are initially set by linearly ranging
their values from 6 at the finest scale to 3 at the coarsest one. Empirically,
these are ideal parameters when the amount of noise is very low. However, in
our context of interest, this case rarely occurs. The actual gain values are then
semi-automatically computed as follows:

γt = gt − (gt − gk−1)w̄t (16)

where gt are the initial ideal gain values, k is the number of scales (here k = 6)
and w̄t is the average value of the LNC-map at t. The initial gain values tend to
be preserved if the noise is absent at a given scale, i.e. w̄t ≃ 0. On the contrary,
when w̄t ≃ 1, then γt is set equal to the gain at the coarsest scale, i.e. the lowest
one. The initial values gt are defined by taking into account the property of full
body X-rays; they should probably be changed to apply the algorithm to other
images.
Finally, the problem of defining the maximal gain parameters is simplified. In-
deed, only one set needs to be fixed for all the images and, then, the values
are automatically adjusted according to the image content. The fully enhanced
band-pass images are obtained by applying the coefficient-wise multiplication
between input detail coefficients and the gain maps (Equation 14).

3.4. Overview and computational load of the proposed method

The main steps of the proposed method are summarized here. The noise
standard deviation image σ is estimated from the input I by using the per-
centile method (Section 2.2) and used in Equation 5, which computes the patch
distances. The denoised image Î is obtained (Section 2.3) and then both I
and Î are encoded into band-pass images Dt and low frequency residuals Lk

by using the IUWT (Section 3.1). Then, the gain functions (Equation 14) are
computed by using the activity maps (Equation 13) and the semi-automatically
defined gain parameters. The LNC-maps (Section 3.2) are used in Equation 9
to weight the contribution of the input noisy coefficients and the fully boosted
coefficients. Finally, the enhanced image is obtained by adding the output detail
levels (Equation 8). Table 2 reports the setting of the main parameters in the
most relevant steps of the proposed method. All the parameters are either au-
tomatically estimated, or fixed experimentally once for all, i.e. the same values
are used in all our tests.

As for the computational load, it takes on average 2 minutes to completely
process a full body EOS image, which contains about 14 millions of pixels, in a
not optimized MATLAB based environment. The main computational load is
due to the XNLM filter, while the other operations are computationally compa-
rable to those of a conventional MS contrast enhancement method multiplied by
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Table 2: Main steps and related parameters of the proposed method.

Percentile method - High pass filter = D0 of the IUWT;
- Percentile value = 10%;
- Square block half size = 7.

XNLM filter - Square patch P half size = 2;
- Square window Ω half size = 7;
- h = 2σ2, σ estimated by the percentile method.

NC maps - Automatically estimated from DI
0 and DÎ

0 .

Boosting - Max gain value = 6.0
- Min gain value = 3.0
- Number of scales = 6
- Cut off value = average level activity ×25

two because we decompose two images and not one. Finally, since the XNLM
filter is coded using integral images, an estimation is that the proposed frame-
work could be efficiently implemented in a C++ oriented environment and using
parallel programming.

4. Experimental results

4.1. Dataset

The proposed method is validated on X-ray EOS data that are encoded on
16 bits. EOS is a stereo-radiographic system based on a slot scanning principle
and it uses the multiwire gaseous detector that has been conceived from Georges
Charpak’s2 researches (Charpak et al., 1968). The detector amplifies the X-rays
that pass through the body of a scanned patient by means of electronic avalanche
in the gas, which allows keeping the dose low. Moreover, a wide range of different
tissues is covered, from cartilage to bones in thick regions. The acquisition
parameter setting changes depending on the type of exam and morphotype
of the patient. These parameters are the peak kilo voltage output of the X-
ray images generator (kV), X-ray tube current in mA (mA), and exposure time
C ∈ {1, 2, . . . , 8}, where bigger values stand for longer exposure time. The input
signal strength associated with a parameter setting is indicated in Air Kerma

21992 Physics Nobel Laureate
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Figure 5: Standard PHD5000 phantom with annotated ROIs used to compute the following
measures: SNR from region 1; CNR from regions 2 and 3; DYN from regions 4 and 5. See
text for the detailed definitions.

dose value, i.e. the absorbed energy by unit mass of air, which is measured in
µGy.

Both phantom and clinical EOS images are used for the validation of the
proposed method, denoted by LNCE (local noise containment enhancement),
that is compared with three other methods. Two of these approaches are sim-
plifications of the proposed one as they consist of fully enhancing the input (DI

t )

or the denoised (DÎ
t ) band-pass images, and are denoted by NE (noise enhance-

ment) and DE (denoised enhancement), respectively. Note that the method
DE is similar to the one that we have proposed in Irrera et al. (2013) with the
difference that manual tuning of the filter parameters is avoided as presented
in Section 2.3. The third method is a EOS proprietary algorithm, denoted by
EOSE, that is used by default for exams in clinical routine. It contains the
noise at the two finest levels of a IUWT decomposition according to predefined
thresholds on the noise level. Therefore, EOSE exploits parametric noise con-
tainment maps. This method is more relevant for our study than others from
the literature because the parameters of the gain functions used to modify the
detail coefficients have been chosen by taking into account the opinion of EOS
users. Moreover, note that the choice of the default EOS algorithm is justified
by the interest in heterogeneous clinical data. The evaluation on specific types
of exams, e.g. follow-up in pediatrics, is beyond the scope of this paper.
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Table 3: Samples of the phantom dataset described by the thickness of the PMMA block in
cm, the entrance dose in µGy and the SNR, CNR and DYN values computed over the input
image.

cm µGy snr cnr dyn

10 10 47.25 1.35 49%

10 67 116.47 4.29 53%

10 71 126.02 4.23 53%

10 75 110.73 4.24 53%

10 215 190.71 7.47 52%

15 65 108.51 2.44 40%

15 87 115.30 3.01 41%

15 89 116.84 2.98 42%

15 100 123.53 2.80 42%

cm µGy snr cnr dyn

15 102 132.75 2.95 41%

15 136 165.43 3.78 41%

20 16 37.63 0.53 30%

20 109 117.90 1.96 33%

20 454 180.01 2.59 33%

25 109 97.13 1.16 26%

25 136 98.24 1.26 26%

30 33 27.39 0.20 19%

30 566 128.46 1.14 22%

Table 4: Average SNR, CNR and DYN improvements on phantom images.

NE DE LNCE EOSE

(SNRo − SNRi)/SNRi −81.0% −28.9% −69.5% −72.9%

(CNRo − CNRi)/CNRi −20.9% 281.9% 43.7% −21.5%

(DYNo −DYNi)/DYNi 53.8% 53.0% 53.5% 32.8%

4.2. Validation on phantom images

We evaluate the image quality on the standard PHD5000 phantom (Fig-
ure 5) according to different signal strengths, and interposing between the X-
ray tube and the phantom a polymethyl methacrylate (PMMA) block of var-
ious thicknesses. The samples of the dataset are reported in Table 3, where
the thickness of the PMMA block is indicated in cm and the signal strength
represented by the entrance dose in µGy. The measures of image quality com-
puted over the input images are also indicated. These experiments simulate
the acquisition conditions of typical clinical cases. For example, the sam-
ples {10cm; 10µGy}, {10cm; 71µGy} and {10cm; 215µGy} are acquired with
{60kV ; 83mA; 4C}, {83kV ; 200mA; 4C} and {100kV ; 280mA; 4C}, respectively.
These parameters are used in the following exams: follow-up of the full spine, di-
agnostic full spine and pelvis. The samples at 10cm correspond to the pediatric
morphotype and those at 20cm to the normal adult one.

The signal to noise ratio (SNR) is equal to the average signal in a theoreti-
cally constant region (ROI 1 in Figure 5) divided by the standard deviation of its
gray levels. The SNR is indirectly related to the amount of signal that reaches
the detector: Table 3 shows that lower PMMA thickness and/or stronger input
signal values (e.g. {10cm, 215µGy}) produce higher SNR measures. The first
line in Table 4.2 shows the average percent increase of SNR of the post-processed
images with respect to the input data. The values are negative for each tested
method, which is expected given the SNR definition. Indeed, while the standard
deviation increases to optimize the contrast balance for the whole image, the
average signal remains approximately the same. These results indicate that DE
is the best option in terms of SNR, which is logical because it fully enhances
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an image that has been filtered, while the other solutions only contain the noise
(LNCE and EOSE) or simply do not take it into account (NE). However, since
the SNR is measured in a void region, it gives no information on how regions of
interest are processed.

The contrast to noise ratio (CNR) gives a deeper insight on image quality
than the SNR because it is computed as:

CNR =
Ī(R2)− Ī(R3)

σ(I(R3))
(17)

where Ī(Rj) and σ(I(Rj)) are, respectively, the mean and standard deviation
of the gray levels in a region Rj and R2 and R3 are, respectively, an object of
interest (a disk, see region 2 in Figure 5) and nearby background (see region 3 in
Figure 5). The CNR quantifies the compromise between increasing the visibility
of an object of interest and boosting the noise. The second line in Table 4.2
shows the average percent increase of CNR of the post-processed images with
respect to the input data. Positive values prove a good balance between contrast
and noise, while negative ones mean over-shooting, i.e. the gain of contrast is not
sufficient to compensate the increase of noise. Table 4.2 indicates that both NE
and EOSE present over-shooting. While this is predictable with NE, because
the noise is not contained at all, it is less expected for EOSE. According to
our tests, there is not over-shooting when EOSE is used to process low signal
or thick PMMA block instances (e.g. PMMA ≥ 20cm), but it is present in the
other cases. This problem is common with methods that use parametric noise
containment maps because they do not provide sufficient flexibility. On the other
hand, LNCE overcomes this drawback, because, exception made for one case
({10cm, 215µGy}), there is no over-shooting. Nevertheless, the results obtained
when the images are processed with DE are significantly better. While the CNR
measures on the disks describe the increase of visibility of low and medium detail
levels, no conclusions concerning fine structures can be deduced.

The dynamic range (DYN) is computed as Ī(R4) − Ī(R5) where R4 is the
most absorbing region (number 4 in Figure 5) and R5 is the least absorbing
one (number 5 in Figure 5). It represents how well the gray level dynamic
is exploited and is expressed as percentage on the total number of gray levels,
i.e. 65535 in EOS images. Table 3 shows that the dynamic range depends on the
thickness, while it is practically unaffected by the signal strength. The third line
in Table 4.2 shows the average percent increase of DYN of the post-processed
images with respect to the input data. These results show that the methods
NE, DE and LNCE have very similar scores, because they use the same boosting
technique (Section 3.3), and they perform better than EOSE.

The high resolution grid at the center of the phantom (Figure 5) is used to
evaluate the spatial resolution of a system. The resolution is measured in line
pairs per millimeter (lp/mm) and associated with the finest set of visible lines
on the grid. It depends then on the signal strength and PMMA block thickness,
in addition to detector properties. This section verifies whether the compared
methods preserve the spatial resolution computed over the input image. The
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(a) (b) (c)

(d) (e) (f)

Figure 6: Resolution grid of the phantom: top row = 10µGy and bottom row = 215µGy;
columns from left to right = IN, DE and LNCE. For each example, the arrows indicate the
finest, clearly visible, set of lines.

input image manually windowed in the region of the resolution grid is compared
to DE and LNCE. Note that the study of NE is unnecessary because, since the
image is fully enhanced, it is not possible to reduce the resolution, and a part of
our tests, not included in this paper, have indicated that EOSE does not cause
a resolution loss. Figure 6 presents two of our experiments with 10cm PMMA:
the columns, from left to right, show the resolution grid from the input image
with manual windowing, DE and LNCE; the lowest and highest signal strengths
of the sample at 10cm are considered, i.e. 10µGy and 215µGy (respectively the
first and second rows in Figure 6). The arrows point at the finest set of visible
lines. The images show that DE causes a spatial resolution loss, while LNCE
does not. They also show that the grade of the decrease depends on the signal
strength. Indeed, with 10µGy the DE resolution is 1.4 lp/mm versus 1.8 lp/mm
and with 215µGy 1.8 lp/mm versus 2.0 lp/mm. This is due to the XNLM filter
effectiveness in restoring the lines: the stronger the signal the easier to capture
the similarity between patches is. Similar results are obtained by conducting
the same tests with thicker PMMA blocks.

Finally, these results on phantom images indicate that by applying a filter
and, then, enhancing the contrast of the resulting image (DE) the quality in
terms of SNR, CNR and DYN is very good, but this entails also a loss of spatial
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resolution that may be a problem for some clinical applications. On the other
hand, the proposed algorithm (LNCE) overcomes this drawback and, at the
same time, offers a good compromise between detail enhancement and noise
containment.

4.3. Validation on clinical images

The clinical database consists of 130 images that have been randomly se-
lected among anonymous data. These images present patients of different ages
and sizes as well as a wide range of type of exams (full spine, lower limbs, di-
agnostic, follow-up). This is the logical transposition of the tests conducted on
the phantom to the clinical context.

In digital radiography two measures are often used to quantify the quality
of clinical images: the average local variance (ALV) (Chang and Wu, 1998) and
the contrast improvement index (CII) (Laine et al., 1995). The ALV is the
average of variance values associated with small windows (5 × 5 pixels in this
paper). The ALV measure is computed in three disjoint regions of the pixel
space: smooth (ALVS), detail (ALVD) and edge (ALVE). Generally, low values
of ALVS and ALVE are preferred because they quantify the noise enhancement
and the presence of halo artifacts, respectively. Similarly, high ALVD means
good details processing. In the original approach (Chang and Wu, 1998) the
regions are defined by applying user-defined thresholds to the local variance
image of the input. However, threshold values are not easy to define given the
signal-dependent noise. As a consequence, the ALV relates to contrast but it is
not a pure measure of it, and therefore should be used along with visual com-
parison.
Rather than using a generic detail region, this paper proposes to use anatom-
ically significant regions. For each image of the clinical dataset, regions asso-
ciated with the following diagnostically significant structures are manually de-
fined: lumbar spine (A1), thoracic spine (A2), proximal femur (A3), lungs (A4)
and knees (A5). This approach permits to quantify the contrast in anatomical
ROI and, hence, to understand how the performances of an algorithm depend
on the features of anatomical structures of interest. However, the contrast mea-
sures over these regions are influenced by the presence of noise too. Therefore,
the noise contribution is quantified by measuring the ALV in a void region (A0),
i.e. with no signal of interest. Two examples are shown in Figure 7. Using these
measures, we define the anatomy contrast (AC) as follows:

AC =
1

K

(

∑

i>0

Ai

)

−A0 (18)

where K is the number of previously defined anatomic classes that appear in
the image, and Ai = 0 if the relative object is outside the field of view. The
first term of the equation relates to the amount of contrast in anatomical ROI.
However, since it is biased by the presence of noise, another term that relates
to noise only, i.e. A0, is subtracted. It would be interesting to compute this
measure for each considered anatomic ROI i, but this would require defining
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(a) (b)

Figure 7: Examples of manually segmented regions used for computing anatomic ALV: red
= A0, green = A1, blue = A2, yellow = A3, magenta = A4, cyan = A5

(a) (b)

Figure 8: ALV measures in anatomical ROI computed from the images in (a) Figure 7a; (b)
Figure 7b. For each of the anatomical ROI on the x-axis, the ALV measures are computed
over IN, NE, DE, LNCE and EOSE.

A0 in a void region of mean signal comparable to that of ROI i. Since such a
region may not always be present, e.g. for the lungs in the most of cases, this
test has not been performed.
The CII quantifies the improvement in terms of contrast on an enhanced

image Y with respect to the initial one. Since it only requires using the same
techniques for quantifying the contrast in input and enhanced images, it can be
used straightly with the proposed anatomical ALV. First, the CII is computed
for each anatomical ROI in the image to evaluate. The average of these values is
then computed to obtain the Signal CII (SCII). Similarly, the Noise CII (NCII)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Visual comparison of vertebrae L4 and L5 in A1: top row = images and bottom
row = related Sobel gradient magnitudes; columns from left to right = IN, DE, LNCE amd
EOSE.

is computed as NCII = A0
Y /A0

I . Finally, we define an unbiased CII (UCII)
as: UCII = SCII − NCII. This measure allows quantifying the over-shooting
in clinical images. A negative value of UCII means that the noise is more
enhanced than the signal, i.e. the higher visibility of structures comes at the
price of an excessive boosting of noisy coefficients, while positive values of UCII
indicate a relative higher enhancement of relevant information. Finally, a visual
comparison permits to verify the coherence between computed measures and to
validate them.

Figure 8 reports the ALV measures computed from the regions in Figure 7
and are used to compare the four image enhancement methods considered.

In the ROI A0, a significant increase of the noise with NE can be noted
on both full spine (Figures 8a) and lower limbs (Figures 8b) images. Indeed,
considering the full spine sample (Figure 8a) the ALV in regionA0 increases with
respect to the input by: ×20.84 (NE), ×2.20 (DE), ×9.02 (LNCE) and ×9.67
(EOSE). These results are coherent with the analysis conducted on phantom
SNR (Section 4.2): DE limits the noise impact better than the noise containment
method, whereas NE should be discarded because it excessively boosts the noise.

Into the lumbar spine, the ALV increases with respect to the input by:
×18.83 (NE), ×6.27 (DE), ×13.35 (LNCE) and ×8.38 (EOSE). The first ob-
servation is that the relative improvement of ALV given by NE is similar to
the one revealed in region A0. Therefore, even if NE gets the highest score in
A1, it is not reliable because it depends only on noise. On the contrary, the
other algorithms do not show this trend. LNCE is better than DE and EOSE.
However, the analysis needs to be completed with visual comparison to counter-
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balance the relative contributions in terms of signal and noise. Figure 9 shows,
in the first row, the visual rendering of the vertebrae L4 and L5 over IN, DE,
LNCE and EOSE, and, in the second row, the magnitude of the Sobel gradi-
ent computed over these images. Refining the input image demands extensive
user interaction to actually make structures of interest appear therefore slow-
ing down the process of diagnosis. This is also an issue from an image quality
point of view because it is very difficult to find the optimal balance between
noise boosting and structure visibility with manual contrast setting. Moreover,
given the low visibility of the edges, tasks such as automatic segmentation of
spine structures become very challenging, whereas the post-processed images
limit the need for manual interaction. On the other hand both DE and LNCE
(Figures 9b and 9c) have better brightness than EOSE (Figure 9d), which may
demand user interaction to be properly studied. The medium and low frequency
structures of the spine are preserved with DE, but high frequencies are lost in
the vertebral body, as shown by magnitude of gradient of DE and LNCE in
Figures 9f and 9g, respectively. While DE returns a quite regular image that
could be more adapted for instance to the automatic detection of the vertebral
body, LNCE suits better for diagnosis because it reflects the textured nature
of the bones. The higher ALV value obtained with LNCE is a further proof
in this discussion. Finally, note that the gradient magnitude is extremely low
in the tissues surrounding the vertebral body, while it is not inside of it. This
means that the LNCE enhances actual information of interest and the contribu-
tion of noise to the obtained ALV value is negligible. In the thoracic spine, the
ALV increases with respect to the input by: ×18.87 (NE), ×5.34 (DE), ×12.80
(LNCE) and ×8.58 (EOSE). These values are very similar to those obtained
in the lumbar spine region because the type of structure belongs to the same
category, i.e. vertebrae.

In the lungs, the ALV increases with respect to the input by: ×12.82 (NE),
×8.28 (DE), ×11.30 (LNCE) and ×7.16 (EOSE). The lungs are a low density
area and rich in medium and low frequency structures, which explains why the
performances of DE and EOSE are comparable. Moreover, it is logical that
NE and LNCE have similar performances as the noise in this region is almost
absent.

In the proximal femur of the full spine exam, the ALV increases with respect
to the input by: ×18.15 (NE), ×2.20 (DE), ×9.59 (LNCE) and ×8.86 (EOSE).
The same trend can be noted as for region A1, but the ALV score obtained with
DE is significantly lower than LNCE. Two aspects explain this result. First
the proximal femur is poorer in medium and low frequency structures than the
vertebrae. Indeed, the only structures of this type are the femur edges and the
cotyloid cavity, i.e. where the femur meets the pelvis. Secondly, as observed by
analyzing the high resolution grid of the phantom (Section 4.2), the low amount
of signal makes it more difficult to detect redundancy and, so, to preserve high
frequency details. Therefore, A3 is a typical region where LNCE is preferred if
a diagnostic image quality is desired.

Finally in the knee area, the ALV increases with respect to the input by:
×17.78 (NE), ×4.97 (DE), ×12.22 (LNCE) and ×9.61 (EOSE). Figure 10 shows
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Visual comparison of knee in A5: top row = images and bottom row = related
Sobel gradient magnitudes; columns from left to right = IN, DE, LNCE and EOSE.

Table 5: Average AC and UCII values computed over clinical images processed with the
compared algorithms.

IN NE DE LNCE EOSE

AC 2.01 25.14 3.79 11.45 5.69

UCII 0 −3.09 1.80 1.37 −1.16

that the most important information in the knee is the bone texture. Note that
DE is not adapted to this region as shown by the significantly lower ALV value
obtained with DE compared to the one obtained with LNCE.

The observations derived from the samples in Figure 7 hold for the whole
set of data on which we have computed ALV measures. In proof of this, the
average AC and UCII measures on the totality of the dataset are reported in
Table 5. The highest value of AC is obtained with NE. However, this is mainly
due to a strong noise contribution in anatomical ROI. This is confirmed by the
value of UCII that is largely smaller than zero meaning that the over-shooting
is too important to actually take NE into consideration. The algorithms DE
and LNCE allow avoiding over-shooting and can be, in our opinion, alternatives
to answer different clinical needs. Indeed, DE could be more adapted for tasks
such as automatic bone segmentation, because it is more regular than LNCE
while preserving edges. However, a noise containment oriented method is more
suitable to be presented to clinicians for medical imaging aided diagnosis, which
is confirmed by the higher AC value when using LNCE. Finally LNCE outper-
forms parametric noise containment methods. Indeed, with respect to EOSE,
the anatomical contrast doubles while avoiding over-shooting. Moreover, the
analysis on the regions Ai show that LNCE adapts well to the heterogeneous
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features of tissues present in a full body image, which supports the robustness
of the proposed method.

4.4. Quantitative evaluation by a radiologist

The last part of the validation is dedicated to quantify the contribution of the
proposed method to clinical routine. According to the results from the previous
sections, the study focuses on noise containment based approaches, i.e. compare
LNCE to EOSE. The application of DE to object segmentation is not studied as
it would require comparing different segmentation techniques, which is beyond
the scope of this paper. For this purpose we have worked in collaboration with
a radiologist at the AP-HP, Cochin hospital in Paris (France). We have consid-
ered a set composed by 10 patients, between 54 and 81 years old, having Body
Mass Index (BMI) between 20.28 and 28.93 corresponding to normal and over-
weight adults. None of the patients presents particular pathology. Therefore,
only the visibility of a set of diagnostically relevant structures of the human
skeletal apparatus has been evaluated.
In practice, the radiologist has assigned a vote to each structure that is rep-
resentative of its degree of visibility. The votes go from 0, meaning that the
structure is not visible at all, to 5, meaning that the structure is perfectly vis-
ible. Given the interest in a full body diagnosis, different anatomical regions
have been examined and the following list of structures retained:

• Frontal cervical spine (Cf ): spinous process (1), vertebral body (2),
intervertebral disc (3), zygapophyseal joint (4), transverse process (5),
pedicle (6).

• Lateral cervical spine(Cl): median atlanto axial joint (1), intervertebral
disc (2), vertebral body (3), transverse process (4), uncus (5), pedicle (6),
lamina (7), posterior interapophyseal joints (8), spinous process (9).

• Frontal thoracic spine (T f ): spinous process (1), vertebral body (2),
intervertebral disc (3), transverse process (4), costovertebral joints (5),
pedicle (6).

• Lateral thoracic spine (T l): spinous process (1), vertebral body (2),
intervertebral disc (3), transverse process (4), posterior interapophyseal
joints (5), pedicle (6).

• Frontal lumbar spine (Lf ): spinous process (1), vertebral body (2),
intervertebral disc (3), transverse process (4), pedicle (5), posterior inter-
apophyseal joints (6), sacrum (7).

• Lateral lumbar spine (Ll): spinous process (1), vertebral body (2),
intervertebral disc (3), transverse process (4), pedicle (5), posterior inter-
apophyseal joints (6), intervertebral foramina (7), lamina (8).

• Pelvis (P): sacrum (1), sacroiliac joint (2), cotyloid cavity (3), pubic
symphysis (4), hip bones (5), hip joint (6), ischium (7), femur (8).
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• Knee (K): patella (1), femoro-tibial joint (2), medial and lateral inter-
condylar tubercles (3), condyles (4), fibula (5), tibial plateau (6).

Table 6: Average votes assigned by a radiologist to anatomical structures.

Cf
1

Cf
2

Cf
3

Cf
4

Cf
5

Cf
6

EOSE 3.8 3.9 3.0 2.5 1.0 2.7
LNCE 4.5 4.4 3.5 3.1 1.5 3.2

Cl
1

Cl
2

Cl
3

Cl
4

Cl
5

Cl
6

Cl
7

Cl
8

Cl
9

EOSE 2.9 4.9 4.9 3.6 2.1 4.0 4.0 4.4 4.2
LNCE 3.6 4.9 5.0 4.3 2.7 4.3 4.1 4.6 4.6

T f
1

T f
2

T f
3

T f
4

T f
5

T f
6

EOSE 2.6 3.8 3.5 1.4 2.1 2.7
LNCE 3.3 4.6 4.2 1.9 2.9 3.7

T l
1

T l
2

T l
3

T l
4

T l
5

T l
6

EOSE 1.6 4.5 4.2 1.8 2.1 3.0
LNCE 2.2 4.8 4.4 2.1 2.8 3.7

Lf
1

Lf
2

Lf
3

Lf
4

Lf
5

Lf
6

Lf
7

EOSE 4.3 4.1 4.0 1.4 3.4 1.8 2.6
LNCE 4.8 4.6 4.0 2.1 4.3 2.3 2.8

Ll
1

Ll
2

Ll
3

Ll
4

Ll
5

Ll
6

Ll
7

Ll
8

EOSE 2.6 4.2 4.7 2.2 3.7 2.6 3.6 3.1
LNCE 3.5 4.9 4.7 2.9 4.4 3.4 3.9 3.8

P1 P2 P3 P4 P5 P6 P7 P8

EOSE 2.2 3.0 4.0 4.0 5.0 4.4 4.3 4.9
LNCE 2.4 3.9 5.0 4.6 5.0 4.9 5.0 5.0

K1 K2 K3 K4 K5 K6

EOSE 3.5 4.90 5.0 5.0 5.0 5.0
LNCE 4.1 4.90 5.0 5.0 5.0 5.0

In total, 56 structures have been taken into account. The average votes
for each structure evaluated over LNCE and EOSE are reported in Table 6.
Regional qualitative measures can be defined from these votes to derive sum-
marized evaluations. An anatomical region is considered perfectly visible as long
as all the structures therein get a vote of 5/5. Then, a percentage is assigned to
the anatomical ROI by comparing the total of the votes to the ideal optimum.
Table 7 reports the average scores and points gained by the proposed method.
These results show that the proposed method enhances the visibility of osteo-
articular structures. Note that the two algorithms have similar performances
for structures that are surrounded by thin soft tissues, e.g. the knees.

Table 7: Regional qualitative measures for each evaluated anatomical ROI.

C
f

C
l

T
f , T

l
L

f
L

l
P K

EOSE 56% 78% 54% 57% 62% 67% 80% 95%

LNCE 67% 85% 69% 67% 71% 79% 90% 97%

Gain +11 +7 +15 +10 +9 +12 +10 +2

The spine is a complex area because of the strong superposition of tissues
and the projection of a rotated 3D volume on a 2D plane. Since in all areas of
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the spine the votes of LNCE are greater than EOSE ones, the proposed method
is more appropriate in facilitating the visibility in challenging cases. However,
some objects remain difficult to see. For example, in most of the cases the
transverse process is only slightly visible (Cf

5 , T f
4 , T l

4 and Lf
4 ). Globally, about

10 points are gained with respect to EOSE in the spine. The image quality in the
pelvis improves significantly with the proposed method. Indeed, by using EOSE
the image is of good quality (80%), but LNCE renders almost a perfect image
(90%). This is due to the fact that the structures in the pelvis are quite regular
and, therefore, easy to extract with the proposed method, even if the signal is
low. The only problematic object is the sacrum (P1) because it is covered by
a lot of soft tissues. Finally, for what concerns the knee, the improvement is
negligible and only the patella (K1) is easier to delimit with LNCE. Indeed, the
score is almost perfect because the absorption is very low. Then, in this region,
it would be more interesting to compare the two algorithms in pathological cases
that, for example, concern the health of the bone tissue.

In conclusion, this diagnostic feedback highlights the value of the method,
which can hence be considered as promising for a potential use in clinical routine.

5. Conclusion

In this paper we proposed a method for improving the quality of X-ray digital
images. This method has proved to be robust to changes in the input signal
strength, patient morphotype and features of the multiple tissues that are in
the field of view. We have first adapted the classical NLM filter to digital X-ray
images and, by relying on an automatic noise level estimation, our approach
does not require manual parameter tuning. The filtered images have been used
as oracles to define non parametric noise containment maps that, when applied
in a multiscale contrast enhancement framework, allow optimizing the trade-
off between improvement of the visibility of anatomical structures and noise
reduction. A significant number of tests on both phantoms and clinical images
have shown that the proposed method is better suited than others for visual
inspection for diagnosis, even when compared to an algorithm used to process
EOS images in clinical routine.

Despite the good results, the choice of adapting the NLM for the patch-
based filter could be discussed. Indeed, recent works show that better denoising
quality can be achieved with the Non Local Bayes filter (Lebrun et al., 2013),
which currently represents the state of the art denoising algorithm. However,
this method is computationally expensive because it demands to learn twice
a local Gaussian model for each patch (Lebrun et al., 2013). Therefore, the
eventual improvement on the quality of the estimated noise containment maps
should be counterbalanced with the increase in computational load, which is
an important aspect in clinical routine. Moreover, it has been pointed out in
Section 4.4 that some structures remain very difficult to see. This is related to
the conditions of the acquisition and no major improvement could be achieved
by using more complex methods. For these reasons, future works will focus on
aspects related to the clinical evaluation rather than improving the method. For
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example, it would be interesting to quantify how much the entrance dose can be
reduced and still get an image quality convenient for diagnosis. Furthermore,
our results suggest that the approach DE could be used for applications such as
automatic segmentation or registration, but this remains to be more accurately
evaluated.
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