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Introduction

In this paper, we will study the Dirac-Witten operator of spacelike spin submanifolds in pseudo-Riemannian manifolds. In the case of spacelike hypersurfaces in 4-dimensional spacetimes, this operator was introduced by Witten to provide a new proof of the positive mass conjecture, which was originally proved by Schoen and Yau using a geometric analysis approach [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF][START_REF] Schoen | The energy and the linear momentum of spacetimes in general relativity[END_REF][START_REF] Schoen | Proof of the positive mass theorem II[END_REF][START_REF] Witten | A new proof of the positive energy theorem[END_REF][START_REF] Parker | On Witten's proof of the positive energy theorem[END_REF]. Inspired by Witten's proof, the eigenvalues of Dirac-Witten-type operators were estimated in [START_REF] Zhang | Lower bounds for eigenvalues of hypersurface Dirac operators[END_REF][START_REF] Morel | Eigenvalue estimates for the Dirac-Schrödinger operators[END_REF][START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator, Part I. the hypersuface Dirac operator[END_REF][START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator, Part II. The submanifold Dirac operator[END_REF][START_REF] Ginoux | Eigenvalue estimates for the submanifold Dirac operator[END_REF][START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF].

We first study the eigenvalues of the Dirac-Witten operator for spacelike spin submanifolds with spin normal bundles. These could be viewed as the pseudo-Riemannian or the higher codimensional analogue of the results established in [START_REF] Hijazi | Lower bounds for the eigenvalues of the Dirac operator, Part II. The submanifold Dirac operator[END_REF][START_REF] Ginoux | Eigenvalue estimates for the submanifold Dirac operator[END_REF][START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF]. It is surprising to note that when the dimension of the normal bundle is odd, the Dirac-Witten operator has nice properties and certain interesting eigenvalue lower bounds can be established. Inspired by [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF][START_REF] Hijazi | Eigenvalue boundary problem for the Dirac operator[END_REF], we introduce a local boundary condition for this Dirac-Witten operator for submanifolds with boundary. We obtain eigenvalue lower bounds under this boundary condition when the boundary is a generalized future/past apparent horizon. Next, we study the generalized positive mass theorem for higher dimensional spacetimes with multi-time components. From [START_REF] Witten | A new proof of the positive energy theorem[END_REF], we know that the Dirac-Witten operator is closely related to the total energy and the total linear momentum 3-vector in 4dimensional spacetimes. We observe that a similar phenomenon occurs for higher dimensional spacetimes with odd number of time components, and in this case, the total linear momentum is an (n, m)-bivector. Under a generalized dominant energy condition, we close by proving the generalized positive mass theorem.

It is a purely mathematical consideration to define the generalized dominant energy condition, the generalized future/past apparent horizon, as well as the generalized total energy and total linear momentum for higher dimensional spacetimes with multi-time components. They reduce to the standard definitions in general relativity with 1-time component. There are two ways to generalize the Einstein field equations to the case of m-time components by using the tensors R ij -R 2 g ij and R ij -R m g ij respectively. However, no clear relationship can be found in the two cases relating these definitions to the energy-momentum tensor T ij .

Submanifolds and Spin Geometry

2.1. Spacelike submanifolds. Let N n+m be an (n+m)-dimensional pseudo-Riemannian manifold whose metric g has signature (1,

• • • , 1 n , -1, • • • , -1 ) m .
Let M n be an n-dimensional spacelike submanifold with the induced Riemannian metric g. Denote by ∇ and ∇ the Levi-Civita connections of N n+m and M n respectively. Throughout this paper, we will agree on the following ranges of indices:

1 ≤ α, β, • • • ≤ n + m; 1 ≤ i, j, • • • ≤ n; n + 1 ≤ A, B, • • • ≤ n + m.
The Einstein's summation notation is also used.

For any point p ∈ M n we consider an orthonormal basis {e α } of T p N n+m with e A normal and e i tangent to M n . Let {ω α } be the dual basis of {e α } so that the pseudo-Riemannian metric of N n+m is locally given by

g = n i=1 (ω i ) 2 - n+m A=n+1 (ω A ) 2 .
The connection 1-forms ω β α satisfy

∇e α = e β ⊗ ω β α .
We have

ω αβ = g αγ ω γ β = ε α ω α β , ω α = g αβ ω β = ε α ω α ,
where g αβ are the components of the metric tensor of the manifold N n+m and the ε α are given by

ε α = 1, for 1 ≤ α ≤ n, -1, for n + 1 ≤ α ≤ n + m. (1) 
Then the structure equations of N n+m are given by

dω α = -ε β ω αβ ∧ ω β , ω αβ = -ω βα , dω βα = -ε γ ω βγ ∧ ω γα + 1 2 ε γ ε δ R βαγδ ω γ ∧ ω δ .
The curvature tensor R αβγδ , the Ricci tensor R αβ and the scalar curvature R of N are given by

R(X, Y )Z = ∇ X ∇ Y Z -∇ Y ∇ X Z -∇ [X,Y ] Z, X, Y, Z ∈ Γ(T N ); R αβγδ = g( R(e γ , e δ )e β , e α ) = g αζ R ζ βγδ ; Ric(X, Y ) = ε α g( R(e α , X)Y, e α ),
R αβ = R γ αγβ = ε γ R αγβγ ; R = ε α R(e α , e α ) = g αβ R αβ = ε α ε γ R αγαγ .
The curvature tensor R ijkl , the Ricci tensor R ij and the scalar curvature R of M n can be defined in a similar way. From submanifold theory, the Gauss, the Ricci and the Codazzi equations for the spacelike submanifold M n give rise, respectively to

R ijkl = R ijkl + p Aik p Ajl -p Ail p Ajk R ABkl = R ABkl -(p Aik p Bil -p Ail p Bik ) R iAkj = p Ajik -p Aikj (2) 
where p Aij := g( ∇ i e A , e j ) are the components of the second fundamental form of M n , and p Aijk the covariant derivative of p Aij , are defined by

p Aijk ω k = dp Aij -p Akj ω ki -p Aik ω kj + p Bij ω BA .
2.2. Spin connection. Let Cl n,m be the Clifford algebra with respect to the above pseudo-Riemannian metric g. (We refer to Baum [START_REF] Baum | Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannsche Mannigfaltigkeiten[END_REF][START_REF] Baum | A remark on the spectrum of the Dirac operator on pseudo-Riemannian spin manifolds[END_REF] for a detailed algebraic constructions.) For any vector field X ∈ Γ(T N n+m ), (e α ∧ e β )X = g(e α , X)e β -g(e β , X)e α , where e α ∧ e β is the canonical basis of the Lie algebra so(n, m). The Levi-Civita connection on a pseudo-Riemannian manifold N n+m induces the connection on the principle SO(n, m)-bundle with the connection 1-form

ω = - 1 2 ε α ε β ω αβ e α ∧ e β .
The (local) spinorial connection of N n+m is lifted form the principle SO(n, m) connection as

∇ϕ = dϕ - 1 4 ε α ε β ω αβ e α e β ϕ.
Suppose that M n is a spin submanifold whose normal bundle ξ in N n+m is also spin. Denote by K the maximal compact subgroup of Spin 0 (n, m), the connected component of the spin group. Let / S be the (local) spinor bundle of N n+m .

Since the following diagram is commutative

K Ad i / / Spin 0 (n, m) Ad SO(n) × SO(m) i / / SO 0 (n, m)
the induced spinor bundle S := / S| M n is globally defined over M n . Denote also by ∇ and ∇ the spin connections on S. It is well-known [START_REF] Baum | Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannsche Mannigfaltigkeiten[END_REF][START_REF] Baum | A remark on the spectrum of the Dirac operator on pseudo-Riemannian spin manifolds[END_REF] that there exists a Hermitian inner product ( , ) on / S which is compatible with the spin (local) connection ∇. Moreover, for any vector field X ∈ Γ(T N n+m ) and spinor fields ϕ, ψ ∈ Γ(/ S), (Xϕ, ψ) = (ϕ, Xψ) locally. Note that this inner product is not positive definite and all these data are global over M n .

The above diagram also implies that, over M n , there exists a positive definite Hermitian inner product on S which is defined as

, = (ω , ) where ω = ( √ -1) m(m-1) 2 
e n+1 • • • e n+m is the complex volume element of the normal bundle over M n . Obviously ω 2 = 1 and we have ωϕ, ωψ = ϕ, ψ , which implies ωϕ, ψ = ϕ, ωψ .

Lemma 2.1. Suppose that M n is a spin submanifold whose normal bundle is also spin. Over M n , we have

(i) If m is odd, then ωe i = -e i ω, ωe A = e A ω.
Moreover,

e i ϕ, ψ = -ϕ, e i ψ , e A ϕ, ψ = ϕ, e A ψ . (ii) If m is even, then ωe i = e i ω, ωe A = -e A ω.
Moreover,

e i ϕ, ψ = ϕ, e i ψ , e A ϕ, ψ = -ϕ, e A ψ .
Defining the second fundamental form of M n by

p Aij = g( ∇ i e A , e j ) = ω jA (e i ),
we have the following spinorial Gauss formula

∇ i ϕ = ∇ i ϕ + 1 2 ω Aj (e i )e A e j ϕ = ∇ i ϕ + 1 2 p Aij e j e A ϕ.
Lemma 2.2. Suppose that M n is a spin submanifold whose normal bundle is also spin. For the normal volume element ω, we have

∇ i ω = p Aij e j e A ω.
Proof. Note that

∇ i e n+r = p n+r,ij e j - 1≤s≤m ω n+s,n+r (e i )e n+s ,
we obtain

∇ i ω = ( √ -1) m(m-1) 2 ∇ i (e n+1 • • • e n+m ) = ( √ -1) m(m-1) 2 1≤r≤m e n+1 • • • ∇ i e n+r • • • e n+m = ( √ -1) m(m-1) 2 1≤r≤m p n+r,ji (-1) r-1 e j e n+1 • • • ên+r • • • e n+m - 1≤r<s≤m ω n+s,n+r (e i )e n+1 • • • (r) e n+s • • • (s) e n+s • • • e n+m - 1≤s<r≤m ω n+s,n+r (e i )e n+1 • • • (s) e n+s • • • (r) e n+s • • • e n+m = ( √ -1) m(m-1) 2 1≤r≤m p n+r,ji (-1) r-1 e j e n+1 • • • ên+r • • • e n+m + 1≤r<s≤m (-1) s-r ω n+s,n+r (e i )e n+1 • • • ên+r • • • ên+s • • • e n+m + 1≤s<r≤m (-1) r-s ω n+s,n+r (e i )e n+1 • • • ên+s • • • ên+r • • • e n+m = ( √ -1) m(m-1) 2 1≤r≤m p n+r,ji (-1) r-1 e j e n+1 • • • ên+r • • • e n+m = p Aji e j e A ω.
Lemma 2.3. Suppose that M n is a spin submanifold whose normal bundle is also spin. The connection ∇ is compatible with , .

Proof. Since ωe j e A = -e j e A ω for any m, we obtain

e i ϕ, ψ = e i (ωϕ, ψ) = ( ∇ i ωϕ, ψ) + (ω ∇ i ϕ, ψ) + (ωϕ, ∇ i ψ) = (p Aij e j e A ωϕ, ψ) + ∇ i ϕ, ψ + 1 2 (p Aij ωe j e A ϕ, ψ) + ϕ, ∇ i ψ + 1 2 (ωϕ, p Aij e j e A ψ) = ∇ i ϕ, ψ + ϕ, ∇ i ψ .
Let N n+m be an (n + m)-dimensional pseudo-Riemannian manifold and M n an n-dimensional spin spacelike submanifold of N n+m . Suppose that the normal bundle of M n is also spin. The Dirac-Witten operator over M n is defined as

D = i e i ∇ i .
The intrinsic Dirac operator of M n acting on S is defined as

D = i e i ∇ i .
The relation between the operators D and D is given by

D = e i (∇ i + 1 2 p Aij e j e A ) = D - 1 2 P A e A
where P A = n i=1 p Aii . Proposition 2.4. Suppose that M n is a compact manifold without boundary.

(i) The Dirac operator D is formally self-adjoint with respect to the positive definite L 2 inner product M , ; (ii) The Dirac-Witten operator D is formally self-adjoint with respect to this inner product if the codimension of M n is odd.

Proof. A straightforward calculation yields

e i e i ϕ, ψ = ∇ i e i ϕ, ψ + e i ∇ i ϕ, ψ + e i ϕ, ∇ i ψ = ∇ i e i ϕ, ψ + Dϕ, ψ -ϕ, Dψ .
Define the vector field X = e i ϕ, ψ e i , then divX = g(∇ i X, e i ) = g ∇ i ( e j ϕ, ψ e j ), e i = e i e i ϕ, ψ -∇ i e i ϕ, ψ = e i e i ϕ, ψ -∇ i e i ϕ, ψ .

Therefore the Dirac operator D is formally self-adjoint. By the relation between D and D, it follows

divX = Dϕ, ψ -ϕ, Dψ + P A 2 e A ϕ, ψ - P A 2 ϕ, e A ψ .
For m odd, the sum of the last two terms vanishes, which implies that D is formally self-adjoint. Now we derive the following Weitzenböck type formula.

Theorem 2.5. If the codimension of M n is odd, then

D 2 = ∇ * ∇ + 1 4 i,j R ijij - 1 2 i,j,A R ijAj e i e A + 1 4 {α,β} ={i,A};α<β R iAαβ e i e A e α e β , (3) 
where ∇ * j = -∇ j + p Aij e i e A ϕ is the formal adjoint of ∇.

Proof. It is straightforward that 

D 2 ϕ =e i ∇ i (e j ∇ j ϕ) =e i ∇ i e j ∇ j ϕ + e i e j ∇ i ∇ j ϕ =p Aij e i e A ∇ j ϕ + 1 2 e i e j ( ∇ i ∇ j -∇ j ∇ i )ϕ -∇ i ∇ i ϕ = ∇ * ∇ϕ - 1 8 R ijαβ e i e
= ∇ * ∇ϕ + 1 4 R iβiβ g ii g ββ ϕ - 1 4 R iβAβ e i e A g ββ ϕ - 1 8 R iAiA g AA g ii ϕ - 1 4 R iAij e A e j g ii ϕ - 1 8 R BiBi g ii g BB ϕ - 1 4 R BiBA e i e A g BB ϕ + 1 8 {α,β} ={i,A} R iAαβ e i e A e α e β ϕ = ∇ * ∇ϕ + 1 4 i,j R ijij ϕ - 1 2 i,j,A R ijAj e i e A ϕ + 1 4 
{α,β} ={i,A};α<β R iAαβ e i e A e α e β ϕ.

Gauss and Codazzi equations (2) imply

i,j

R ijij = µ, j R ijAj = ̟ iA where µ = 1 2 R + (Tr p A ) 2 -|p A | 2 , ̟ iA = ∇ j p Aji -∇ i Tr p A .
Therefore (3) can be written as

D 2 = ∇ * ∇ + 1 2 µ - i,A
̟ iA e i e A + 1 4

{α,β} ={i,A};α<β

R iAαβ e i e A e α e β . (4) 
We say that M n satisfies the generalized dominant energy condition if

µ ≥ U := i,A ̟ 2 iA + 1 2 {α,β} ={i,A};α<β R 2 iAαβ . (5) 
Theorem 2.6. Let M n be a compact spacelike spin submanifold of a pseudo-Riemannian manifold N n+m . Suppose that the normal bundle of M n is spin and odd-dimensional. Let λ be any eigenvalue of the Dirac-Witten operator D with a corresponding eigenspinor φ. If the generalized dominant energy condition (5) holds, then

λ 2 ≥ n 2(n -1) inf M µ -U . (6) 
Proof. Note that (4) gives

M | Dϕ| 2 ≥ M | ∇ϕ| 2 + 1 2 (µ -U ) |ϕ| 2 . ( 7 
)
Define the modified connection [10]

∇ λ i = ∇ i + λ n e i .
For the eigenspinor ϕ corresponding to the eigenvalue λ, we have

| ∇ λ ϕ| 2 = | ∇ϕ| 2 - λ 2 n |ϕ| 2 .
This together with (7) implies [START_REF] Baum | A remark on the spectrum of the Dirac operator on pseudo-Riemannian spin manifolds[END_REF]. If equality holds, then [START_REF] Booß-Bavnvek | Elliptic boundatry problems for Dirac operators[END_REF] implies that ∇ λ ϕ = 0 and µ -U is a non-negative constant.

Boundary value problems

Let F be a Hermitian vector bundle over a Riemannian manifold M n with nonempty boundary Σ and let D be a first order elliptic operator acting on the vector bundle F . An elliptic boundary condition for D can be defined as follows.

The Calderón projector is defined as

P + (D) : H 1 2 (F | Σ ) -→ ψ| Σ : ψ ∈ H 1 (F )
, Dψ = 0 where H s is the Sobolev space. It is well known that P + (D) is a pseudodifferential operator of order zero. Although the Calderón projector is not unique, its principal symbol p + (D) is uniquely determined by the principal symbol σ

D p + (D)(u) = - 1 2π √ -1 Γ (σ D (ν)) -1 σ D (u) -ζI -1 dζ (8) 
for any point p ∈ Σ and u ∈ T p Σ, where ν is the inner unit normal along the boundary Σ and Γ is any simple closed contour oriented clockwise and enclosing all poles of the integrand in ℑζ < 0. Then, an elliptic boundary condition can be defined in terms of p + (D) [START_REF] Seeley | Complex powers of an elliptic operator[END_REF][START_REF] Booß-Bavnvek | Elliptic boundatry problems for Dirac operators[END_REF]. We refer to [START_REF] Bartnik | Boundary value problems for Dirac-type equations[END_REF][START_REF] Ballmann | Regularity and index theory for Dirac-Schrödinger systems with Lipschitz coefficients[END_REF] for the general discussion of the boundary value problems for Dirac-type operators.

Definition 3.1. A pseudo-differential operator

B : L 2 (F | Σ ) -→ L 2 (V )
where V -→ Σ is a complex vector bundle over the boundary, is called a (global) elliptic boundary condition if its principal symbol

b : T Σ -→ Hom C (F | Σ , V ) satisfies, for any non-trivial u ∈ T p Σ, p ∈ Σ, that the restriction b(u)| Image p + (D)(u) : Image p + (D)(u) ⊂ F p -→ V p is an isomorphism onto the image b(u) ⊂ V p . Moreover, if rank V = dim Image p + (D)(u)
, we say that B is a local elliptic boundary condition.

In this case we say that

Dψ = χ in M n , Bψ| Σ = φ on Σ (EBP)
is an elliptic boundary problem. An elliptic boundary problem such as (EBP) has a solution ψ ∈ H 1 (F ) for any pair (χ, φ) in a subspace of L 2 (F )× H 1/2 (V ) of finite codimension. Moreover, this solution is unique up to a finite-dimensional kernel, i.e., (EBP) is of Fredholm type. Now we use the argument in [START_REF] Hijazi | Conformal lower bounds for the Dirac operator of embedded hypersurfaces[END_REF][START_REF] Hijazi | Eigenvalue boundary problem for the Dirac operator[END_REF] to study an elliptic boundary problem on the spinor bundle. Let M n be a compact spacelike spin submanifold of pseudo-Riemannian manifold N n+m with spin normal bundle. Suppose M n has a nonempty boundary Σ endowed with an induced Riemannian and spin structures. For any p ∈ Σ, we choose the orthonormal basis {e α } n+m α=1 such that e i (1 ≤ i ≤ n) tangent to M n with e n the outer normal to the boundary Σ, e a (1 ≤ a ≤ n -1) tangent to Σ and as before e A (n + 1 ≤ A ≤ n + m) normal to M n . Denote the boundary projection operator by 

B ± = 1 2 (I ± e n ω) .
Dψ = λψ, in M n , B ± ψ| Σ = 0, on Σ (9)
is elliptic. Moreover, (9) has a discrete spectrum with finite dimensional eigenspaces consisting of smooth spinor fields, unless it is the whole complex plane.

Proof. Without loss of generality, we prove the theorem only for the boundary operator B + . Obviously, the symbol of the Dirac-Witten operator can be calculated by

σ D (v) = √ -1v, ∀ v ∈ T M n .
By ( 8), the principal symbol p + ( D) of the Calderón projector of the Dirac-Witten operator is given by

p + ( D)(u) = - 1 2|u| √ -1(-e n )u -|u|I , for u ∈ T Σ.
¿From Proposition 1 in [START_REF] Hijazi | Eigenvalue boundary problem for the Dirac operator[END_REF], we have

Image p + ( D)(u) = ψ ∈ S : √ -1(-e n )uψ = -|u|ψ , dim Imagep + ( D)(u) = 1 2 dim S.
Since the eigenspaces of e n ω corresponding to the eigenvalues 1 and -1 are interchanged by e n , we have

rank V = 1 2 dim S. (10) 
Since B + is a pseudo-differential operator of order zero, its principal symbol b + (u), on each vector u ∈ T Σ, coincides with the operator itself, that is,

b + (u) = 1 2 (I + e n ω), ∀ u ∈ T Σ. If b + (u)ϕ = 0, i.e. e n ωϕ = -ϕ, then √ -1e n uϕ = - √ -1e n u(e n ω)ϕ = e n ω( √ -1e n ωϕ).
This implies that √ -1e n uϕ belongs to the positive eigenspace of e n ω. Therefore,

Ker b + (u) ∩ Image p + ( D)(u) = {0}. ( 11 
)
¿From ( 10) and ( 11), the elliptic boundary condition for the pseudo-differential operator B + are satisfied by Proposition 1 in [START_REF] Hijazi | Eigenvalue boundary problem for the Dirac operator[END_REF]. The remaining assertions on eigenvalues and eigenspaces are straightforward (see [START_REF] Booß-Bavnvek | Elliptic boundatry problems for Dirac operators[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators III[END_REF]).

For any point p ∈ Σ and an orthonormal basis {e i } of T p M n with e n the outward normal to Σ and e a tangent to Σ for 1 ≤ a ≤ n -1. Let

h ab = g(∇ a e n , e b )
be the components of the second fundamental form of Σ. Let H = n-1 a=1 h aa be its mean curvature.

Denote by ∇ the lift of the Levi-Civita connection of Σ to the spinor bundle S| Σ . Then the spinorial Gauss formula is given by

∇ a = ∇ a + 1 2 h ab e n e b .
The Dirac operator D of Σ acting on S| Σ is defined as

D = e a ∇ a .
A straightforward calculation yields the connection ∇ is also compatible with the Hermitian metric , on the spinor bundle over the boundary Σ. Moreover,

∇ a = ∇ a + 1 2 h ab e n e b + 1 2
p Aaj e j e A .

Lemma 3.2. The following identities hold

∇ a (e n ϕ) = e n ∇ a ϕ, ∇ a (e A ϕ) = e A ∇ a ϕ.
Proof. where B ± = 1 2 (I ± e n ω) are the projection operators acting on the spinor bundle S.

∇ a (e n ϕ) = ∇ a - 1 2 h ab e n e b (e n ϕ) = ∇ a (e n ϕ) - 1 
Proof. ¿From Lemma 3.2, we get Denote by P = Tr (p A | Σ )e A the restriction of the mean curvature vector on Σ. Then Σ is a generalized future/past apparent horizon if

e n DB ± ϕ = 1 2 e n D(ϕ ± e n ωϕ) = 1 2 e n Dϕ ± 1 
H ∓ P ω ≥ 0 ( 13 
)
on Σ as an endomorphism over S. The physical explanation of this definition relies on the behavior of null geodesics in this case. This will be examined elsewhere.

Theorem 3.5. Let M n be a compact spacelike spin submanifold of a pseudo-Riemannian manifold N n+m . Suppose that the normal bundle of M is spin and m is odd. Let λ be an eigenvalue of the Dirac-Witten operator with a corresponding spinor ϕ. If M n has a nonempty boundary Σ which is a future or past apparent horizon, and the generalized dominant energy condition (5) holds, then, under the local boundary condition B -ϕ = 0 for future apparent horizon, or B + ϕ = 0 for past apparent horizon, we have

λ 2 ≥ n 2(n -1) inf M µ -U . ( 14 
)
Proof. For the local boundary condition, we have The theorem follows by using the modified connection ∇ λ i = ∇ i + λ n e i . Remark 3.1. If m = 1, Theorem 2.6 and Theorem 3.5 reduce to the main estimates in [START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF]. We can also apply the conformal methods in [START_REF] Hijazi | A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors[END_REF][START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF] to estimate the eigenvalues of the submanifold Dirac-Witten operator. Recall, in the case where m = 1 [START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF], the Einstein tensors of the conformal metric

g = f 4 n-2 g with f > 0, df (e n ) = 0 satisfy T nn = T nn + 2(n -1) n -2 f -1 △f, T an = T an + (n -1)h b a ∇ b u
where f 4 n-2 = e 2u (The authors would like to thank Daniel Maerten who pointed out an error in [START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF] where the term h b a ∇ b u was missing in the second above formula). For an eigenspinor φ, we define T a φ = φ, e n e a φ /|φ| 2 on the complement of the zero's set of φ, and by zero on its zero set. Let

L φ = 4(n -1) n -2 △ + T a φ h b a ∇ b + 2 T nn - a T 2 an .
Then the operator L should be replaced by L φ in Theorem 3 and Theorem 6 in [START_REF] Hijazi | The Dirac-Witten operator on spacelike hypersurfaces[END_REF] (It would be interesting to discuss other types of boundary conditions [START_REF] Hijazi | Eigenvalues of the Dirac operator on manifolds with boundary[END_REF][START_REF] Hijazi | Eigenvalue boundary problem for the Dirac operator[END_REF][START_REF] Chen | Eigenvalue estimates for the Dirac operator with generalized APS boundary condition[END_REF] and to generalize these results to the case m > 1).

Application to gravity

The Dirac-Witten operator is closely related to the total energy-momentum of spacetimes [START_REF] Witten | A new proof of the positive energy theorem[END_REF]. A similar result is generalized to 5-dimensional spacetime N 4+1 [START_REF] Zhang | Positive mass conjecture for five-dimensional Lorentzian manifolds[END_REF][START_REF] Zhang | Positive mass theorem for hypersurface in 5-dimensional Lorentzian manifolds[END_REF], and to arbitary higher dimensional spacetime N n+1 [START_REF] Ding | Positive mass theorems for higher dimensional Lorentzian manifolds[END_REF]. It is hence natural to study the Dirac-Witten operator in the set-up of pseudo-Riemannian manifolds N n+m with m ≥ 1.

Let N n+m be a pseudo-Riemannian manifold. Let M n be a spacelike submanifold of N n+m with the induced Riemannian metric denoted by g (instead of g for simplicity) and second fundamental form p A . An initial data set (M, g, p A ) is asymptotically flat if there is a compact set K such that M \ K is the disjoint union of a finite number of subsets M 1 , • • • , M l -called the "ends" of M -each diffeomorphic to R n \ B n r , where B n r is the closed ball of radius r with center at the coordinate origin. In each end, g and p A satisfy, as r → ∞,

g ij = δ ij + O 1 r n-2 , ∂ k g ij = O 1 r n-1 , ∂ l ∂ k g ij = O 1 r n , p Aij = O 1 r n-1 , ∂ k p Aij = O 1
r n where {x i } are the Euclidean coordinates of R n . Moreover, the scalar curvature R of M is assumed to be in L 1 (M ).

The ADM total energy E l and the generalized total linear momentum P lkA of the end M l are defined as follows is the sphere of radius r in the end and S n-1 is the unit sphere in the n-dimensional Euclidean space. The generalized total linear momentum P l of the end M l is actually a map from R n × R m to R, with the components P lkA where 1 ≤ k ≤ n, n + 1 ≤ A ≤ n + m. It is therefore a bi-vector. Now we can prove the following generalized positive mass theorem. Theorem 4.1. Let M n be a compact spacelike spin submanifold of a pseudo-Riemannian manifold N n+m , which has possibly finite number of generalized future/past apparent horizons Σ i . Suppose that the normal bundle of M is spin and m is odd. If the generalized dominant energy condition (5) holds, then

E l ≥ k,A P 2 lkA . ( 15 
)
That E l 0 = 0 for some end M l 0 implies that M has only one end and R ijαβ = 0 over M .

Proof. Let φ be any constant spinor on the flat space R n+m with unit norm under the positive definite spinor inner product. Then we can solve the boundary value problem for the Dirac-Witten operator on M using the same argument as that in [START_REF] Witten | A new proof of the positive energy theorem[END_REF][START_REF] Parker | On Witten's proof of the positive energy theorem[END_REF][START_REF] Bartnik | The mass of an asymptotically flat manifold[END_REF][START_REF] Zhang | Positive mass conjecture for five-dimensional Lorentzian manifolds[END_REF][START_REF] Zhang | Angular momentum and positive mass theorem[END_REF][START_REF] Zhang | Positive mass theorem for hypersurface in 5-dimensional Lorentzian manifolds[END_REF][START_REF] Ding | Positive mass theorems for higher dimensional Lorentzian manifolds[END_REF]. Let ϕ be such a solution with the boundary value φ at infinity on the end M l , and zero at infinity on the other ends. Denote ∂ α by ȇα . The formula [START_REF] Bartnik | Boundary value problems for Dirac-type equations[END_REF] Then [START_REF] Hijazi | Conformal lower bounds for the Dirac operator of embedded hypersurfaces[END_REF] follows by choosing φ such that P lkA ȇk ȇA φ =k,A P 2 lkA φ. If E l 0 = 0, then for any constant spinor φ, we have ∇ i ϕ = 0 for solution of the Dirac-Witten equation with the boundary value φ at infinity on the end M l 0 , and zero at infinity on the other ends. This implies that M has only one end and R ijαβ = 0 over M . of China (grants 10725105, 10731080, 11021091) and Chinese Academy of Sciences is gratefully acknowledged.

Proposition 3 . 1 .

 31 If m is odd, then the following boundary problem for the Dirac-Witten operator

2 h 2 h 2 h ab e n e b ϕ - 1 2 h 2 h ab e n e b - 1 2 p 2 p 2 h ab e n e b + 1 2 pe j e B ϕ - 1 2 h ab e n e b e A ϕ - 1 2 pLemma 3 . 3 .

 222222222233 ab e n e b e n ϕ = ∇ a e n ϕ + e n ∇ a ϕ -1 ab e b ϕ = h ab e b ϕ + e n ∇ a + 1 a be b ϕ = e n ∇ a ϕ. ∇ a (e A ϕ) = ∇ a -1 Baj e j e B (e A ϕ) = ∇ a (e A ϕ) -1 2 h ab e n e b e A ϕ -1 Baj e j e B e A ϕ = p Aaj e j ϕ + e A ∇ a + 1 Baj Baj e j e B e A ϕ = e A ∇ a ϕ. The Dirac operator acting on the spinor bundle S and the local boundary condition satisfy the following relations e n DB ± = B ∓ e n D, e A e a B ± = B ∓ e A e a .

Σ e n p

 n Dϕ, ϕ = 0, Σ Aan e A e a ϕ, ϕ = 0.

  g ij -∂ i g jj ) * dx i , P lkA = 1 2Vol(S n-1 ) lim r→∞ S n-1 r (p Aki -δ ki h Ajj ) * dx i ,where S n-1 r

  j e α e β ϕ = ∇ * ∇ϕ -1 8 γ =α =β R iγαβ e i e γ e α e β ϕ -1 8 R iααβ e i e α e α e β ϕ

	-	1 8	R

iβαβ e i e β e α e β ϕ + 1 8 R iAαβ e i e A e α e β ϕ = ∇ * ∇ϕ -1 4 R iβαβ e i e α g ββ ϕ + 1 8 R iAiβ e i e A e i e β ϕ + 1 8 R iAAβ e i e A e A e β ϕ + 1 8 {α,β} ={i,A} R iAαβ e i e A e α e β ϕ = ∇ * ∇ϕ -1 4 R iβαβ e i e α g ββ ϕ -1 8 R iAiβ e A e β g ii ϕ + 1 8 R BiBβ e i e β g BB ϕ + 1 8 {α,β} ={i,A} R iAαβ e i e A e α e β ϕ

  Lemma 3.4. Let M n be a compact spacelike spin submanifold of a pseudo-Riemannian manifold N n+m . Suppose that the normal bundle of M is spin and m is odd. Let D be the Dirac-Witten operator on the spinor bundle over M . DenoteR M = µ -̟ iA e i e A + 12{α,β} ={i,A};α<β R iAαβ e i e A e α e β . Aan e A e a ϕ, ϕ .

	Thus							
		M	| Dϕ| 2 -	1 2	R M ϕ, ϕ -| ∇ϕ| 2
			= -= -= -= -= -+	2 1 2 ∇ n ϕ + e n e i ∇ i ϕ, ϕ = 1 2 e n Dϕ ± ∇ n ϕ + e n Dϕ, ϕ = 1 2 e n Dϕ ± 1 2 = 1 2 e n Dϕ ± 1 2 e n e a ∇ a ϕ, ϕ = 1 2 e n Dϕ ± 1 2 e n e a (∇ a + 1 2 h ab e n e b + e n D(e n ωϕ) e n e a ∇ a (e n ωϕ) e n e a e n ∇ a (ωϕ) e n e a e n ω∇ a ϕ 1 p Aaj e j e A )ϕ, ϕ 2 e n ωe a e n ∇ a ϕ = 1 2 e n Dϕ ∓ 1 2 1 2 e A e a ϕ ± 1 2 e A e a e n ωϕ (e n D -1 2 H)ϕ, ϕ -1 2 Σ Tr (p A | Σ )e A e n ϕ, ϕ e n ωe = 2 Σ Σ Σ Σ Σ Σ 1 p
						=	1 2	(e (12)
	If M n has a nonempty boundary Σ, then
	Σ	e n Dϕ, ϕ -	H 2	ϕ, ϕ +	Tr (p A | Σ ) 2	e A e n ϕ, ϕ -	p Aan 2	e A e a ϕ, ϕ

n Dϕ = B ∓ e n Dϕ and e A e a B ± ϕ = 1 2 e A e a (ϕ ± e n ωϕ) A e a ϕ ∓ e n ωe A e a ϕ) = B ∓ e A e a ϕ.

  Ajk ȇi ȇj ȇk ȇA φ * dx i Aik -δ ik p Ajj ) ȇk ȇA φ * dx i =4E l + 4 φ, P lkA ȇk ȇA φ .

	S n-1 ∞	φ,	i =j	ȇi ȇj ∇ j φ * dx i
	=4E l + p =4E l + S n-1 ∞ ϕ, 1 2 i =j S n-1 ∞ ϕ, 1 2 (p

implies that M | ∇ϕ| 2 ≤
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