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LARGE DEVIATIONS AND CONCENTRATION INEQUALITIES

FOR THE ORNSTEIN-UHLENBECK PROCESS WITHOUT

TEARS

BERNARD BERCU AND ADRIEN RICHOU

Abstract. Our goal is to establish large deviations and concentration inequali-
ties for the maximum likelihood estimator of the drift parameter of the Ornstein-
Uhlenbeck process without tears. We propose a new strategy to establish large
deviation results which allows us, via a suitable transformation, to circumvent the
classical difficulty of non-steepness. Our approach holds in the stable case where
the process is positive recurrent as well as in the unstable and explosive cases
where the process is respectively null recurrent and transient. Notwithstanding of
this trichotomy, we also provide new concentration inequalities for the maximum
likelihood estimator.

1. INTRODUCTION

Consider the Ornstein-Uhlenbeck process observed over the time interval [0, T ]

(1.1) dXt = θXtdt+ dBt

where (Bt) is a standard Brownian motion and the drift θ is an unknown real
parameter. For the sake of simplicity, we assume that the initial state X0 = 0. The
process is said to be stable if θ < 0, unstable if θ = 0, and explosive if θ > 0. The
maximum likelihood estimator of θ is given by

(1.2) θ̂T =

∫ T

0
XtdXt∫ T

0
X2

t dt
=

X2
T − T

2
∫ T

0
X2

t dt
.

It is well-known that in the stable, unstable, and explosive cases

lim
T→∞

θ̂T = θ a.s.

The purpose of this paper is to establish large deviation principles (LDP) and con-

centration inequalities (CI) for (θ̂T ) via fairly easy to handle arguments.

In the stable case, Florens-Landais and Pham [9] proved an LDP for the score

function and they were able to deduce, by contraction, the LDP for (θ̂T ). However,
one can realize in Lemma 4.3 of [9] that the normalized cumulant generating function
of the score function is quite complicated to compute. Moreover, its LDP relies on
a sophisticated time varying change of probability.

Key words and phrases. Ornstein-Uhlenbeck process, Maximum likelihood estimates, Large
deviations.

1



2 BERNARD BERCU AND ADRIEN RICHOU

In the unstable and explosive cases [4], the strategy for proving an LDP for (θ̂T )
is also far from being obvious. As a matter of fact, on can observe in Lemma 2.1
of [4] that the normalized cumulant generating function is also very complicated to
evaluate. Moreover, as the limiting cumulant generating function is not steep, it is
also necessary to make use of a sophisticated time varying change of probability.

Our approach is totally different. It will allows us, via a suitable transformation,
to circumvent the classical difficulty of non-steepness. The starting point is to
establish, thanks to Gärtner-Ellis’s theorem [8], an LDP for the couple

(1.3) VT =
(XT√

T
,
ST

T

)

where the energy ST is given by

ST =

∫ T

0

X2
t dt.

Then, we will obtain the LDP for (θ̂T ) by a direct use of the contraction principle.
We refer the reader to the recent paper [2] where this strategy was successfully
implemented for the Ornstein-Uhlenbeck process with shift.

Furthermore, to the best of our knowledge, very few results are available on CI
except in the stable case for the energy [11], [12]. In addition, one can observe that
Theorem 1.1 of Gao and Jiang [10] can be significantly improved, even in the special
case where the shift parameter is zero. Our second goal is to fill the gap by proving

CI for (θ̂T ) in the stable, unstable, and explosive cases.

The paper is organized as follows. In Section 2, we establish an LDP for the

couple given by (1.3) and we deduce by contraction the LDP for (θ̂T ) in the stable,

unstable, and explosive cases. Section 3 is devoted to CI for (θ̂T ). Standard tools
for proving LDP such as the Gärtner-Ellis theorem and the contraction principle are
recalled in Appendix A, while all technical proofs of Sections 2 and 3 are postponed
to Appendices B and C.

2. Large deviations.

The usual notions of full and weak LDP are as follows.

Definition 2.1. A sequence of random vectors (VT ) of Rd satisfies an LDP with
speed T and rate function I if I is a lower semicontinuous function from R

d to
[0,+∞] such that,

(i) Upper bound: For any closed set F ⊂ R
d,

(2.1) lim sup
T→∞

1

T
logP

(
VT ∈ F

)
≤ − inf

x∈F
I(x).

(ii) Lower bound: For any open set G ⊂ R
d,

(2.2) − inf
x∈G

I(x) ≤ lim inf
n→∞

1

T
log P

(
VT ∈ G

)
.

Moreover, I is said to be a good rate function if its level sets are compact.
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Definition 2.2. A sequence of random vectors (VT ) of R
d satisfies a weak LDP

with speed T and rate function I if I is a lower semicontinuous function from R
d to

[0,+∞] such that the upper bound (2.1) holds for any compact set, while the lower
bound (2.2) is true for any open set.

It is well-known that if (VT ) is exponentially tight and satisfies a weak LDP, then
I is a good rate function and the full LDP holds for (VT ), see Lemma 1.2.18 of [8].

2.1. The stable case. First of all, we focus our attention on the easy to handle
stable case where the parameter θ is negative in (1.1).

Theorem 2.1. The couple (VT ), given by (1.3), satisfies an LDP with speed T and
good rate function Iθ given by

(2.3) Iθ(x, y) =





θ(1− x2 + θy)

2
+

(1 + x2)2

8y
if y > 0,

+∞ if y ≤ 0.

We clearly deduce from (1.2) that

(2.4) θ̂T = f(VT )

where f is the continuous function defined, for all x ∈ R and for any positive y, by

f(x, y) =
x2 − 1

2y
.

Hence, an elementary application of the contraction principle given in Appendix A,
leads to the following corollary, which was previously established in [9] via a much
more complicated strategy.

Corollary 2.1. The sequence (θ̂T ) satisfies an LDP with good rate function

(2.5) Iθ(z) =





−(z − θ)2

4z
if z ≤ θ

3
,

2z − θ if z ≥ θ

3
.

Proof. The proofs are given is Appendix B. �

2.2. The unstable case. Hereafter, we carry out our strategy on the unstable case
where the parameter θ = 0 in (1.1).

Theorem 2.2. The couple (VT ), given by (1.3), satisfies a weak LDP with speed T
and good rate function Iθ given by

(2.6) I0(x, y) =





(1 + x2)2

8y
if y > 0,

+∞ if y ≤ 0.

Despite the lack of exponential tightness, it is possible to establish the following
corollary, which was previously proved in [4] via a much more complex procedure.
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Corollary 2.2. The sequence (θ̂T ) satisfies an LDP with good rate function

(2.7) I0(z) =




−z

4
if z ≤ 0,

2z if z ≥ 0.

Proof. The proofs are given is Appendix B. �

2.3. The explosive case. Finally, we deal with the more complicated explosive
case where the parameter θ is positive in (1.1).

Theorem 2.3. The couple (VT ), given by (1.3), satisfies a weak LDP with speed T .
More precisely,

(i) Upper bound: For any compact set F ⊂ R
2,

(2.8) lim sup
T→∞

1

T
log P

(
VT ∈ F

)
≤ − inf

(x,y)∈F
Iθ(x, y).

(ii) Lower bound: For any open set G ⊂ R
2,

(2.9) − inf
(x,y)∈G∩F

Iθ(x, y) ≤ lim inf
n→∞

1

T
log P

(
VT ∈ G

)
,

where Iθ is the good rate function given by

(2.10) Iθ(x, y) =





θ(1− x2 + θy)

2
+

(1 + x2)2

8y
if 0 < y <

1

2θ
(1 + x2),

θ if y ≥ 1

2θ
(1 + x2),

+∞ if y ≤ 0,

and F is the set of exposed points of Iθ defined by

(2.11) F =
{
(x, y) ∈ R

2 such that 0 < y <
1

2θ
(1 + x2)

}
.

Remark 2.1. Let us remark that Iθ is a continuous function on R × R
∗
+ and a

constant function on (R×R
∗
+) \ F . Consequently, we are able to precise (2.9): For

any open set G ⊂ R
2 such that G ∩ F 6= ∅,

inf
(x,y)∈G∩F

Iθ(x, y) = inf
(x,y)∈G

Iθ(x, y).

Despite the weak large deviation result of Theorem 2.3, it is possible to establish
the following corollary, which was previously proved in [4] via a much more complex
procedure.

Corollary 2.3. The sequence (θ̂T ) satisfies an LDP with good rate function

(2.12) Iθ(z) =





−(z − θ)2

4z
if z ≤ −θ,

θ if |z| < θ,

0 if z = θ,

2z − θ if z > θ.

Proof. The proofs are given is Appendix B. �
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3. Concentration inequalities.

The concentration inequalities for the sequence (θ̂T ) are gathered together as
follows. We refer the reader to [3] for a recent book on concentration inequalities
for sums and martingales.

Theorem 3.1. We have for all positive real numbers T and for any positive x,

(3.1) P(|θ̂T − θ| ≥ x) ≤ 2 exp
(
−x2

2
hT (yx)

)

where

(3.2) hT (y) =





−θTy + log(y + 2)− log(2(y + 1))

x2 + θ2y(y + 2)
if θ < 0,

T y − log 2

x2 + y2
if θ = 0,

θT (y + 2) + log y − log(2(y + 1))

x2 + θ2y(y + 2)
if θ > 0,

and
yx = arg max

y>0
hT (y).

Corollary 3.1. In the stable case θ < 0, we have for all positive real numbers T
and for any positive x,

(3.3) P(|θ̂T − θ| ≥ x) ≤ 2 exp
(
− T 2x2

4(log 2− θT +
√
T 2x2 − 2θT log 2 + (log 2)2)

)
.

In particular, as soon as 0 < x ≤ −θ,

P(|θ̂T − θ| ≥ x) ≤ 2 exp
(
− T 2x2

8(−θT + log 2)

)
,

while, for any x > −θ,

P(|θ̂T − θ| ≥ x) ≤ 2 exp
(
− T 2x2

4(T (x− θ) + 2 log 2)

)
.

Corollary 3.2. In the unstable case θ = 0, we have for all positive real numbers T
and for any positive x,

(3.4) P(|θ̂T | ≥ x) ≤ 2 exp
(
− T 2x2

4(log 2 +
√

T 2x2 + (log 2)2)

)
.

In particular,

P(|θ̂T | ≥ x) ≤ 2 exp
(
− T 2x2

4(Tx+ 2 log 2)

)
.

Corollary 3.3. In the explosive case θ > 0, we have for all positive real numbers T
and for any positive x,

(3.5) P(|θ̂T − θ| ≥ x) ≤ 2 exp
(
−T 2x2

(
2θT + log(log 2)− log(θT + log 2)

)

2(T 2x2 + 2θT log 2 + (log 2)2)

)
.



6 BERNARD BERCU AND ADRIEN RICHOU

Appendix A

Gärtner-Ellis theorem and the contraction principle.

The most powerful tool for proving LDP is probably the Gärtner-Ellis theorem.
Let (VT ) be sequence of random vectors of Rd. Denote by LT the normalized cumu-
lant generating function of VT ,

LT (a) =
1

T
logE [exp (T 〈a, VT 〉)] .

The existence of the limiting cumulant generating function

L(a) = lim
T→∞

LT (a)

indicates whether or not (VT ) satisfies an LDP. Denote by DL the effective domain
of L,

DL =
{
a ∈ R

d such that L(a) < ∞
}
.

Let I be the Fenchel-Legendre transform of L,

I(x) = sup
a∈Rd

{
〈a, x〉 − L(a)

}
.

Theorem A.2 (Gärtner-Ellis). Assume that the function L exists as an extended
real number. Then,

(i) Upper bound: For any compact set F ⊂ R
d,

(A.1) lim sup
T→∞

1

T
logP

(
VT ∈ F

)
≤ − inf

x∈F
I(x).

(ii) Lower bound: For any open set G ⊂ R
d,

(A.2) − inf
x∈G∩F

I(x) ≤ lim inf
n→∞

1

T
logP

(
VT ∈ G

)
,

where F is the set of exposed points of I whose exposing hyperplane belongs to
the interior of DL.

(iii) If L is an essentially smooth, lower semicontinuous function, then the sequence
(VT ) satisfies a weak LDP with rate function I. If, moreover, the origin belongs
to the interior of DL, (VT ) satisfies an LDP with good rate function I.

We refer the reader to the excellent book [8] for more insight on the theory of large
deviations. In particular, the Gärtner-Ellis is given in Theorem 2.3.6 of [8]. Another
useful tool is the contraction principle which ensures that an LDP remains valid by
continuous mapping, see Theorem 4.2.1 of [8].

Theorem A.3 (Contraction principle). Assume that a sequence of random vectors
(VT ) of R

d satisfies an LDP with good rate function I, and that AT = f(VT ) where
f is a continuous function from R

d to R
δ. Then, (AT ) also satisfies an LDP with

good rate function J given, for all y ∈ R
δ, by

(A.3) J(y) = inf
{
I(x) with x ∈ R

d such that f(x) = y
}
,

where the infimum over the empty set is taken to be infinite.
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Appendix B

Proofs of LDP results.

Let LT be the normalized cumulant generating function of the couple

VT =
(XT√

T
,
ST

T

)

defined, for all (a, b) ∈ R
2, by

LT (a, b) =
1

T
logE

[
exp

(
a
√
TXT + bST

)]
.

The proofs of all the LDP results rely on an accurate evaluation of LT (a, b) as well
as on the existence of the limiting cumulant generating function L(a, b). This is the
subject of the following keystone lemma.

Lemma B.1. In the stable and unstable cases θ ≤ 0, the effective domain of L is
given by

(B.1) DL =
{
(a, b) ∈ R

2 such that b <
θ2

2

}
,

while, in the explosive case θ > 0, the effective domain of L becomes

(B.2) DL =
{
(a, b) ∈ R

2 such that b < 0
}
.

Moreover, for any (a, b) ∈ DL, we have whatever the value of θ,

(B.3) L(a, b) = −1

2

(
θ +

√
θ2 − 2b

)
+

a2

2(
√
θ2 − 2b− θ)

.

Remark B.1. One can observe that, as soon as θ ≥ 0, the origin does not belong
to the interior of DL.

Proof. We start with the stable and unstable cases. Using the same lines as in
Appendix A of [2], we obtain from Girsanov’s formula associated with (1.1) that

LT (a, b) =
1

T
logEϕ

[
exp

(
(θ − ϕ)

∫ T

0

XtdXt −
1

2
(θ2 − ϕ2)ST + a

√
TXT + bST

)]
,

=
1

T
logEϕ

[
exp

((θ − ϕ)

2
(X2

T − T ) + a
√
TXT +

1

2
(2b− θ2 + ϕ2)ST

)]

where Eϕ stands for the expectation after the usual change of probability,

dPϕ

dPθ
= exp

(
(ϕ− θ)

∫ T

0

XtdXt −
1

2
(ϕ2 − θ2)

∫ T

0

X2
t dt

)
.

Consequently, if θ2 − 2b > 0 and ϕ =
√
θ2 − 2b, LT (a, b) reduces to

(B.4) LT (a, b) =
ϕ− θ

2
+

1

T
logEϕ

[
exp

((θ − ϕ

2

)
X2

T + a
√
TXT

)]
.

Under the new probability Pϕ, XT has an N (0, σ2
T ) distribution where

(B.5) σ2
T =

1

2ϕ

(
e2ϕT − 1

)
.
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Hence, it follows from straightforward Gaussian calculations that

(B.6) LT (a, b) =
ϕ− θ

2
+

a2σ2
T

2γT
− 1

2T
log γT

where γT = 1 + (ϕ− θ)σ2
T . However, we clearly obtain from (B.5) that

lim
T→∞

1

T
log σ2

T = 2ϕ, lim
T→∞

γT
σ2
T

= ϕ− θ, lim
T→∞

1

T
log γT = 2ϕ.

Hence, we deduce from (B.6) that

(B.7) lim
T→∞

LT (a, b) = −1

2
(θ + ϕ) +

a2

2(ϕ− θ)
,

which is exactly the limiting cumulant generating function L(a, b) given by (B.3).
In the explosive case θ > 0, calculations are quite the same with the only significant
modification that ϕ = −

√
θ2 − 2b instead of

√
θ2 − 2b. Then, (B.6) holds true with

the new parameter ϕ and

lim
T→∞

1

T
log γT = 0, lim

T→∞

γT
σ2
T

= −(ϕ+ θ).

Consequently, (B.3) follows from (B.6), completing the proof of Lemma B.1. �

We shall also make use of normalized cumulant generating function ΛT of the couple

WT =
(X2

T

T
,
ST

T

)

defined, for all (a, b) ∈ R
2, by

ΛT (a, b) =
1

T
logE

[
exp

(
aX2

T + bST

)]
.

The proofs of LDP results in the unstable and explosive cases require the following
lemma on the effective domain of the limiting cumulant generating function Λ(a, b)
of ΛT (a, b).

Lemma B.2. If θ ≥ 0, the effective domain of Λ is given by

DΛ =
{
(a, b) ∈ R

2 such that θ2 − 2b > 0 and 2a + θ <
√
θ2 − 2b

}
.

Proof. The proof is the same as that of Lemma B.1 �

B.1. THE STABLE CASE.

Proof of Theorem 2.1. The origin belongs to the interior of the domain DL given
by (B.1). Moreover, the function L, defined in (B.3), is differentiable throughout
DL and L is steep, which means that L is essentially smooth. Hence, one can
immediately deduce from the Gärtner-Ellis theorem that the couple (VT ) satisfies
an LDP with speed T and good rate function

Iθ(x, y) = sup
(a,b)∈DL

{
ax+ by − L(a, b)

}
.

It is easy to compute Iθ. After some straightforward calculations, we obtain the
expression given by (2.3), which achieves the proof of Theorem 2.1.
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Proof of Corollary 2.1. Corollary 2.1 follows from Theorem 2.1 together with an
elementary application of the contraction principle. We already saw in Section 2

that θ̂T = f(VT ) where f is the continuous function defined, for all x ∈ R and for
any positive y, by

f(x, y) =
x2 − 1

2y
.

Consequently, one can immediately deduce from the contraction principle that the

sequence (θ̂T ) satisfies an LDP with good rate function Iθ given, for all z ∈ R, by

(B.8) Iθ(z) = inf
{
Iθ(x, y) with x ∈ R, y > 0 such that f(x, y) = z

}
.

Hereafter, it only remains to properly evaluate Iθ. As soon as 1 + 2yz ≥ 0,

f(x, y) = z ⇐⇒ x2 = 1 + 2yz.

Hence, (2.3) together with (B.8) lead to

(B.9) Iθ(z) = inf
{
h(y) with 1 + 2yz ≥ 0, y > 0

}

where h is the function defined, for any positive y, by

(B.10) h(y) =
θy(θ − 2z)

2
+

(1 + yz)2

2y
.

We clearly have from (B.10) that h is a convex function as

(B.11) h′(y) =
1

2

(
(z − θ)2 − 1

y2

)
and h′′(y) =

1

y3
.

The evaluation of the rate function Iθ depends on the location of its argument. On
the one hand, as soon as z ≤ θ/3, the border condition 1+2yz ≥ 0 plays a prominent
role as

Iθ(z) = h
(
− 1

2z

)
= −(z − θ)2

4z
.

On the other hand, as soon as z ≥ θ/3, the border condition 1 + 2yz ≥ 0 does not
have to be taken into account as

Iθ(z) = h
( 1

z − θ

)
= 2z − θ,

which completes the proof of Corollary 2.1.

B.2. THE UNSTABLE CASE.

Proof of Theorem 2.2. The proof of Theorem 2.2 can be handled exactly as that
of Theorem 2.1 by taking the value θ = 0. The function L, given by (B.3), is essen-
tially smooth. However, in contrast with the stable case, the origin does no longer
belong to the interior of DL. It means that the sequence (Vn) is not exponentially
tight. This is the reason why we obtain a weak LDP for (Vn) instead of a full LDP,
via the weak version of the Gärtner-Ellis Theorem A.2.
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Proof of Corollary 2.2. Since Theorem 2.2 provides us a weak LDP for the se-
quence (Vn), we cannot deduce Corollary 2.2 from a direct application of the con-

traction principle. Instead of that, we shall prove the LDP for (θ̂T ) by considering

the rare events {θ̂T ≤ c} and {θ̂T ≥ c}, for c negative and c positive, respectively.
First of all, we have for any negative c,

P(θ̂T ≤ c) = P(f(VT ) ≤ c) = P(VT ∈ ∆c)

where the set ∆c is given, for ac(x) = (x2 − 1)/2c, by

∆c =
{
(x, y) ∈ R

2 such that |x| ≤ 1 and y ∈ [0, ac(x)]
}
.

Since ∆c is a compact set of R2, Theorem 2.2 implies that

lim
T→+∞

1

T
log P(θ̂T ≤ c) = − inf

(x,y)∈∆c

I0(x, y).

However, the rate function I0 has no critical points and I0(x, 0) = +∞. Hence,

lim
T→+∞

1

T
log P(θ̂T ≤ c) = − inf

|x|<1
I0(x, ac(x)) = −I0

(
0,− 1

2c

)
=

c

4
= −I0(c).

We now consider the more tedious case where c is positive. We have for any α > 0,

(B.12) P(θ̂T ≥ c) = P

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
+ P

(
θ̂T ≥ c,

|XT |√
T

> α
)
.

One can remark that

P

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
= P(VT ∈ ∆c,α)

where ∆c,α is the compact set of R2 defined by

∆c,α =
{
(x, y) ∈ R

2 such that 1 ≤ |x| ≤ α and y ∈ [0, ac(x)]
}
.

Therefore, we deduce from Theorem 2.2 that

lim
T→+∞

1

T
logP(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α

I0(x, y).

After some straightforward calculations, we obtain that, as soon as α ≥
√
3,

(B.13) lim
T→+∞

1

T
log P

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
= −I0

(√
3,

1

c

)
= −2c = −I0(c).

It only remains to prove that the right-hand side of (B.12) is negligeable. It follows
from Markov’s inequality that for any positive λ and µ,

P

(
θ̂T ≥ c,

|XT |√
T

> α
)

= P

(
X2

T − 2cST ≥ T,X2
T > α2T

)
,

≤ exp
(
−T (λ+ µα2)

)
E

[
exp

(
(λ+ µ)X2

T − 2λcST

)]
,

≤ exp
(
−T

(
(λ+ µα2)− ΛT (λ+ µ,−2λc)

))
.(B.14)
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By choosing λ = µ = c/5, it is not hard to see that the couple (2c/5,−2c2/5) belongs
to the effective domain DΛ given in Lemma B.2. Hence, as ΛT converges simply to
Λ on DΛ, we infer from (B.14) that for T large enough,

P

(
θ̂T ≥ c,

|XT |√
T

> α
)
≤ exp

(
−T

( c
5
(1 + α2)− 2Λ

(2c
5
,−2c2

5

)))
.

which implies that for α and T large enough,

(B.15) P

(
θ̂T ≥ c,

|XT |√
T

> α
)
≤ exp(−3cT ).

Therefore, it follows from the conjunction of (B.12), (B.13) and (B.15) that for any
positive c,

lim
T→+∞

1

T
logP(θ̂T ≥ c) = −2c = −I0(c).

Finally, in the unstable case, XT has an N (0, T ) distribution. Hence, the case c = 0
is straightforward as

lim
T→+∞

1

T
logP(θ̂T ≥ 0) = lim

T→+∞

1

T
log P(X2

T ≥ T ) = 0 = I0(0),

which achieves the proof of Corollary 2.2.

B.3. THE EXPLOSIVE CASE.

Proof of Theorem 2.3. The proof of Theorem 2.3 can be handled exactly as that
of Theorem 2.1 by taking θ > 0. However, in contrast with the stable case, the ori-
gin does no longer belong to the interior of DL and the function L, given by (B.3),
is not essentially smooth. This is the reason why we are only allowed to apply the
weakest version of the Gärtner-Ellis Theorem A.2.

Proof of Corollary 2.3. We shall proceed as in the proof of Corollary 2.2 by

considering rare events {θ̂T ≤ c} and {θ̂T ≥ c}, for c < θ and c > θ, respectively.

First of all, we already saw that for any negative c, P(θ̂T ≤ c) = P(VT ∈ ∆c) where
∆c is the compact set of R2 given, for ac(x) = (x2 − 1)/2c, by

∆c =
{
(x, y) ∈ R

2 such that |x| ≤ 1 and y ∈ [0, ac(x)]
}
.

Since ∆c ∩ F 6= ∅, it follows from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1

T
log P(θ̂T ≤ c) = − inf

(x,y)∈∆c

Iθ(x, y).

However, the rate function Iθ has no critical points on F and Iθ(x, 0) = +∞.
Consequently,

lim
T→+∞

1

T
log P(θ̂T ≤ c) = − inf

|x|<1
Iθ(x, ac(x)) = −Iθ

(
0,− 1

2c

)
.

In particular, as soon as c < −θ,

lim
T→+∞

1

T
log P(θ̂T ≤ c) =

(c− θ)2

4c
= −Iθ(c),
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while, for −θ ≤ c < 0,

lim
T→+∞

1

T
logP(θ̂T ≤ c) = −θ = −Iθ(c).

From now on, assume that 0 ≤ c < θ. We have for any α > 1/2θ,

(B.16) P(θ̂T ≤ c) = P

(
θ̂T ≤ c,

ST

T
≤ α

)
+ P

(
θ̂T ≤ c,

ST

T
> α

)
.

On can remark that

P

(
θ̂T ≤ c,

ST

T
≤ α

)
= P(VT ∈ ∆c,α)

where ∆c,α is the compact set of R2 defined by

∆c,α =
{
(x, y) ∈ R

2 such that 0 ≤ y ≤ α and y ≥ ac(x)
}
.

Since ∆c,α ∩ F 6= ∅, we obtain from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1

T
log P(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α

Iθ(x, y).

After some straightforward calculations, we find that

(B.17) lim
T→+∞

1

T
logP

(
θ̂T ≤ c,

ST

T
≤ α

)
= −Iθ

(
0,

1

2θ

)
= −θ = −Iθ(c).

It now remains to show that the remainder term of (B.16) is negligeable. It follows
from Markov’s inequality that for any negative λ and for any positive µ,

P

(
θ̂T ≤ c,

ST

T
> α

)
= P

(
X2

T − 2cST ≤ T, ST > αT
)
,

≤ exp
(
−T (λ+ µα)

)
E

[
exp

(
λX2

T + (µ− 2λc)ST

)]
,

≤ exp
(
−T

(
(λ+ µα)− ΛT (λ, µ− 2λc)

))
.(B.18)

By setting λ = (c−θ)/2 and µ = (c−θ)2/4, one can check that the couple (λ, µ−2λc)
belongs to the effective domain DΛ given in Lemma B.2. Hence, we obtain from
(B.18) that for α and T large enough,

(B.19) P

(
θ̂T ≤ c,

ST

T
> α

)
≤ exp(−2θT ).

As a consequence, we deduce from (B.16), (B.17) and (B.19) that for any 0 ≤ c < θ,

lim
T→+∞

1

T
logP(θ̂T ≤ c) = −θ = −Iθ(c).

Finally, we shall investigate the case c > θ. We have for any α > 0,

(B.20) P(θ̂T ≥ c) = P

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
+ P

(
θ̂T ≥ c,

|XT |√
T

> α
)
.

As in the proof of Corollary 2.2,

P

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
= P(VT ∈ ∆c,α)
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where ∆c,α is the compact set of R2 defined by

∆c,α =
{
(x, y) ∈ R

2 such that 1 ≤ |x| ≤ α and y ∈ [0, ac(x)]
}
.

Since ∆c,α ∩ F 6= ∅, it follows from Theorem 2.2 together with Remark 2.1 that

lim
T→+∞

1

T
log P(VT ∈ ∆c,α) = − inf

(x,y)∈∆c,α

Iθ(x, y).

Furthermore, denote

αc(θ) =

√
c+ θ

c− θ
.

After some straightforward calculations, we obtain that, as soon as α ≥ αc(θ),

(B.21) lim
T→+∞

1

T
logP

(
θ̂T ≥ c,

|XT |√
T

≤ α
)
= −Iθ

(
αc(θ),

1

c− θ

)
= θ − 2c = −Iθ(c).

Using once again Markov’s inequality, we have for any positive λ and µ,

P

(
θ̂T ≥ c,

|XT |√
T

> α
)

= P

(
X2

T − 2cST ≥ T,X2
T > α2T

)
,

≤ exp
(
−T (λ + µα2)

)
E

[
exp

(
(λ+ µ)X2

T − 2λcST

)]
,

≤ exp
(
−T

(
(λ+ µα2)− ΛT (λ+ µ,−2λc)

))
.(B.22)

By choosing λ = (c2 − θ2)/4c and µ = (c − θ)2/8c, it is not hard to see that the
couple (λ+µ,−2cλ) belongs to the effective domain DΛ given in Lemma B.2. Hence,
we obtain from (B.22) that for α and T large enough,

(B.23) P

(
θ̂T ≥ c,

|XT |√
T

> α
)
≤ exp(−2(2c− θ)T ).

Therefore, it follows from the conjunction of (B.20), (B.21) and (B.23) that for any
positive c > θ,

lim
T→+∞

1

T
logP(θ̂T ≥ c) = θ − 2c = −Iθ(c),

which completes the proof of Corollary 2.3.

Appendix C

Proofs of CI results.

It follows from (1.1) and (1.2) that

θ̂T − θ =
MT

ST
where MT =

∫ T

0

XtdBt.

The sequence (MT ) is a locally square-integrable martingale with M0 = 0. For all
a ∈ R, denote

WT (a) = exp
(
aMT − a2

2
ST

)
.

It is well-known that (WT (a)) is a positive supermartingale such that E[WT (a)] ≤ 1,
see e.g. [1]. We are now in position to prove Theorem 3.1.
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Proof of Theorem 3.1. Via the same lines as in the proof of Theorem 3.25 in [3],
see also the Appendix of [7], we claim that for any positive x,

(C.1) P(|θ̂T − θ| ≥ x) ≤ 2 inf
p>1

(
E

[
exp

(
−(p− 1)

x2

2
ST

)])1/p

.

As a matter of fact, we have P(|θ̂T − θ| ≥ x) = 2P(AT ) where AT = {MT ≥ xST }.
We deduce from Markov’s inequality together with Holder’s inequality that, for any
positive a and for all q > 1,

P(AT ) ≤ E

[
exp

(a
q
MT − ax

q
ST

)
IAT

]
,

≤ E

[
(WT (a))

1/q exp
( a

2q
(a− 2x)ST

)
IAT

]
,

≤
(
E

[
exp

(ap
2q

(a− 2x)ST

)])1/p

(C.2)

where p and q are Hölder conjugate exponents, since E[WT (a)] ≤ 1. Consequently,
we deduce from (C.2) with a = x and the elementary fact that p/q = p− 1, that

P(AT ) ≤ inf
p>1

(
E

[
exp

(
−(p− 1)

x2

2
ST

)])1/p

which immediately leads to (C.1). It only remains to find a suitable upper bound for
the Laplace transform of ST . Let b = −(p− 1)x2/2 where p > 1. In the stable and
unstable cases θ ≤ 0, it follows from (B.5) and (B.6) with a = 0 and ϕ =

√
θ2 − 2b,

that

E[exp(bST )] = exp
(T
2

(
ϕ− θ

)
− 1

2
log

(
1 + (ϕ− θ)σ2

T

))
,

≤ exp
(
−T

2

(
ϕ+ θ

)
− 1

2
log

(ϕ− θ

2ϕ

))
(C.3)

as ϕ > −θ. Consequently, we obtain from (C.1) and (C.3) that, for any positive x,

(C.4) P(|θ̂T − θ| ≥ x) ≤ 2 inf
p>1

exp
(
− 1

2p

(
T
(
ϕ+ θ

)
+ log

(ϕ− θ

2ϕ

)))
.

On the one hand, if θ = 0 and y =
√

(p− 1)x2, (C.4) immediately implies that

(C.5) P(|θ̂T | ≥ x) ≤ 2 inf
y>0

exp
(
−x2

2

(Ty − log 2

x2 + y2

))
.

On the other hand, if θ < 0 and y = −(ϕ+ θ)/θ, it follows from (C.4) that

(C.6) P(|θ̂T − θ| ≥ x) ≤ 2 inf
y>0

exp
(
−x2

2

(−θTy + log(y + 2)− log(2(y + 1))

x2 + θ2y(y + 2)

))
.

By the same taken, in the explosive case θ > 0, we find that

(C.7) E[exp(bST )] ≤ exp
(T
2

(
ϕ− θ

)
− 1

2
log

(ϕ+ θ

2ϕ

))
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where ϕ = −
√
θ2 − 2b. Therefore, if y = −(ϕ + θ)/θ, we deduce from (C.1) and

(C.7) that, for any positive x,

(C.8) P(|θ̂T − θ| ≥ x) ≤ 2 inf
y>0

exp
(
−x2

2

(θT (y + 2) + log y − log(2(y + 1))

x2 + θ2y(y + 2)

))
.

Finally, (3.1) follows from the conjunction of (C.5), (C.6) and (C.8), which achieves
the proof of Theorem 3.1.

Proof of Corollary 3.1. In the stable case θ < 0, we clearly have for any y > 0,
hT (y) > ℓT (y) where

ℓT (y) =
−θTy − log 2

x2 + θ2y(y + 2)
.

The function ℓT reaches its maximum at the value

yx = − 1

θT

(
log 2 +

√
T 2x2 − 2θT log 2 + (log 2)2

)
.

Putting this value into (3.1) immediately leads to (3.3).

Proof of Corollary 3.2. The proof of Corollary 3.2 is left to the reader as it is
exactly the same as that of Corollary 3.1.

Proof of Corollary 3.3. In the explosive case θ > 0, putting the value

y =
log 2

θT

into (3.1) immediately leads to (3.5).
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