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A SPINORIAL CHARACTERIZATION OF
HYPERSPHERES

OUSSAMA HIJAZI AND SEBASTIÁN MONTIEL

Abstract. Let M be a compact orientable n-dimensional hyper-
surface, with nowhere vanishing mean curvature H, immersed in
a Riemannian spin manifold M admitting a non trivial parallel
spinor field. Then the first eigenvalue λ1(DH

M ) (with the lowest
absolute value) of the Dirac operator DH

M corresponding to the
conformal metric 〈 , 〉H = H2 〈 , 〉, where 〈 , 〉 is the induced met-
ric on M , satisfies

∣∣λ1(DH
M )
∣∣ ≤ n

2 . By applying the Bourguignon-
Gauduchon first variational formula, we obtain a necessary condi-
tion for

∣∣λ1(DH
M )
∣∣ = n

2 . As a consequence, we prove that round
hyperspheres are the only hypersurfaces of the Euclidean space
satisfying the equality in the Bär inequality

λ1(DM )2 ≤ n2

4vol(M)

∫
M

H2 dV,

where DM stands now for the Dirac operator of the induced metric.

Dédié à Jean Pierre Bourguignon en témoignage de notre reconnaissance et amitié.

1. Introduction and setting of the problem

Since the seventies intensive research has been done on the spectral
properties of submanifolds of Riemannian manifolds. These spectral
properties are usually referred to the scalar Laplace operator associ-
ated with the metric on the submanifold induced from the Riemannian
structure of the ambient space. They mainly deal with two classes of
problems. First, to get information on the spectrum of the Laplacian
of a compact submanifold M immersed in a given Riemannian am-
bient space M , which is almost always a Riemannian manifold with a
well-behaved curvature: the Euclidean space, the sphere, the projective
space and other symmetric spaces. One looks for information given in
terms of the extrinsic geometry of the submanifold, that is, in terms of
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its second fundamental form, its mean curvature, etc. From a physical
point of view, one tries to know the relation between the pure sounds
given off by the submanifold and the way in which it is immersed into
the ambient space (see [K, GWW]). Secondly, to characterize some dis-
tinguished submanifolds (with a more symmetric geometry or second
fundamental form) by a limiting behaviour of their eigenvalues, their
multiplicities or their eigenfunctions.

To be precise, we shall recall one example of such results which is
significant for the problem we shall consider in this paper. It was proved
by Bleecker and Weiner in 1977 and, under a different form, by Reilly
in [Re] and by Chen in [Ch]. Even though a suitable version remains
to be true for arbitrary codimension, for the sake of simplicity we shall
only refer to the case of hypersurfaces:

Theorem 1 ([BlW, Ch, Re]). The first non-zero eigenvalue of the
Laplacian ∆ acting on functions, of a compact hypersurface M im-
mersed into the Euclidean space Rn+1, satisfies the following inequality

λ1(∆) ≤ n

vol(M)

∫
M

H2 dV,

where vol(M) is the volume of the submanifold and H denotes its mean
curvature function. Equality occurs if and only if the hypersurface is a
(round) hypersphere.

This theorem can be obtained as an application of the following
straightforward consequence of the Rayleigh variational characteriza-
tion of λ1(∆): ∫

M

(∆f)2 dV − λ1(∆)

∫
M

|∇f |2 dV ≥ 0,

inequality which is valid for each smooth function f (not necessarily
orthogonal to constants) on any compact Riemannian manifold M , and
where equality holds only when, up to a constant, f is an eigenfunction
associated with λ1(∆), that is, only when

∆f = −λ1(∆)(f − c)
for a certain c ∈ R. In fact, take as a test function f in the previous
inequality the position vector function F : M → Rn+1 of the immersion
of the hypersurface M into Rn+1, which is a vector valued function, and
recall that, in this case,

∆F = nHN and |∇F |2 = n,

where N is a unit vector field normal to M and H the mean curvature
function (associated with this choice of N).



A SPINORIAL CHARACTERIZATION OF HYPERSPHERES 3

From the above, if equality holds for a given immersion, then

nHN = ∆F = −λ1(∆)(F − F0),

where F0 ∈ Rn+1 is the center of mass of the hypersurface. Since λ1(∆)
is non-zero, we deduce that the point F0 lies on all the normal lines of
M . As M is compact, then M is a hypersphere.

In the last years, some geometers of Submanifold Theory have been
led to study diverse Dirac operators which naturally arise from the
extrinsic geometry of surfaces, and some Riemannian geometers spe-
cialized in Spin Geometry have started to consider particular features of
the Dirac operator on submanifolds (see [Am1, Am2, AF, Bä3, BFLPP,
HMZ1, HMZ2, HMZ3, FLPP, T] and references therein). Their goal
is just to examine the relation between the spectral properties of the
classical Dirac operator and the geometry of submanifolds, particu-
larly hypersurfaces, in the sense of the previous quoted results for the
Laplacian.

In this direction, suppose that the manifold M is now an orientable
hypersurface immersed in an (n+1)-dimensional Riemannian manifold
M which is spin (and this is the case for the most common ambient
spaces in Submanifold Theory). Then it follows that M inherits an
induced spin structure and so we shall have also on M the spinor bun-
dle SM and the Dirac operator DM (see [BFGK, BHMM, LM]). This
is the case, for example, when the ambient space M is Rn+1. More-
over, the spin structure of Rn+1 is very special. Indeed, Euclidean
spaces, Calabi-Yau manifolds, hyper-Kähler manifolds, some other 8-
and 7-dimensional special Riemannian manifolds, and their Riemann-
ian products are the only simply connected examples of Riemannian
spin manifolds admitting non-trivial parallel spinor fields (see [Wa1]).

Let ψ be such a parallel spinor field on Rn+1, that we can choose with
unit constant length. Denote by the same symbol its restriction to the
hypersurface M which is a section of SM . In a way similar to that
of Bleecker and Weiner, Bär used this spinor field ψ as a test spinor
in the variational characterization (Rayleigh quotient) of the lowest
eigenvalues of the Dirac operator DM of M , namely∫

M

|DMϕ|2 dV − λ1(DM)2
∫
M

|ϕ|2 dV ≥ 0,

where λ1(DM) is the eigenvalue of DM with the lowest absolute value
and ϕ ∈ Γ(SM) is any spinor field on M . From this inequality, since

DMψ = ±n
2
Hψ and |ψ|2 = 1,
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we obtain the Bär inequality which can be seen as the analogue for the
Dirac operator to the inequality for the scalar Laplacian obtained by
Bleecker and Weiner (see [Gi, Chapter 5]).

Theorem 2 ([Bä3]). Let M be a compact orientable hypersurface im-
mersed into the Euclidean space Rn+1 and let λ1(DM) be the first eigen-
value (with the least absolute value) of the induced Dirac operator DM

of M . Then

λ1(DM)2 ≤ n2

4 vol(M)

∫
M

H2 dV.(1)

As we have seen, in the case of the Laplacian, Bleecker and Weiner
had no difficulty to show that the equality is achieved only by round
spheres. Yet in the case of the Dirac operator, it is an open problem
to know when equality holds in the Bär inequality. Indeed, equality
immediately implies that the test spinor field ψ must be an eigenspinor
for D2

M . It is easy to see that this fact forces the mean curvature H to
be constant.

But this is not enough to get further information, except in the case
where the hypersurface M is embedded, that is, when we can ensure
that it has no self-intersections. In this case, we can apply the well-
known Alexandrov theorem (proved in 1962, see [Al]): Any compact
hypersurface embedded in the Euclidean space with constant mean cur-
vature must be a hypersphere. Because of this result, during the sixties
and seventies of the last century, most of the geometers of submanifolds
thought that perhaps the spheres were the only hypersurfaces immersed
into the Euclidean space with constant mean curvature (see [Ho]). But
since 1983, many examples of this class of hypersurfaces which are not
round spheres, have been constructed by Hsiang, Ten and Yu [HTY],
when the dimension of the ambient space is even, and by Wente [We]
and Kapouleas [Ka1, Ka2] in the three-dimensional space (in this case,
necessarily with genus greater than one, see again [Ho]).

In short, if equality holds in Inequality (1), the mean curvature H
of the hypersurface M is constant and so, as pointed out before, the
restriction of the parallel spinor field ψ is an eigenspinor of the Dirac
operator DM corresponding to one of the eigenvalues ±n

2
H and this

eigenvalue must be the eigenvalue of DM with the least absolute value.
So an interesting question is: As for the scalar Laplacian, is it true
that only hyperspheres satisfy equality in the Bär Inequality (1), even
in the general immersed case?

As we have just observed, since the problem of determining the hy-
persurfaces of the Euclidean space attaining the equality in Inequality
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(1) is equivalent to the problem of characterizing constant mean cur-
vature hypersurfaces of Rn+1 satisfying |λ1(DM)| = n

2
|H|, the question

considered in this paper can be viewed as the spinorial version of a
well-known problem posed by Yau and Ogiue for the scalar Laplacian
on minimal hypersurfaces of the sphere (see [Y, O]): the determination
of the so-called minimal surfaces of the sphere immersed by first eigen-
functions, that is, those minimal hypersurfaces of the sphere for which
their dimension (which is always an eigenvalue of the scalar Laplacian)
is exactly the first non-zero eigenvalue of the Laplacian. This is why
we will also refer to the hypersurfaces attaining the equality in (1), as
constant mean curvature hypersurfaces immersed by first eigenspinors.

We shall give some answers to these questions. Indeed, first we shall
prove the following theorem:

Theorem 3. Let M be a compact hypersurface immersed in the Eu-
clidean space Rn+1 with constant mean curvature H. It is known (see
[Bä3, BFGK, Bu]) that both real numbers ±n

2
H are eigenvalues of the

induced Dirac operator DM . If the multiplicity mult (±n
2
H) of any of

them satisfies

multDM (±n
2
H) < 2[n2 ]+1,

then we have exactly

multDM (±n
2
H) = 2[n2 ]

for both of them and M must be a round hypersphere.

As a consequence, we shall deduce our main result:

Theorem 4. Under the conditions of Theorem 2, equality holds in the
Bär Inequality (1) if and only if M is a round hypersphere. That is, the
only compact constant mean curvature hypersurfaces of the Euclidean
space immersed by first eigenspinors are hyperspheres.

2. Preliminaries on spin manifolds

Let (M, 〈 , 〉) be an (n + 1)-dimensional Riemannian spin manifold
and denote by ∇ the Levi-Civita connection on its tangent bundle TM .
We choose a spin structure on M and consider the corresponding spinor

bundle SM , a rank 2[n+1
2 ] complex vector bundle which depends not

only on the chosen spin structure but also on the Riemannian metric
on M . Denote by γ the Clifford multiplication

(2) γ : C`(M) −→ End(SM)
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which is a fibre preserving algebra morphism. Then SM becomes a
bundle of complex left modules over the Clifford bundle C`(M). When
(n+ 1) is even, the spinor bundle splits into

(3) SM = SM+ ⊕ SM−
,

where SM±
are the ±1-eigenspaces of the endomorphism γ(ωn+1), with

ωn+1 = i[
n+2
2 ]e1 · e2 · · · en+1, the complex volume form.

On the spinor bundle SM , one has (see [LM]) a natural Hermit-
ian metric, denoted as the Riemannian metric on M by 〈 , 〉, and
the spinorial Levi-Civita connection ∇ acting on spinor fields. The
Hermitian metric and the connection are compatible with the Clifford
multiplication (2) and compatible with each other. That is

X〈ψ, ϕ〉 = 〈∇Xψ, ϕ〉+ 〈ψ,∇Xϕ〉(4)

〈γ(X)ψ, γ(X)ϕ〉 = |X|2〈ψ, ϕ〉(5)

∇X

(
γ(Y )ψ

)
= γ(∇XY )ψ + γ(Y )∇Xψ,(6)

for any spinor fields ψ, ϕ ∈ Γ(SM) and any tangent vector fields X, Y ∈
Γ(TM). Since ∇ωn+1 = 0, so when (n+ 1) is even, the decomposition
(3) becomes orthogonal and ∇ preserves this decomposition.

The Dirac operator D on SM is the first order elliptic differential
operator, locally given by

Dϕ =
n+1∑
i=1

γ(ei)∇eiϕ,

where {e1, . . . , en+1} is a local orthonormal frame of TM and ϕ ∈
Γ(SM) is any spinor field on M . It is clear, from this definition, that
the function 〈Dϕ,ϕ〉 is nothing but the trace of a symmetric two-tensor
associated with any spinor field ϕ, the so-called energy-momentum
tensor Tϕ which is defined as follows (see [BG, Hi2, FK])

(7) Tϕ(X, Y ) =
1

2
〈γ(X)∇Y ϕ+ γ(Y )∇Xϕ, ϕ〉,

for any X, Y ∈ Γ(SM). Also from the definition, we see that, when
(n + 1) is even, the Dirac operator interchanges positive and negative
spinor fields, that is,

D : Γ(SM±
) −→ Γ(SM∓

).

Suppose now that the manifold M is compact. Then the elliptic-
ity and the self-adjointness of the Dirac operator D imply that this
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operator has a discrete real spectrum that we list in this way:

−∞← · · · ≤ λ−k ≤ · · · ≤ λ−1 ≤ 0 ≤ λ1 ≤ · · · ≤ λk ≤ · · · → +∞,
with all these eigenvalues repeated according their multiplicities for
all k ∈ N. This spectrum depends on the spin structure and on the
Riemannian metric chosen on the manifold.

3. Hypersurfaces and induced structures

In this section, we compare the restriction S/M of the spinor bundle
of the spin manifold M to an orientable hypersurface M immersed
into M and its Dirac-type operator D/ to the intrinsic spinor bundle
SM of the induced spin structure of M and its Dirac operator DM .
These facts are well-known (see for example [Bu, Tr, Bä2, BFGK] or
our previous papers [HMZ1, HMZ2, HMZ3, HMR1, HMR2, HM]). For
completeness, we introduce the key facts.

Let ∇/ be the Levi-Civita connection associated with the induced
Riemannian metric on M . The Gauß formula says that

∇/XY = ∇XY − 〈AX, Y 〉N,(8)

where X, Y are vector fields tangent to the hypersurface M , the vector
field N is a global unit field normal to M and A stands for the shape
operator corresponding to N , that is,

∇XN = −AX, ∀X ∈ Γ(TM).(9)

We have that the restriction

S/M := SM |M

is a left module over C`(M) for the induced Clifford multiplication

γ/ : C`(M) −→ End(S/M)

given by

(10) γ/(X)ψ = γ(X)γ(N)ψ

for every ψ ∈ Γ(S/M) and X ∈ Γ(TM). Consider on S/M the Hermitian
metric 〈 , 〉 induced from that of SM . This metric immediately satis-
fies the compatibility condition (5) if one puts on M the Riemannian
metric induced from M and the Clifford multiplication γ/ defined in
(10). Consider also the connection ∇/ on S/M given by

(11) ∇/Xψ = ∇Xψ −
1

2
γ(AX)γ(N)ψ = ∇Xψ −

1

2
γ/(AX)ψ,

for every ψ ∈ Γ(S/M) and X ∈ Γ(TM). Note that a suitable use of the
Gauß formula (8) shows that the compability conditions (4) and (6)
are also satisfied for (S/M, γ/, 〈 , 〉,∇/ ).
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Denote by D/ : Γ(S/M)→ Γ(S/M) the Dirac operator associated with
the Dirac bundle S/M over the hypersurface, which is defined by

D/ψ =
n∑
j=1

γ/(ej)∇/ ejψ,

where ψ ∈ Γ(S/M) and {e1, . . . , en} is a local orthonormal frame of
TM . Since, as we can see from (10) and (11), the connection ∇/ does
not depend on the choice of the normal N on M while γ/ changes sign
for the opposite orientation, hence the same is true for D/ .

It is a well known fact that D/ is a first order elliptic differential
operator which is formally L2-selfadjoint. By (11), for any spinor field
ψ ∈ Γ(S/M), we have

(12) D/ψ =
n

2
Hψ − γ(N)

n∑
j=1

γ(ej)∇ejψ,

where H = 1
n
traceA is the mean curvature of M corresponding to the

orientation N . Note that if the spinor field ψ is the restriction to the
hypersurface M of a spinor field on the ambient space M , then both
spinor fields in Γ(SM) and Γ(S/M), will be denoted by the same symbol.

Lemma 5. For any spinor field ψ ∈ Γ(S/M) and any tangent vector
field X ∈ Γ(TM), the following relations hold

∇/X
(
γ(N)ψ

)
= γ(N)∇/Xψ ,

D/
(
γ(N)ψ

)
= −γ(N)D/ψ.

The proof is straightforward using (11) and (9). In particular, the
second of these inequalities implies that, when M is a compact manifold
without boundary, the spectrum of D/ must be symmetric with respect
to zero. This does not occur necessarily for DM . For the purpose of
relating the spectra of D/ and DM in a precise way, we gather in the
following proposition, well-known results that we will need later.

Proposition 6. Let M be an (n + 1)-dimensional Riemannian spin
manifold and (SM,γ) its spinor bundle, where γ denotes the corre-
sponding Clifford multiplication. Consider an orientable hypersurface
M immersed in M and let (S/M, γ/) and (SM,γM) be respectively the in-
duced Dirac bundle and the spinor bundle of the induced spin structure
on M . Denote by D/ and DM the corresponding Dirac operators.

a) When the dimension n of M is even we have (S/M, γ/,D/ ) ≡
(SM,γM , DM) and the decomposition S/M = S/M+⊕S/M−, given
by S/M± := {η ∈ S/M | iγ(N)η = ±η}, corresponds, up to the
above identification, to the chirality decomposition of the spinor
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bundle SM . Hence D/ interchanges S/M+ and S/M−, as one can
also easily see from Lemma 5.

b) When n is odd, the chirality decomposition of SM into positive
and negative spinors induces an orthogonal and γ/,D/ -invariant

decomposition S/M = S/M+ ⊕ S/M−, with S/M± :=
(
SM±

)
|M

, in

such a way that (S/M±, γ/,D/ |S/M±) ≡ (SM,±γM ,±DM). More-

over, we have the following two isomorphisms: γ(N) : S/M± 7−→
S/M∓.

Furthermore, if M is compact without boundary, then the discrete spec-
tra of the elliptic self-adjoint operators D/ and DM , satisfy the following:

c) SpecD/ is symmetric with respect to zero.
d) If dimM is even, we have that SpecD/ = SpecDM , and that

multD/ (λ) = multDM (λ), for all λ ∈ SpecDM .
e) If dimM is odd, we have multD/ |S/M± (λ) = multDM (±λ), and so

SpecD/ = SpecDM ∪ (−SpecDM). Moreover,

λ ∈ SpecDM and− λ /∈ SpecDM =⇒ multD/ (λ) = multDM (λ),

±λ ∈ SpecDM =⇒ multD/ (λ) = multDM (λ) + multDM (−λ) .

Remark 1. Although, by definition, sections of the restricted bundle
S/M are defined only on the hypersurface M and not on the whole
space M , we may consider derivatives of the form ∇Xψ, where ∇ is the
spinorial Levi-Civita connection on the ambient space and where ψ ∈
Γ(S/M), provided that the field X is tangent to M . In fact, at any point
of M , the spinor field ψ can be locally extended to M , we compute the
covariant derivative of the extension and restrict again toM . The result
does not depend on the chosen local extension. Alternatively, if we
think of the restricted bundle S/M as the spinor bundle SM , according
to the above identifications, via the Gauß formula (11), we may define
the connection ∇ in terms of the spinorial Levi-Civita connection ∇/ ,
the Clifford multiplication γ/ on SM and the shape operator A of the
hypersurface.

The above considerations regarding the relation between D/ and DM

and the nature of the assertions that we want to prove in Theorems 3
and 4, allow us to work henceforth only with S/M and D/ , and shall refer
to them as the spinor bundle and the Dirac operator of the induced
spin structure of the hypersurface M . From Remark 1 and (12), we
deduce the following well-known result:

Proposition 7 ([Bä3, BFGK, Bu]). Let M be an orientable hypersur-
face immersed into a Riemannian spin manifold M admitting a parallel
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spinor field ψ ∈ Γ(SM). Then the restriction ψ ∈ Γ(S/M) satisfies

D/ψ =
n

2
Hψ.

If H is constant, then n
2
H belongs to the spectrum of D/ , hence λ1(D/ ) ≤

n
2
|H|. If λ1(D/ ) = n

2
|H|, we shall say that M is immersed in M by first

eigenspinors.

Remark 2. Consider the case of the round unit hypersphere M = Sn
as an embedded hypersurface of Rn+1, an ambient space which admits
a maximal number of independent parallel spinor fields. It is well-
known that the eigenvalues of the Dirac operator D/ of the unique spin
structure on Sn with the lowest absolute value are±n

2
(see [Gi, Theorem

2.1.3]), both with multiplicity 2[n+1
2 ]. Moreover it is also clear that

H = ±1 according to the choice of the orientation, hence in this case
λ1(D/ ) = n

2
|H|.

4. Conformal change of the hypersurface metric

Suppose now that the mean curvature H of the immersed (con-
nected) hypersurface M of the spin manifold M has no zeros. Fix
the orientation and the corresponding unit normal field so that H > 0.
Consider on M the conformal metric 〈 , 〉H = H2〈 , 〉. If we denote
by S/HM the spin bundle corresponding to this conformal metric and
the same spin structure. We shall identify the two spinor bundles S/M
and S/HM using the isomorphism given in [Hi1]. Due to the existence
of this isometric identification, from now on, we shall denote the two
spinor bundles by the same symbol S/M . With this identification, the
corresponding Clifford multiplications and spin connections are related
as follows:

γ/H = Hγ/, ∇/HX −∇/X = − 1

2H
γ/(X)γ/(∇H) + 〈X,∇H〉,(13)

for all X ∈ Γ(TM). From this, we can easily find the following relation
between the two Dirac operators D/ and D/H on S/M relative to the two
conformal metrics (see [Hit, Hi1]):

(14) D/H
(
H−

n−1
2 ϕ
)

= H−
n+1
2 D/ϕ, ∀ϕ ∈ Γ(S/M).

Remark 3. When the mean curvatureH is constant, the metrics 〈 , 〉H
and 〈 , 〉 are homothetic. In this case the conformal covariance (14)
becomes the following change of scale: D/H = 1

H
D/ .
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Suppose now that there exists a non-trivial parallel spinor field ψ ∈
Γ(SM) and take as ϕ in (14) its restriction ψ ∈ Γ(S/M). Using Propo-
sition 7, we obtain

D/H
(
H−

n−1
2 ψ
)

= H−
n+1
2 D/ψ =

n

2
H−

n−1
2 ψ.

From this equality we can deduce the following result.

Proposition 8. Let M be an orientable hypersurface immersed into
a Riemannian spin manifold M admitting a parallel spinor field ψ ∈
Γ(SM) and suppose that the mean curvature of M , after a suitable
choice of the unit normal, satisfies H > 0. Denote by ψH the spinor
field H−

n−1
2 ψ ∈ Γ(S/M). Then we have D/HψH = n

2
ψH . As a conse-

quence, n
2

belongs to the spectrum of D/H , hence

λ1(D/
H) ≤ n

2
.(15)

Remark 4. It is important to note that, when the mean curvature H
of the hypersurface is constant and λ1(D/ ) = n

2
H, that is, when M is

immersed by first eigenspinors (see Proposition 7), then from Remark
3, we get λ1(D/

H) = n
2
. That is, in this case, the equality is achieved in

(15).

Remark 5. Proposition 8 can be stated in terms of a spectral func-
tional F1 defined on the space of immersions ι : M →M of a compact
n-dimensional manifold M into a Riemannian spin (n+1)-dimensional
manifold (M, 〈 , 〉) with non vanishing mean curvature, that we shall
denote by Imm+(M,M). This functional is defined by

F1 : ι ∈ Imm+(M,M) 7−→ λ1(D/
Hι) ∈ R,

where λ1(D/
Hι) is the first non-negative eigenvalue of the Dirac opera-

tor D/Hι of the induced spin structure corresponding to the conformal
metric on M given by

〈 , 〉Hι = H2
ι ι
∗〈 , 〉.

This functional F1 is clearly invariant by homotheties of the ambient
space metric. Proposition 8 can be paraphrased by saying that this
functional is bounded from above by n

2
provided that there exists a

non-trivial parallel spinor field on the ambient space M . In fact, when
M = Rn+1, from Remark 2 and Proposition 8, we have that this bound
is achieved by hyperspheres of arbitrary radius, so n

2
is a maximum. In

general, from Remark 4, we can see that all constant mean curvature
hypersurfaces in Riemannian spin manifolds with non-trivial parallel
spinors immersed by first eigenspinors attain this maximum, too. In the
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following section, we shall see that, in the Euclidean ambient space, the
unique hypersurfaces achieving this maximum are the hyperspheres.

5. Hypersurfaces having n
2

as a critical eigenvalue of D/H

Suppose that ι : M → M is an immersion of a compact orientable
n-dimensional manifold M , into a Riemannian spin manifold M , whose
mean curvature function H is positive and such that λk(D/

H) = n
2
, for

some k ∈ N. Note that here we are not assuming the existence of a non
trivial parallel spinor field on M . Consider an analytic variation ι(t) of
the immersion ι, that is, a family of immersions analytically indexed
by t ∈] − ε, ε[ such that ι(0) = ι. Since they are homotopic, all the
immersions ι(t) of the variation induce on M the same spin structure
from the spin structure on M . Moreover, the variation induces an
analytic deformation of the Riemannian metric 〈 , 〉H on M , namely,

(16) 〈 , 〉H(t) = 〈 , 〉(t)H(t) = H(t)2〈 , 〉(t),
where H(t) (which remains to be positive if ε is small enough) and
〈 , 〉(t) are respectively the mean curvature and the induced metric
of the immersion ι(t). This deformation of the metric determines an
analytic family of Dirac operators D/H(t) given by D/H(t) = D/ (t)H(t),

each acting on the different spinor bundles S/H(t)
t M corresponding to

the common induced spin structure and the metrics 〈 , 〉H(t), where
we are using the notation introduced in Section 4 for conformal changes
of the metric and where the spinor bundle S/tM corresponds to the in-
duced spin structure and to the metric 〈 , 〉(t). In order to compare
the different deformed Dirac operators D/H(t) with the Dirac operator
D/H(0) = D/H associated to the original immersion, it is necessary to

relate the corresponding spinor bundles S/H(t)
t M with S/H(0)

0 M = S/HM .
There is no canonical way to do this, but Bourguignon and Gauduchon
determined in [BG] a specific way to define an isometry between two
spinor bundles corresponding to two different metrics and to a same
spin structure on a given manifold. This isometry allowed them to
consider the two associated Dirac operators as two operators acting
on the same bundle and to obtain an explicit relation between them
([BG, Théorème 20]). It is also important to observe that, when the
two metrics are conformally related, the Bourguignon and Gauduchon
identification coincides with that of Section 4. Then, using this isome-
try, we may see the one-parameter family D/H(t) as an analytic family
of Dirac operators acting on the same spinor bundle S/HM ∼= S/M .

Now, we are interested in the first variation of the eigenvalues λk(D/
H)

with respect to the analytic deformation ι(t) of the immersion ι, that
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is, with respect to the variation of the metric 〈 , 〉H(t) on M . In other
words, we want to compute the derivatives

d

dt

∣∣∣∣
t=0

Fk(t) =
d

dt

∣∣∣∣
t=0

λk(t),

provided that they exist, where

Fk(t) = Fk(ι(t)), λk(t) = λk(D/
H(t)).

For this, one can see in [BG] that the Rellich-Kato theory of un-
bounded self-adjoint operators can be applied to the analytic family
D/H(t) acting on S/M . Denote by m the dimension of the eigenspace
Ek(D/

H) associated with the eigenvalue λk(D/
H). Then, for each t ∈

] − ε, ε[, there exist m eigenvalues Λk,1(t), . . . ,Λk,m(t) of D/H(t) asso-
ciated with an L2(M, 〈 , 〉H(t))-orthonormal family of eigenspinors
ψk,1(t), . . . , ψk,m(t) ∈ Γ(S/M) of D/H(t), both Λk,i(t) and ψk,i(t) depend-
ing analytically on t, for i = 1, . . . ,m, such that Λk,1(0) = · · · =
Λk,m(0) = λk(D/

H) and D/H(t)ψk,i(t) = Λk,i(t)ψk,i(t), for all t ∈]− ε, ε[,
and i = 1, . . . ,m.

Then, in order to study the critical points of Fk, we need to know the
derivatives Λ′k,i(0) of the m branches Λk,i(t) passing through λk(D/

H) at
t = 0. The values of these derivatives were computed in [BG, Théorème
24]: for each i = 1, . . . ,m,

d

dt

∣∣∣∣
t=0

F (i)
k (t) =

d

dt

∣∣∣∣
t=0

Λk,i(t) = −1

2

∫
M

〈THψi , h〉
H dV H ,

where dV H is the Riemannian density of the metric 〈 , 〉H on M and
ψi = ψk,i(0) is a fortiori an L2(M, 〈 , 〉H)-orthonormal basis of the
eigenspace Ek(D/

H). Here THψ stands for the energy-momentum tensor
(as defined in (7)) of the spinor ψ ∈ Γ(S/M), calculated with respect
to the conformal metric 〈 , 〉H on M , that is, for all vector fields X, Y
tangent to M :

(17) THψ (X, Y ) =
1

2
〈γ/H(X)∇/HY ψ + γ/H(Y )∇/HXψ, ψ〉,

and h is the variational field associated with the metric variation 〈 , 〉H(t),
that is,

(18) h =
d

dt

∣∣∣∣
t=0

〈 , 〉H(t).
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It can be shown (see [BG]) that these m derivatives d
dt

∣∣
t=0
F (i)
k (t)

are just the eigenvalues of the quadratic form Qh defined on the m-
dimensional eigenspace Ek(D/

H) as follows:

(19) ϕ ∈ Ek(D/H) 7−→ Qh(ϕ) = −1

2

∫
M

〈THϕ , h〉H dV H .

Our next goal is to compute Qh(ϕ) in terms of the metric 〈 , 〉
induced on M . First note that since the functional Fk is geometric,
it is invariant under reparametrizations of M , so there is no loss of
generality by assuming that the variation ι(t) of the immersion ι is a
normal variation, that is,

(20)
d

dt

∣∣∣∣
t=0

ι(t) = f N,

where f is a smooth function defined on M .
Then, using (16) and (18), the variational tensor field h correspond-

ing to the metric deformation 〈 , 〉H(t) is precisely

h = 2H

(
d

dt

∣∣∣∣
t=0

H(t)

)
〈 , 〉+H2 d

dt

∣∣∣∣
t=0

〈 , 〉(t).

Now, it is a well-known fact in Submanifold Theory that the variation
of the induced metric associated with the normal variation (20) of the
immersion is given by

d

dt

∣∣∣∣
t=0

〈 , 〉(t) = −2f〈A , 〉,

where A is the shape operator, and that the corresponding variation of
the mean curvature is given by

d

dt

∣∣∣∣
t=0

H(t) =
1

n

(
∆f + |A|2f + Ric (N,N)f

)
,

with Ric, the Ricci tensor of the manifold M (see [Mo], for instance).
So, finally, we obtain

(21) h =
2

n
H
(
∆f + |A|2f + Ric (N,N)f

)
〈 , 〉 − 2H2f〈A , 〉.

We also need to compute the energy-momentum tensor THϕ associ-

ated with an eigenspinor ϕ ∈ Ek(D/H). By definition of this tensor (see
(7) and (17)) and the relation between the Levi-Civita connections and
the Clifford multiplications of two conformally related metrics estab-
lished in (13), we get the following simple covariance rule [Hi2]

(22) THϕ = HTϕ.
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Choose any eigenspinor ϕ ∈ Ek(D/H). Since H > 0, we have that

ϕ = ψH = H−
n−1
2 ψ

for a unique ψ ∈ Γ(S/M). Then by the conformal covariance (14) and
the fact that ϕ is an eigenspinor of D/H , we get

λk(D/
H)ϕ = D/Hϕ = H−

n+1
2 D/ψ,

hence

(23) D/ψ = λk(D/
H)Hψ =

n

2
Hψ.

Similarly, the conformal covariance (22) of the energy-momentum ten-
sor can be expressed in terms of the spinor field ψ. It suffices to use
the properties of ψ and the conformal covariance

Tgϕ = g2Tϕ, ∀g ∈ C∞(M)

which can be deduced from the definition of the tensor Tϕ (see (7)).
So, we have

(24) THϕ = HT
H−

n−1
2 ψ

= H−n+2Tψ.

Finally we are in position to compute the integrand in the quadratic
form (19) which controls the first derivative of the functional Fk at
t = 0. First, we observe that

(25) 〈THϕ , h〉H =
1

H4
〈THϕ , h〉,

since this a scalar product of two-tensors. Now, using (21), (23), (24)
and (25), we deduce the expression

(26) 〈THϕ , h〉H =
1

Hn

(
(∆f + |A|2f + Ric (N,N)f)|ψ|2 − 2f〈A, Tψ〉

)
.

In order to compute the contraction 〈A, Tψ〉, take the squared length
in the first equality of (11), where the two connections ∇ and ∇/ on
the restricted bundle S/M are related, considering that, for all X, Y ∈
Γ(TM), the corresponding version of (7) is now,

Tψ(X, Y ) =
1

2
〈γ/(X)∇/ Y ψ + γ/(Y )∇/Xψ, ψ〉.

Hence we get

〈A, Tψ〉 = −|∇ψ|2 + |∇/ψ|2 +
1

4
|A|2|ψ|2,

which when inserted in (26) and recalling that the Riemannian mea-
sures of the two conformal metrics 〈 , 〉 and 〈 , 〉H are related by

dV H = Hn dV,
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we finally obtain

〈THϕ , h〉H dV H =(
(∆f + 1

2
|A|2f + Ric (N,N)f)|ψ|2 + 2(|∇ψ|2 − |∇/ψ|2)f

)
dV.

Integration by parts of this formula, for ψ belonging to them-dimensional
space H

n−1
2 Ek(D/

H), shows that the quadratic form Qh (henceforth de-
noted by Qf since it depends only on f) takes the form

Qf (ψ) =

−1

2

∫
M

(
∆|ψ|2 +

1

2
|A|2|ψ|2 + Ric (N,N)|ψ|2 + 2|∇ψ|2 − 2|∇/ψ|2

)
f dV,

and controls the derivatives (dF (i)
k /dt)(0), i = 1, . . . ,m of the m ana-

lytic branches of the eigenvalue λk(D/ ) of D/H(t) at t = 0. Note that the
Laplacian of the squared length of an eigenspinor is easily computable.
In fact, from the compatibility condition (4), we immediately have

∆|ψ|2 = 2|∇/ψ|2 + 2〈trace∇/ 2ψ, ψ〉.
But the rough Laplacian trace∇/ 2 acting on sections of the spin bundle
S/M satisfies the celebrated Schrödinger-Lichnerowicz formula

trace∇/ 2 =
1

4
R−D/ 2,

where R is the scalar curvature of M . This and (23) imply

∆|ψ|2 = 2|∇/ψ|2 +
1

2
(R− n2H2)|ψ|2.

Finally, the Gauß equation relating the curvature tensor of the ambient
space M and that of the hypersurface M reads

R = R− 2Ric (N,N) + n2H2 − |A|2,
where R is the scalar curvature of the ambient manifold M . Hence,
the following equality for functions on M :

∆|ψ|2 = 2|∇/ψ|2 +

(
1

2
R− Ric (N,N)− 1

2
|A|2

)
|ψ|2.

With the above facts in mind, we are now ready to give the following
result which allows the characterization of immersed hypersurfaces for
which the eigenvalue n

2
of D/H is a critical point of the functional Fk.

Proposition 9. Let M be a compact orientable hypersurface immersed
into a Riemannian spin manifold M and assume that the mean curva-
ture H of M is positive. Moreover, suppose that n

2
= λk(D/

H) belongs
to the spectrum of the Dirac operator, corresponding to the conformal
metric 〈 , 〉H and to the induced spin structure, with multiplicity m.
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Consider a normal variation ι(t) of the immersion M with variational
field given by fN , where f is a smooth function on M , and let Fk(t)
be the corresponding variation of the k-th eigenvalue of D/H . Then,
the values of the derivatives of Fk lie among the m eigenvalues of the
quadratic form

ψ ∈ H
n−1
2 Ek(D/

H) 7−→ Qf (ψ) = −
∫
M

(
|∇ψ|2 +

1

4
R|ψ|2

)
f dV.

If we assume that the scalar curvature R is non-negative, it is then
obvious that the quadratic expression depending on the spinor ψ, inside
the parentheses, is non-negative. Under this assumption, choosing f as
the constant function equal to 1, that is, considering parallel variations
of the hypersurface M , the quadratic form Q1 is non-positive on the m-
dimensional vector space on which it is defined. Then all its eigenvalues
will be non-positive. This leads to the following necessary condition
for the immersion to be critical with respect to the functional Fk =
λk(D/

H).

Theorem 10. Let M be an n-dimensional compact orientable hyper-
surface of a Riemannian spin manifold (M, 〈 , 〉). Suppose that the
scalar curvature R of M is non-negative and that the mean curvature
H of M is positive with respect to a suitable choice of the normal. If
n
2

= λk(D/
H) belongs to the spectrum of the Dirac operator D/H of the

metric H2〈 , 〉 and it is critical for all the variations of the hypersur-
face M , then R ≡ 0 on M and ∇ψ = 0 for any spinor field ψ on M
satisfying

D/ψ =
n

2
Hψ.

Corollary 11. Let M be an n-dimensional compact orientable hyper-
surface of a Riemannian spin manifold (M, 〈 , 〉) whose mean curvature
H is positive. Moreover, suppose that there exists a non trivial parallel
spinor field on M . Then the first non-negative eigenvalue λ1(D/

H) of
the metric H2〈 , 〉 is at most n

2
. If the equality holds, then ∇ψ = 0 for

any spinor field ψ on M such that D/ψ = n
2
Hψ.

Proof. To apply Theorem 10 it suffices to consider that R is identically
zero because of the existence of a non trivial parallel spinor field on
M (see, for example, [BFGK, Fr]) and recall that, in the presence of
such a parallel spinor field, Proposition 8 with the fact that λ1(D/

H) =
n
2

imply that the immersion attains the maximum for λ1(D/
H), since

small deformations of hypersurfaces preserve the positivity of the mean
curvature. q.e.d.
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Remark 6. Note that the necessary condition ∇ψ = 0 obtained in
Corollary 11 does not mean necessarily that the eigenspinor ψ is the
restriction to M of a parallel spinor field on M . The reason is that ψ
is defined only on the hypersurface M . Furthermore, it is interesting
to point out that, according to (8), ∇ψ = 0 is equivalent to

∇/Xψ = −1

2
γ/(AX)ψ, ∀X ∈ Γ(TM).

A spinor field ψ satisfying such an overdetermined system is usually
called a generalized Killing spinor.

Proof of Theorem 3. In order to prove Theorem 3 in Section 1,
assume that the ambient space is the Euclidean space Rn+1 and take
a non-trivial parallel spinor field Ψ on it. From Proposition 7, we
know that the restriction of Ψ to M satifies D/Ψ = n

2
HΨ. Define

ψ := γ(Hx+N)Ψ, where x is the identity (or the position vector) map
on Rn+1. Then, for each X ∈ Γ(TM) we have

(27) ∇Xψ = γ(HX − AX)Ψ,

since H is constant. Then, if {e1, . . . , en} is a local orthonormal basis
tangent to M , we have

n∑
i=1

γ(ei)∇eiψ =
n∑
i=1

γ(ei)γ(Hei − Aei)Ψ = −trace (H Id− A)Ψ = 0.

Hence, all the spinor fields of the form γ(Hx + N)Ψ, where Ψ is an
Euclidean parallel spinor field, are also eigenspinors corresponding to
the eigenvalue n

2
H. Suppose that the hypersurface M is not umbilical.

In this case, the map Ψ 7→ γ(Hx + N)Ψ is injective, since if γ(Hx +
N)Ψ = 0 for some Ψ, then Hx+N = 0, considering that Ψ has a non
trivial constant length. But the condition Hx + N = 0 means that
M is a hypersphere of radius 1

H
centered at the origin. Moreover, this

last space cannot contain any restriction to M of a Euclidean parallel
spinor field. In fact, if γ(Hx+N)Ψ = Φ for suitable Euclidean parallel
spinor fields Ψ and Φ, then we would get ∇ (γ(Hx+N)Ψ) = 0 and so,
using (27), we would deduce that A = H Id, that is, the hypersurface
M would be totally umbilical. Now, it is well-known that the space

of parallel spinor fields on the Euclidean space Rn+1 is exactly 2[n+1
2 ]-

dimensional. Then, from the reasonings above, the multiplicity of the
eigenvalue n

2
H is at least

(28) multD/ (
n

2
H) ≥ 2 · 2[n+1

2 ] = 2[n+1
2 ]+1,
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provided that the hypersurface M is not umbilical. This completes the
proof of Theorem 3 when n is even. In fact, in this case, from c) and d)
in Proposition 6, we have that ±n

2
H are both eigenvalues of DM and

that
multDM (±n

2
H) = multD/ (

n

2
H).

As a consequence, since n is even,

multDM (±n
2
H) ≥ 2[n+1

2 ]+1 = 2[n2 ]+1,

if the hypersurface M is not umbilical.
When n is odd, for the above arguments, we consider parallel spinor

fields Ψ on the even-dimensional Euclidean space Rn+1 with positive
(resp. negative) chirality and of spinor fields of the form γ(Hx+N)Φ,
where Φ is an Euclidean parallel spinor field with negative (resp. posi-
tive) chirality. It is well-known that the spaces of parallel spinor fields
with positive and negative chirality in the even-dimensional Euclidean

space Rn+1 have both dimension exactly 2[n2 ]. Now, taking into account
b) in Proposition 6, we have

multD/ |S/M± (
n

2
H) ≥ 2 · 2[n2 ] = 2[n2 ]+1,

provided that the hypersurface M is not umbilical. Using e) in the
same Proposition 6, we obtain that both ±n

2
H are eigenvalues of DM

and that
multDM (±n

2
H) ≥ 2[n2 ]+1,

if the hypersurface M is not umbilical. q.e.d.

Proof of Theorem 4. For this, suppose that M is a compact ori-
entable hypersurface of the Euclidean space Rn+1 satisfying the equal-
ity in the Bär inequality (1). Equality implies that the restriction
ψ ∈ Γ(S/M) of each parallel spinor field of Rn+1, used as a test spinor
in the Rayleigh quotient for D/ 2, must be an eigenspinor associated with
the eigenvalue λ1(D/ )2. So, applying the operator D/ to D/ψ = n

2
Hψ, it

follows

D/ 2ψ =
n

2
γ/(∇/H)ψ +

n2

4
H2ψ = λ1(D/ )2ψ.

Since ψ and γ/(∇/H)ψ are orthogonal, we conclude that H is constant
and λ1(D/ ) = n

2
H. From Remark 4, Proposition 8 and Corollary 11, we

conclude that the eigenspace associated with the eigenvalue n
2
H of the

Dirac operator D/ , consists only of the restrictions of Euclidean parallel

fields. Then multD/ (n
2
H) = 2[n+1

2 ] and we apply (28) in the proof of
Theorem 3 to finish the proof. q.e.d.
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Remark 7. Note that, in spite of the fact that most of the results in
this paper hold for hypersurfaces of Riemannian spin manifolds admit-
ting a non trivial parallel spinor, Theorems 3 and 4 are stated only
for hypersurfaces immersed in the Euclidean space. A careful read-
ing of the proofs shows that the use of the position vector field x
defined on Rn+1 is crucial. In other words, a key ingredient is the
existence of a vector field x ∈ Γ(TRn+1) such that ∇Xx = X for all
X ∈ Γ(TRn+1). But the existence of such a vector field is a character-
istic feature of the cone over an arbitrary n-dimensional Riemannian
manifold P , that is the (n + 1)-dimensional Riemannian manifold M
defined as M =]0,+∞[×P endowed with the following warped product
metric:

〈 , 〉M = dr2 + r2 〈 , 〉P , ∀r ∈]0,+∞[.

In fact (see [O’N, Chapter 7, p. 204]), the vector field x given by

x = r
∂

∂r
∈ Γ(TM)

plays the role of the vector position field in the Euclidean space, that
is ∇Xx = X for all X ∈ Γ(TM). Note that for P = Sn we have
M = Rn+1, and this is the only case where the singularity at the ver-
tex of the cone can be removed. Now, it was a nice observation by Bär
(see [Bä1], [Wa2, Section 5] and [Ga]) that the cone M is a Riemannian
spin manifold with a non trivial parallel spinor provided that the factor
P is taken to be a Riemannian spin manifold endowed with a non triv-
ial real Killing spinor. Assuming for simplicity that P is 1-connected
and besides the basic case P = Sn, the manifold P (see [Bä1]) could
be either an Einstein-Sasaki Riemannian manifold or a 7-dimensional
Spin(7)-manifold or a 6-dimensional nearly-Kähler manifold of con-
stant type 1. For any such a choice of P , the corresponding cone M is
a Riemannian spin manifold endowed with a non trivial parallel spinor
and a position vector field. Hence, up to slight adjustments on the hy-
pothesis and the conclusion, the arguments in the proof of Theorems
3 and 4 extend to compact orientable hypersurfaces M immersed in
such a cone M . More precisely, if either the mean curvature H of M
is constant and multD/ (n

2
H) < 2 · dimP(M), where P(M) is the space

of parallel spinor fields on the cone M , or equality is attained in the
Bär inequality, then M is totally umbilical. Now, one can apply [Mo,
Lemma 4], where the second author classified all the umbilical com-
pact hypersurfaces with constant mean curvature in a warped product
of type I ×f P , where f is a positive smooth function defined on the
open interval I, whose Ricci tensor satisfies a “certain condition”. In
particular, such a condition is automatically satisfied when the warped
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product is Ricci-flat. Since the existence of a parallel spinor implies
that the cone M is Ricci-flat, we may apply this classification result in
[Mo] for I = R+ and f(r) = r2.The conclusion is that the umbilical hy-
persurface M has necessarily to be a slice {r}×P for some r ∈]0,+∞[,
unless in the trivial case P = Sn where the ambient cone M is Rn+1 (in
this case, there are obviously other umbilical hypersurfaces, namely,
hyperspheres not centered at the origin).
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Granada, 18071 Granada, Spain

E-mail address: smontiel@ugr.es


