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Abstract

This work is devoted to the construction of new kriging-based interpolating
position-dependent subdivision schemes for data reconstruction. Their original-
ity stands in the coupling of the underlying multi-scale framework associated to
subdivision schemes with kriging theory. Thanks to an efficient stencil selection,
they allow to cope the problem of non-regular data prediction while keeping the
interesting properties of kriging operators for the quantification of prediction
errors. The proposed subdivision schemes are fully analyzed and an application
to the reconstruction of non-regular environmental data is given as well.

Key words: kriging, subdivision scheme, non-regular data prediction.

1. Introduction

Data modeling methods play a key role in the treatment of environmental
problems. The information about the phenomenon under study is often discrete
since it is provided by experimental measurements or numerical processing and
therefore, modeling (or prediction) is required. Among data modeling methods,
stochastic kriging-based approaches ([4]) are often used. Their main advantages
compared to deterministic methods stand in the possibility to quantify the pre-
cision of the prediction thanks to an underlying probabilistic model. However,
these methods usually assume that the phenomenon to predict is regular, which
is not the case in practice such as in risk analysis where reliable reconstruction
methods are crucial for the decision-making process. This paper is therefore
devoted to the design of new stochastic modeling methods that improve the
accuracy of the reconstruction of non-regular data. Contrary to classical ap-
proaches, their construction will be performed in two steps: a segmentation of
data into different zones and a local kriging-based data prediction according to
the information coming from the previous step. Taking apart the problem of

Email addresses: jean.baccou@irsn.fr (Jean Baccou),
jacques.liandrat@ec-marseille.fr (Jacques Liandrat)

Preprint submitted to Elsevier October 8, 2009



data segmentation that refers to the wide literature of edge detector, we focus
in the sequel on the construction of a new kriging-based subdivision scheme
([5]) for data prediction integrating local strategy according to the segmenta-
tion. Our work is organized as follows: Section 2 deals with the construction
of our new subdivision schemes. Convergence results are provided in Section 3.
Section 4 is devoted to applications to synthetic or real data.

2. Kriging-based position dependent prediction

In this section, we plug the kriging interpolation into the Harten’s subdivi-
sion framework ([6]).

The general Harten’s setting is a family of triplets (V j , D
j−1
j , P

j
j−1) where

j ∈ Z is a scale parameter. For each value of j, V j denotes a separable space
of approximation associated to a resolution level 2−j, D

j−1
j (resp. P

j
j−1) is

a decimation (resp. prediction) operator connecting V j to V j−1 (resp. V j−1

to V j). Usually, these two operators are constructed from the pairs (Dj , Rj)

of discretization and reconstruction operators as P
j
j−1 = DjRj−1 and D

j−1
j =

Dj−1Rj .

Since the prediction operator P
j
j−1 maps any element of V j−1 in an element

of V j , it defines a subdivision scheme ([5]) that reads ∀{f j−1
k }k∈Z,

(

P
j
j−1f

j−1
)

k
=

∑

m∈Z
a

j,k
k−2mf j−1

m . Here, {aj,k
k−2m}m∈Z, (j, k) ∈ Z

2 is called the mask of the sub-

division scheme. If it is independent of f j−1, the subdivision is said to be linear.
Moreover, one speaks about stationarity (resp. uniformity) when the mask does
not depend on j (resp. on k).

The design of prediction operators is crucial for data reconstruction. As
mentioned before, it depends on the discretization and reconstruction operators.
From now on, we assume that Dj is the sampling operator defined by (Djf)k =

f(xj
k) with x

j
k = k2−j.

Here, we propose to use kriging theory to define the reconstruction operator.
In kriging approaches ([4]), {f j

k}k∈Z are considered as realizations of a subset of
random variables {F(k2−j), k ∈ Z} coming from a random process {F(x), x ∈
D} (with D a bounded domain of IR) that reads F(x) = m(x) + δ(x), x ∈ D,
where m(x) is the deterministic mean structure of F(x) and {δ(x), x ∈ D} is a
zero-mean random process.
Kriging theory assumes that the random variables δ(x), are spatially correlated.
Under stationarity assumptions and constant deterministic mean structure of
the random process, the spatial correlation structure of {δ(x), x ∈ D} is iden-
tified to the spatial correlation of the data and is exhibited by computing the
semi-variogram, γ(h) = 1

2E((F(x + h) −F(x))2), where E denotes the mathe-
matical expectation.
Assuming for the rest of our work that the semi-variogram is identified once and
for all from the available data {f0

k}k∈Z, it is approximated by a least square fit of
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the discrete experimental semi-variogram, γexp(h) = 1
2Card(N(h))

∑

(k,l)∈N(h)(f
0
k−

f0
l )2, with N(h) = {(k, l), h−ǫ ≤ |(k−l)2−j| ≤ h+ǫ} ) and for every h such that

Card(N(h)), the cardinality of N(h), is sufficiently large. For any integerD, the
kriging-based reconstruction operator is finally defined as a piecewise interpo-
lation operator such that for all f j ∈ V j ,

Rjf
j(x) =

rj+1,2k−1−1
∑

m=−lj+1,2k−1

λ
lj+1,2k−1,rj+1,2k−1−1
j,m (x)f j

k+m, if x ∈ [(k − 1)2−j, k2−j]. (1)

The parameter lj+1,2k−1 (resp. rj+1,2k−1) denotes the number of left (resp.

right) points in the interpolating stencil associated to the interval [xj
k−1, x

j
k] such

that lj+1,2k−1+rj+1,2k−1 = D+1. The kriging weights, {λ
lj+1,2k−1,rj+1,2k−1−1
m (x)}m

are solutions of the following problem:



























Minimize the estimation variance:

E
(

∑rj+1,2k−1−1
m=−lj+1,2k−1

λ
lj+1,2k−1,rj+1,2k−1

j,m (x)
(

F((k + m)2−j) −F(x)
)2
)

for x ∈ [(k − 1)2−j, k2−j ]

under the unbiasedness constraint:

E
(

∑rj+1,2k−1−1
m=−lj+1,2k−1

λ
lj+1,2k−1,rj+1,2k−1

j,m (x)F((k + m)2−j)
)

= E (F(x)) .

(2)

The kriging-based prediction operator associated to the reconstruction (1)
is then defined for all k ∈ Z as:











f
′j+1
2k =

(

P
j+1
j f

′j
)

2k
= f

′j
k ,

f
′j+1
2k−1 =

(

P
j+1
j f

′j
)

2k−1
=
∑rj+1,2k−1−1

m=−lj+1,2k−1
λ

lj+1,2k−1,rj+1,2k−1

j,m f
′j
k+m,

(3)

where ∀k ∈ Z, f
′0
k = f0

k and {λ
lj+1,2k−1,rj+1,2k−1−1
j,m }m are the kriging weights

solution of Problem (2) when x = − 1
2 . They satisfy:













γ(0) ... γ(D2−j) 1
γ(2−j) ... γ((D − 1)2−j) 1

... ... ... 1
γ(D2−j) ... γ(0) 1

1 1 1. 0



























λ
lj+1,2k−1,rj+1,2k−1

j,−lj+1,2k−1

λ
lj+1,2k−1,rj+1,2k−1

j,−lj+1,2k−1+1

...

λ
lj+1,2k−1,rj+1,2k−1

j,rj+1,2k−1−1

µ















=













γ(l2−j − 2−(j+1))
γ((l − 1)2−j − 2−(j+1))

...

γ((r − 1)2−j + 2−(j+1))
1













, (4)

with µ the Lagrange multiplier enforcing the unbiasedness of the estimator.

System (3) appears as a subdivision scheme with the mask:
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aj,2k :

{

a
j,2k
0 = 1,

aj,2k
m = 0, m 6= 0,

, aj,2k−1 :

{

a
j,2k−1
−2m−1 = λ

lj,2k−1,rj,2k−1

j−1,m , m = −lj,2k−1, ..., rj,2k−1 − 1,

aj,2k−1
m = 0 otherwise.

Given (D, l, r) with l+ r = D+1, there are many strategies to define the couple
(lj,2k−1, rj,2k−1). Among them, one mentions the two following ones that will
be considered in this paper. The first one is lj,2k−1 = l, rj,2k−1 = r that leads to
translation-invariant stencils. The corresponding subdivision scheme is then
stationary and uniform. In the second strategy, (lj,2k−1, rj,2k−1) are functions
of an a priori defined segmentation of the real line. This leads to position-

dependent stencils and defines non-stationary and non-uniform subdivision
scheme. In this case and since our goal is the approximation of piecewise smooth
functions, we focus for the rest of the paper on the following position-dependent
stencil selection, associated to a unique segmentation point {y0}.

Definition 2.1.

Let us define for all j ∈ Z, the index kj−1 s.t. y0 ∈ [xj−1
kj−1−1, x

j−1
kj−1

]. For all j

and k such that y0 ∈ [xj−1
−l+k, x

j−1
r−1+k], we set:

• If y0 ∈ [xj
2kj−1−2, x

j
2kj−1−1[, then

{

If k < kj−1 then rj,2k−1 = kj−1 − k and lj,2k−1 = D + 1 − kj−1 + k,

If k ≥ kj−1 then rj,2k−1 = D + 1 + kj−1 − k and lj,2k−1 = k − kj−1.

• If y0 ∈ [xj
2kj−1−1, x

j
2kj−1

], then

{

If k ≤ kj−1 then rj,2k−1 = kj−1 − k and lj,2k−1 = D + 1 − kj−1 + k,

If k > kj−1 then rj,2k−1 = D + 1 + kj−1 − k and lj,2k−1 = k − kj−1.

Figures 1 displays an example of this selection rule when D = 3, l = 2 and
r = 2.

There are two main advantages of the proposed kriging-based position-
dependent prediction. Since it uses kriging, local prediction error is available.
This error depends on the local semi-variogram and on the distance between the
points involved in the kriging system. Moreover, the data segmentation allows
to specify the prediction in each zone of the domain and to take into account
the position of the point inside its zone.

3. Convergence analysis of the kriging-based subdivision scheme

We first recall the classical definition of uniform convergence for stationary
subdivision schemes ([5]).
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Y0

.  .  .

S S S S SSSSS

(b)

  (a)

Y0

S S S S S S S SS

0,43,12,22,22,2 1,3 2,2 2,2 2,2

4,03,12,22,22,2 1,3 2,2 2,2 2,2

Figure 1: Example of stencil selection associated to a unique segmentation point y0 ∈

[xj−1

kj−1−1
, x

j−1

kj−1
], Sl,r stands for the stencil with l left points and r right points. (a)

y0 ∈ [xj

2kj−1−2
, x

j

2kj−1−1
], (b) y0 ∈ [xj

2kj−1−1
, x

j

2kj−1
].

Definition 3.1.

The subdivision scheme S is said to be L∞-convergent if for any real sequence
{

f0
k

}

k∈Z
∈ V 0, there exists a continuous function f (called the limit function

associated to f0) such that: ∀ǫ, ∃J such that ∀j ≥ J, ‖ Sjf0 − f
(

.
2j

)

‖∞≤ ǫ.

In the case of position-dependent subdivision scheme, the previous definition
is slightly modified since the adaptation of the prediction around segmentation
points can lead to discontinuous limit functions. We refer to [2] for further
details.
Among the various tools available to establish the convergence of a subdivision
scheme the so called matrix formalism ([7]) has been generalized in [2] to non-
uniform schemes. In order to study the convergence of kriging-based subdivision
schemes, we propose in what follows an extension to non-stationary prediction.

3.1. General convergence results

Extending [5] and [2], it turns out to be that one can associate to a non-
stationary and non-uniform scheme, a set of refinement matrices for a translation-
invariant strategy and a set of refinement and edge matrices (due to subdivision
around segmentation points) when choosing the previously defined position-
dependent scheme. More precisely, we have:

Definition 3.2.

- For a translation-invariant subdivision, let F
j
k be the minimal set of N points

at level j that determines the values at dyadic points in the interval [k2−j, (k +
1)2−j] at level above j. For each j, the two N × N refinement matrices, A0,j

and A1,j are defined by F
j+1
2k = A0,jF

j
k and F

j+1
2k+1 = A1,jF

j
k .

- Around segmentation points, let G
j
+ (resp. G

j
−) be the set of M points at level

j that determines the corresponding set of points G
j+1
+ (resp. G

j+1
− ) in the right

(resp. left) vicinity of y0. For each j, the two M × M -edge matrices A+
2,j and

A−
2,j are defined by G

j+1
− = A−

2,jG
j
− and G

j+1
+ = A+

2,jG
j
+.
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According to [2], the subdivision scheme is then completely characterized in
the translation-invariant strategy by the set of refinement matrices {A0,j , A1,j}j∈Z.
In the position-dependent strategy, it is characterized by the two sets of refine-
ment/edge matrices {A0,j, A1,j}j∈Z/{A−

2,j, A
+
2,j}j∈Z and, for any dyadic point

x = kx2−jx (x 6= y0), by the integer Tx corresponding to the length of the
range of scales where the two successive differences, δf

j
k2j−jx

and δf
j
k2j−jx−1,

are computed mixing refinement and edge matrices (we note δfk = fk+1 − fk).

Following [5] and [2] we also introduce, for each j, A
(1)
0,j and A

(1)
1,j (resp. A

(1),−
2,j

and A
(1),+
2,j ) the refinement (resp. edge) matrices of the subdivision scheme

associated to the first difference.
The following convergence theorem then holds:

Theorem 3.1.

Translation-invariant strategy:
If there exists J and µ0 such that ∀j ≥ J ,

||Πm≤j
1

2
A(1)

ǫ,m||∞ ≤ µ0 < 1, for all ǫ ∈ {0, 1}, (5)

then the translation-invariant subdivision scheme is uniformly convergent.

Position-dependent strategy:
If there exists J, µ0 and T such that ∀j ≥ J ,

||Πm≤j
1

2
A(1)

ǫ,m||∞ ≤ µ0 < 1, for all ǫ ∈ {0, 1}, (6)

||Πm≤j
1

2
A

(1),−
2,m ||∞ ≤ µ0 < 1 , ||Πm≤j

1

2
A

(1),+
2,m ||∞ ≤ µ0 < 1, (7)

and ∀x, Tx ≤ T < ∞, then the position-dependent subdivision scheme is
uniformly convergent.

3.2. 2 examples of convergence analysis

This section is devoted to the study of the convergence of two kriging-based
subdivision schemes with parameters (3, 2, 2). They correspond to two different
identified semi-variograms that are used in the numerical tests of Section 4.

3.2.1. Exponential semi-variogram

We assume here that the semi-variogram identified from the data is of ex-
ponential type i.e γ(h) = K

(

1 − e−ah
)

(K and a > 0). In order to prove
the uniform convergence, we start by studying in the two next propositions the
asymptotical subdivision scheme obtained to the limit of large values of j. Then,
we derive the convergence result for the subdivision scheme itself.
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Proposition 3.1.

The kriging weights involved in the translation-invariant and position-dependent
subdivision schemes with an exponential semi-variogram satisfy:

(λ2,2
j,−2, λ

2,2
j,−1, λ

2,2
j,0 , λ

2,2
j,1 ) →j→+∞ (0,

1

2
,
1

2
, 0), (8)

(λ1,3
j,2 , λ

1,3
j,1 , λ

1,3
j,0 , λ

1,3
j,−1) = (λ3,1

j,−3, λ
3,1
j,−2, λ

3,1
j,−1, λ

3,1
j,0 ) →j→+∞ (0, 0,

1

2
,
1

2
), (9)

(λ0,4
j,3 , λ

0,4
j,2 , λ

0,4
j,1 , λ

0,4
j,0 ) = (λ4,0

j,−4, λ
4,0
j,−3, λ

4,0
j,−2, λ

4,0
j,−1) →j→+∞ (0, 0, 0, 1). (10)

Proof:

Here D = 3 and (r, l) ∈ {(2, 2), (3, 1), (4, 0), (1, 3), (0, 4)}. We focus on (8),
the proofs for (9)-(10) being similar.

Since we are interested in the behavior of the kriging weights when j → ∞,
one writes γ(h) = Kah + O(h2). Then, the kriging system (4) becomes:

(

Γ0
j,4 + Γ1

j,4

)

Λj = γ0
j,4 + γ1

j,4, (11)

where the matrix Γ0
j,4 (resp. Γ1

j,4) stands for the first order (resp. second
order) term with regards to h powers.

More precisely,

Γ0
j,4 =













0 a2−j 2a2−j 3a2−j 1
a2−j 0 a2−j 2a2−j 1
2a2−j a2−j 0 a2−j 1
3a2−j 2a2−j a2−j 0 1

1 1 1 1 0













, γ0
j,4 =













3
2a2−j

1
2a2−j

1
2a2−j

3
2a2−j

1













.

It is elementary to show that:

||Γ1
j,4||∞ < KΓ12−2j , and ||γ1

j,4||∞ < Kγ12−2j . (12)

The solution of (11) is then:

Λj =
(

I4 + Γ0,−1
j,4 Γ1

j,4

)−1

Γ0,−1
j,4 γ0

j,4 +
(

I4 + Γ0,−1
j,4 Γ1

j,4

)−1

Γ0,−1
j,4 γ1

j,4, (13)

where I4 is the 4×4 identity matrix. We start by expanding
(

I4 + Γ0,−1
j,4 Γ1

j,4

)−1

.

• Expansion of
(

I4 + Γ0,−1
j,4 Γ1

j,4

)−1

From a classical result of matrix calculus,

Γ0,−1
j,4 =

[

B−1
(

I3 + 11′S−111B−1
)

−B−111′S−1

−S−111B−1 S−1

]

.

7



with

B = 2−j









0 a 2a 3a

a 0 a 2a

2a a 0 a

3a 2a a 0









, 11 = (1, 1, 1, 1) and S = −11B−111′.

From these definitions, it is then straightforward that

B−1
(

I3 + 11′S−111B−1
)

= 2jM1, B−111′S−1 = V2,
(

S−111B−1
)′

= V3, S−1 = K42
−j,

where M1, V2, V3 and K4 are independent of j.
Therefore, ||Γ0,−1

j,4 ||∞ ≤ KΓ02j . Combined with (12) it gives

||Γ0,−1
j,4 Γ1

j,4||∞ ≤ KΓ0KΓ12−j, (14)

and finally, for sufficiently large j
(

I4 + Γ0,−1
j,4 Γ1

j,4

)−1

=
∑∞

i=0(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

.

Expression (13) becomes:

Λj = Γ0,−1
j,4 γ0

j,4 +

(

∞
∑

i=1

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ0

j,4 +

∞
∑

i=0

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ1

j,4

)

. (15)

Note that this step also provides the following inequalities that are useful in
the sequel:

||Γ0,−1
j,4 γ0

j,4||∞ ≤ K0, ||Γ0,−1
j,4 γ1

j,4||∞ ≤ K12
−j . (16)

Coming back to (15), in order to conclude the proof, we now show that the
norm of second second term tends to 0 when j → +∞, that the first term does
not depend on j and that its four first components are equal to (0, 1

2 , 1
2 , 0).

Let us first focus on the second term of (15). From (14) and (16), it is
straightforward that:

||

∞
∑

i=1

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ0

j,4||∞ ≤ K0

∞
∑

i=1

(KΓ0KΓ1)
i
2−ij ,

||

∞
∑

i=0

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ1

j,4||∞ ≤ K12
−j

∞
∑

i=0

(KΓ0KΓ1)
i
2−ij ,

which becomes for sufficiently large j,

8



||

∞
∑

i=1

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ0

j,4||∞ ≤ K0KΓ0KΓ1

2−j

1 − KΓ0KΓ12−j
,

||

∞
∑

i=0

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ1

j,4||∞ ≤ K1
2−j

1 − KΓ0KΓ12−j
.

Therefore

lim
j→∞

||

∞
∑

i=1

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ0

j,4 +

∞
∑

i=0

(−1)i
(

Γ0,−1
j,4 Γ1

j,4

)i

Γ0,−1
j,4 γ1

j,4||∞ = 0.

For the first term of (15), since by construction Γ0
j,4 is invertible, the vector

U is solution of Γ0
j,4U = γ0

j,4. Direct calculation gives U = (0, 1
2 , 1

2 , 0, 0), that
concludes the proof.

Using (8)-(10) one gets the following result:

Proposition 3.2.

The matrices involved in the asymptotical subdivision process are:

1) Refinement matrices:

A0 =

















0 1 0 0 0 0
0 1

2
1
2 0 0 0

0 0 1 0 0 0
0 0 1

2
1
2 0 0

0 0 0 1 0 0
0 0 0 1

2
1
2 0

















, A1 =

















0 1
2

1
2 0 0 0

0 0 1 0 0 0
0 0 1

2
1
2 0 0

0 0 0 1 0 0
0 0 0 1

2
1
2 0

0 0 0 0 1 0

















with Sp(A0) = Sp(A1) = {1, 1
2 , 0}.

2) Edge matrices: their expression depend on the dyadic decomposition of y0,

A−
2 ∈























0 1
2

1
2 0

0 0 1 0
0 0 1

2
1
2

0 0 0 1









,









0 0 1 0
0 0 1

2
1
2

0 0 0 1
0 0 0 1























, A+
2 ∈























1 0 0 0
1 0 0 0
1
2

1
2 0 0

0 1 0 0









,









1 0 0 0
1
2

1
2 0 0

0 1 0 0
0 1

2
1
2 0























.

In any case, Sp(A+
2 ) ⊂ {1, 1

2 , 0} and Sp(A−
2 ) ⊂ {1, 1

2 , 0}.

Proposition 3.2 finally leads to the convergence result.

Proposition 3.3.

The translation-invariant and position-dependent subdivision schemes of param-
eter (3, 2, 2) associated to an exponential semi-variogram are uniformly conver-
gent.
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Proof:

Following [5], the eigenvalues of 1
2A

(1)
0 and 1

2A
(1)
1 (resp. 1

2A
(1),−
2 and 1

2A
(1),+
2 )

are the eigenvalues of A0 and A1 (resp. A−
2 and A+

2 ) except λ0 = 1. Thus, from
Proposition 3.2, these eigenvalues are strictly bounded by 1. This is enough
to ensure Inequalities (5), (6) and (7) for the asymptotical subdivision scheme
and therefore for the subdivision scheme. Theorem 3.1 finally leads to the uni-
form convergence of the translation-invariant scheme but also to the position-
dependent one since the extra assumption related to the uniform bound for the
transition zone is satisfied following Proposition 2.3 of [2].

3.2.2. Gaussian semi-variogram

We assume here that the semi-variogram identified from the data is γ(h) =

K
(

1 − e−(ah)2
)

(K and a > 0). As previously, the uniform convergence is

established by first studying the asymptotical behavior of the scheme.

Proposition 3.4.

The kriging weights involved in the translation-invariant and position-dependent
subdivision schemes with a Gaussian semi-variogram satisfy:

(λ2,2
j,−2, λ

2,2
j,−1, λ

2,2
j,0 , λ

2,2
j,1 ) →j→+∞ (−

1

16
,

9

16
,

9

16
,−

1

16
),

(λ1,3
j,2 , λ

1,3
j,1 , λ

1,3
j,0 , λ

1,3
j,−1) = (λ3,1

j,−3, λ
3,1
j,−2, λ

3,1
j,−1, λ

3,1
j,0 ) →j→+∞ (

1

16
,−

5

16
,
15

16
,

5

16
),

(λ0,4
j,3 , λ

0,4
j,2 , λ

0,4
j,1 , λ

0,4
j,0 ) = (λ4,0

j,−4, λ
4,0
j,−3, λ

4,0
j,−2, λ

4,0
j,−1) →j→+∞ (−

5

16
,
21

16
,−

35

16
,
35

16
).

Proof:

The proof is the same as in the exponential case taking into account that

γ(h) = K(ah)2 − (ah)4

2 + O(h6). Note that we consider here the Taylor se-
ries up to degree 4, otherwise the matrix involved in the first order kriging
system is not invertible.

From the previous proposition, the asymptotical kriging weights correspond
to the coefficients of the mask of degree 3 Lagrange interpolating subdivision
scheme ([2]) with the same translation-invariant and position-dependent strate-
gies. This scheme has been proved to uniformly converge in [2]. As previously,
this is enough to ensure the uniform convergence for our scheme.
Convergence result for exponential and Gaussian-type subdivision schemes of
parameter (3, 2, 2) can be generalized. In a forthcoming paper, we show that
the convergence is still ensured in the case of a scheme of parameter (D, r, r)
for any (D, r) ∈ N

2 with r ≤ D.
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4. Numerical tests

This section is devoted to three numerical tests. Here, the question of the ac-
curacy of the semi-variogram identification, that refers to cross-validation tech-
niques ([4]), is not addressed even though it remains a crucial point for data
representation. We start by illustrating the capability of position-dependent
kriging-based subdivision schemes on a synthetic example. Then, we show ap-
plications to real cases.

4.1. Synthetic example

Figure 2, top, left, displays a synthetic set of data coming from a regular
sampling (∆x = 2−10) of the test function:







15000 ∗ sin(−5+20x)
−5+20x , if x ∈ Zone 1= [0; 0.5]

2500 ∗ sin(1.5∗(−5+10(x−1/2))
−5+20(x−1/2) + 300, if x ∈ Zone 2= ]0.5; 1]

Assuming that some data (cross signs) are missing, our goal is to evaluate the
capabilities of our models to accurately predict this missing information.

We provide a comparison of the results obtained with the translation invari-
ant and the position-dependent kriging-based subdivision schemes with param-
eters D = 3, l = 2, r = 2 and y0 = 0.5.

The experimental and theoretical semi-variograms for each zone (position-
dependent strategy) and for the whole data are plotted on Figure 2. They have
been obtained using the statistical software SUNSET developed at IRSN ([3]).
Note that in each case the semi-variogram exhibits a Gaussian-type structure
but with different parameters.

Figure 3 shows the predicted data while Table 1 exhibits the l2-error and
the average estimation variances.

Method l2-error Average estimation variance

TI 38.1 5.1
PD 0.08 Zone 1:7, Zone 2: 0.2

Table 1: l2-error and average estimation variance for a Translation-Invariant (TI) and a
Position-Dependent (PD) one.

These results point out two main advantages of position-dependent kriging-
based approaches:

• The position-dependent scheme outperforms the translation-invariant one
in term of prediction. According to Figure 3, it allows to remove oscilla-
tions (or Gibbs phenomenon) around segmentation point.
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Figure 2: Synthetic example. Top, left, synthetic data with missing information (cross signs).
From top, right to bottom right, experimental (star) and theoretical (continuous line) semi-

variograms for the whole data, γ(h) = 2.7(1−e
−

1

0.72
h2

), for Zone 1, γ(h) = 5.58(1−e
−

1

0.082
h2

)

and for Zone 2, γ(h) = 0.1(1 − e
−

1

0.092
h2

).

• As it can be seen in Table 1, the zone-dependent strategy drastically affects
the computation of the average estimation variance. Keeping in mind that
the estimation variance is related to an a priori prediction error, a refined
estimation of this quantity is a real improvement of the method.

4.2. Applications to environmental data

4.2.1. Rainfall measurements

Figure 4, top, left, displays the yearly rainfall measurements of the Sahelian
zone in Gouré, Niger, Africa between 1935 and 1999 (digitalized from [8]). As
in the previous example, we assume that some measurements (cross signs) are
missing. The data of Figure 4 exhibit two main behaviors which are confirmed
by analysts: a wet period before 1967 (Zone 1) and a dry period after (Zone 2)
.

Following the previous approach, we compare a global kriging prediction to a
two zone position-dependent one. Figure 4 displays a zoom of the predicted data
with the corresponding a priori prediction error (computed for each predicted

point f
′j
k as I = [f

′j
k −2σ

′j
k ; f

′j
k +2σ

′j
k ] with σ

′j
k the square root of the estimation

variance).
It appears that the position-dependent approach always leads to confidence
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Figure 3: Predicted data. Top, Predicted data (circle) and exact measurements (continuous
line) with a position-dependent (left) and translation-invariant (right) strategy. Bottom: zoom
around the segmentation point.

intervals encompassing the true value of the measurement, in opposition to what
happens with the translation-invariant strategy.

4.2.2. Simplified example of radioactive contamination mapping

We consider here a simplified example of a radio-nuclide concentration map
in a nuclear test area. The available data are given on a fixed dyadic grid of
grid step 2−4.
According to the measurements (Figure 5, top, left), high concentrations of
radio-nuclide are localized around ground zero area (i.e. where tests have been
conducted, Zone 1) whereas there is a drastic decrease in the concentration for
further measurement points (Zone 2).

Using an alternate direction strategy, a bivariate position dependent krig-
ing based prediction has been defined and used. After identifying two semi-
variograms, we provide on Figure 5 the concentration map provided by our
prediction scheme up to scale J = 6. In order to compare with translation-
invariant strategy and since using a unique semi-variogram is not satisfactory
due to strong non-regularity, we compare our scheme to the translation-invariant
Lagrange interpolating scheme classically used in subdivision process ([5], [1]).

It comes out that the removal of the Gibbs phenomenon, when performing a
position-dependent strategy avoids the unrealistic negative concentrations ob-
tained when following a translation-invariant strategy. One notes however that
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Figure 4: Rainfall measurements. Top, measurements, average rainfall for each zone and
missing data (cross signs). Bottom, zoom of the predicted rainfall measurements. Predicted
data (circle) and exact measurements (continuous line) with prediction error (vertical line):
left, position-dependent strategy, right, translation-invariant strategy.

the model provides a bigger standard deviation along the segmentation curve,
due to the extrapolation performed in the vicinity of this curve.

5. Conclusion

A new kriging-based subdivision scheme adapted to data segmentation has
been introduced and fully analyzed. It is efficient for the prediction of non-
regular data since it integrates a position-dependent mask taking into account
the information given by the segmentation. It also provides an a priori prediction
error which is relevant in risk analysis. It has been successfully applied to two
environmental problems. Further developments concern the extension of this
approach to non-dyadic and non-regular data grid point and its integration in
a complete risk analysis study.
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