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A POSITIVE MASS THEOREM FOR ASYMPTOTICALLY

HYPERBOLIC MANIFOLDS WITH INNER BOUNDARY

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. In this note, we prove an optimal Positive Mass Theorem for
Asymptotically Hyperbolic spin manifolds with compact inner bound-
ary. This improves a previous result of Chruściel and Herzlich [CH].

1. Introduction

A Riemannian manifold (Mn, g) is called Asymptotically Flat (AF) of
order τ > 0 if there exists a compact K ⊂M and a diffeomorphism
Φ : M \K → Rn \B(r0) where B(r0) is the closed Euclidean ball of radius
r0 > 0 such that, in this chart, the metric satisfies

gij − δij = O(|Φ|−τ ),
∂gij
∂Φk

= O(|Φ|−τ−1),
∂2gij
∂Φk∂Φl

= O(|Φ|−τ−2).

From the work of Bartnik [B], it is known that if τ > n−2
2 and if the scalar

curvature Rg of (Mn, g) is integrable, we can assign to such a manifold a
geometrical invariant called the ADM mass by letting

mADM (g) :=
1

2(n− 1)ωn−1
lim
R→∞

∫
SR

(
divδe− d

(
trδe

))
(νR) dSR.

Here SR is a coordinate sphere of radius R with νR as its unit normal
vector field pointing towards infinity, δ the Euclidean metric and ωn−1 is
the volume of the standard (n− 1)-sphere in Rn. Moreover, divδ (resp. trδ)
is the divergence (resp. the trace) with respect to δ and e := Φ∗g − δ. The
standard positive mass conjecture asserts that

(AF)-Positive Mass Conjecture: Under the previous assumptions, if
Rg ≥ 0 then mADM (g) ≥ 0. Moreover the mass is zero if and only if
(Mn, g) is isometric to the flat Euclidean space.

By Schoen and Yau [SY1, SY2] this conjecture holds for 3 ≤ n ≤ 7
and by Witten [Wi] for spin manifolds. Now, if furthermore we assume
the existence of a compact minimal hypersurface in M , heuristic arguments
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which rely heavily on the cosmic censorship conjecture, lead Penrose [P] to
the following conjecture

(AF)-Penrose Inequality Conjecture: Assume that the assumptions of
the (AF)-Positive Mass Conjecture are fulfilled and that Σ is the outermost
compact minimal hypersurface, then

mADM (g) ≥ 1

2

(
Volg(Σ)

ωn−1

)n−2
n−1

.(1)

Moreover equality occurs if and only if the region in (Mn, g) outside its
outermost minimal hypersurface Σ is isometric to the domain r > RS of the
Schwarzschild space(

Rn \ {0},
(

1 +
(RS
r

)n−2
) 4

n−2
δ
)

with RS =
(m

2

) 1
n−2

.

Here Volg(Σ) denotes the volume of Σ with respect to the metric induced
by g and m is a positive real number which corresponds to the ADM mass
of the Schwarzschild space. Moreover by outermost minimal hypersurface
we mean that Σ contains all other minimal hypersurfaces in its interior.
Note that Σ may be disconnected. Two major breakthroughs in the proof
of this inequality were obtained for 3-dimensional manifolds by Huisken and
Ilmanen [HI] for connected Σ and by Bray [Br] for general Σ. The technique
used in Bray has recently been extended in [BrL] to n-dimensional manifolds
with 3 ≤ n ≤ 7. It should be noticed that more recently, the case of n-
dimensional manifolds which are the graph of a smooth function over Rn is
treated in [L].

Another interesting approach has been developed by Herzlich [He1, He2]
using the spin framework à la Witten. More precisely, he proves a Penrose-
type inequality valid in all dimensions under the additional assumption that
the manifold is spin. His result does not give the full Penrose inequality
since the assumptions are weaker: indeed, the minimal hypersurface is not
supposed to be the outermost. However it is sharp since the equality case
is only reached by the Schwarzschild metric. One of the main tools used to
obtain this inequality is an optimal positive mass theorem for asymptotically
flat manifolds with compact inner boundary generalizing (in a certain sense)
a result of Gibbons, Hawking, Horowitz and Perry [GHHP].

The (AF)-Penrose Inequality Conjecture is in fact a particular case (the
time-symmetric case) of the full Penrose inequality which is conjectured
to hold for initial data sets (Mn, g, k) of the Einstein equations with zero
cosmological constant satisfying the dominant energy condition (see [Mar]
for more details). Up to now, only few results are known in this direction. It
should be pointed out that for n = 3, Khuri [K1] uses the approach developed
by Herzlich and obtains an interesting inequality in this situation.
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The aim of this paper is to extend Herzlich’s proof of the positive mass
theorem to the asymptotically hyperbolic setting.

2. Asymptotically hyperbolic Riemannian manifolds

The Positive Mass and the Penrose Conjectures can be generalized to
spacetime manifolds with negative cosmological constant. In this context,
the first difficulty is to define an appropriate notion of mass and energy-
momentum. We recall here the time-symmetric version of these concepts
developed by Chruściel and Herzlich [CH] generalizing a previous work of
Wang [Wa].

Let Hn be the n-dimensional hyperbolic space with coordinates
(r, θ) ∈ R+ × Sn−1, endowed with the metric

b = dr2 + sinh2(r) gSn−1 ,

where r is the geodesic distance to a chosen origin corresponding to r = 0
and gSn−1 is the round metric on the (n−1)-sphere. A Riemannian manifold
(Mn, g) is called Asymptotically Hyperbolic (AH) if there exists a compact
subset K ⊂M and a diffeomorphism

Ψ : M \K −→ Hn \B(r0)

where B(r0) is a closed ball of radius r0 > 0 in Hn for which Ψ∗g and b are
uniformly equivalent on Hn \B(r0),∫

Hn\B(r0)

(
|e|2 + |∇be|2

)
cosh r dvb < +∞(2)

and ∫
Hn\B(r0)

|Rg + n(n− 1)| cosh r dvb < +∞(3)

where ∇b stands for the Levi-Civita connection with respect to b and
e := Ψ∗g−b. As for the mass of an (AF) manifold, the mass and the energy-
momentum invariants in this setting appear from a Hamiltonian formulation
of general relativity (see [BI] for example). In particular they are related
to symmetries of the background metric which is considered (the hyperbolic
space in this situation). More precisely, the set defined by

N := {V ∈ C∞(Hn) /HessbV = V b}
is an (n + 1)-dimensional vector space generated by the following basis of
functions:

V(0) = cosh r, V(1) = x1 sinh r, · · · , V(n) = xn sinh r,

where x1, · · · , xn are the coordinate functions on Rn restricted to Sn−1. In
the upper unit hyperboloid model of Hn, the functions V(i) are the restric-

tions to Hn of the coordinate functions on the Minkowski space-time Rn,1.
The spaceN is naturally endowed with a Lorentzian metric η, with signature
(+,−, · · · ,−), coming from the action of the group of isometries O+(1, n)
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of the hyperbolic metric. This metric is characterized by the condition that
the above basis is orthonormal that is

η(V(0), V(0)) = 1 and η(V(i), V(i)) = −1

for all i = 1, · · · , n. A time-orientation on N is provided by declaring that
a time-like vector X = X(µ)V(µ) ∈ N is future-directed if X(0) > 0.

Consider now an asymptotically hyperbolic manifold (Mn, g) with a chart
at infinity denoted by Ψ such that the asymptotic decay conditions (2) and
(3) hold. The mass functional of (Mn, g) with respect to Ψ is the linear
form on N defined for V ∈ N by

HΨ(V ) :=
1

2(n− 1)ωn−1
lim
R→∞

∫
SR

U(V,Ψ∗g − b)(νR)dSR(4)

where the integrand term is given by

U(V, e) := V
(
divbe− d(trbe)

)
+ (trbe)dV − i∇bV e.

Here iX denotes the contraction by a vector field X. It is important to note
that the assumptions (2) and (3) ensure that the limit (4) exists and is finite.
On the other hand, if I is an isometry of the hyperbolic space, the map I ◦Ψ
also defines a chart at infinity with the appropriate decay conditions. The
mass functional with respect to these charts are related by

HI◦ΨV = HΨ(V ◦ I−1).(5)

Moreover, if Φ is another chart at infinity as above, one can check that
there is an isometry I of b such that Φ = I ◦ Ψ modulo lower order terms
which do not affect the mass functional. From this and since the action of
the isometry group of Hn on N (appearing on the right-hand side of (5))
preserves the Lorentzian metric η, it follows that if pµ := HΨ(V(µ)) then the
real number mHY P (g) defined (up to a sign) by

mHY P (g)2 := η(pg,pg) =
∣∣∣p2

(0) −
n∑
j=1

p2
(j)

∣∣∣
does not depend on the chart Ψ and is called the mass of (Mn, g). Here
pg is the vector with components p(µ) and is called the energy-momentum
vector of (Mn, g). It is important to point out that the causal character as
well as the future/past pointing nature of pg do not depend on the chart Ψ
provided that the suitable decay properties (2) and (3) are satisfied. Then
if pg is causal and future-directed, it is natural to choose

mHY P (g) :=
√
η(pg,pg).

In this setting, the positive mass conjecture takes the following form

(AH)-Positive Mass Conjecture: Let (Mn, g) be a complete n-dimensional
Riemannian, asymptotically hyperbolic manifold. Assume that the scalar
curvature Rg of g satisfies Rg ≥ −n(n − 1). Then the energy-momentum



ON A POSITIVE MASS THEOREM 5

vector pg is time-like future-directed, unless (Mn, g) is isometric to the hy-
perbolic space Hn.

This conjecture is proved for spin manifolds (see [CH] and [Wa]) whereas
only partial results are known for non-spin manifolds (see for example [ACG]).

Now if we assume the existence of a minimal hypersurface in M , an in-
equality similar to the (AF)-Penrose inequality (1) is conjectured

(AH)-Penrose Inequality Conjecture: Assume that (Mn, g) satisfies
the assumptions of the (AH)-Positive Mass Conjecture and that M carries
a compact, outermost minimal boundary Σ, then

mHY P (g) ≥ 1

2

((
Volg(Σ)

ωn−1

)n−2
n−1

+

(
Volg(Σ)

ωn−1

) n
n−1
)
.(6)

Moreover equality occurs if and only if (Mn, g) is isometric to the exterior
of the Anti-de-Sitter Schwarzschild space.

Recall that the n-dimensional Anti-de Sitter Schwarzschild space arises
as the slice t = 0 of the Anti-de Sitter Schwarzschild spacetime of dimension
n+ 1 and mass m > 0 whose metric is given by

g̃AdS−Schw = −
(

1 + ρ2 − 2m

ρn−2

)
dt2 +

dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2gSn−1 .

Up to now, even the 3-dimensional case of this conjecture is still open.
However, several results [DGS, dLG] confirm the validity of this conjecture
by proving it for (AH) graphical manifolds. Another result which goes in
this direction is the following positive mass theorem for (AH) manifolds with
a compact inner boundary proved by Chruściel and Herzlich [CH] :

Theorem 1. [CH] Let (Mn, g) be a complete spin (AH) manifold with a
compact nonempty inner boundary of mean curvature H ≤ 1, and with scalar
curvature satisfying Rg ≥ −n(n−1). Then the energy-momentum vector pg

is time-like future-directed.

In particular, this result implies that if M has a minimal compact inner
boundary, then the mass is far from zero. As noticed in the proof of this
theorem, equality is never reached. Our goal in this paper is to generalize
this result in such a way that equality can be achieved.

3. A sharp positive mass theorem for asymptotically
hyperbolic manifolds with compact inner boundary

In this section, we state and give the proof of our main result. For the
sake of clarity and since the assumptions and the conclusions slightly differ,
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we choose to treat the 3-dimensional case separately. Indeed, since a 3-
dimensional manifold is automatically spin, we have

Theorem 2. Let (M3, g) be a 3-dimensional complete (AH) manifold with
scalar curvature satisfying Rg ≥ −6 and compact inner boundary Σ homeo-
morphic to a 2-sphere whose mean curvature is such that

H ≤

√
4π

Areag(Σ)
+ 1.(7)

Then the energy-momentum vector pg is time-like future-directed or zero.
Moreover, if it vanishes then (M3, g) is isometric to the complement of a
geodesic ball in the hyperbolic space H3.

If the dimension of M is at least 4, the mean curvature has to be controlled
by a quantity involving the Yamabe invariant Y (Σ) of Σ for the induced
metric (see for example [Hi2] for a precise definition). More precisely

Theorem 3. Let (Mn, g) be an n-dimensional (n ≥ 4) complete (AH) spin
manifold with scalar curvature satisfying Rg ≥ −n(n − 1), compact inner
boundary Σ of positive Yamabe invariant Y (Σ) and of mean curvature

H ≤

√
Y (Σ)

(n− 1)(n− 2)
Volg(Σ)−

2
n−1 + 1.(8)

Then the energy-momentum vector pg is time-like future-directed or zero.
If it is zero, then (Mn, g) has an imaginary Killing spinor field and Σ is a
totally umbilical hypersurface with constant mean curvature carrying a real
Killing spinor.

The existence of an imaginary (resp. real) Killing spinor on M (resp. Σ)
imposes strong restrictions on the geometry of M (resp. Σ): in particu-
lar, it has to be an Einstein manifold with negative (resp. positive) scalar
curvature. The simplest example of an asymptotically hyperbolic manifold
with zero energy-momentum vector and which satisfies the assumptions of
our result is the complement of a geodesic ball in the hyperbolic space Hn.
Indeed, a straightforward calculation shows that for such a manifold one has
equality in (8) and also zero mass so that it is a limiting manifold of our
positive mass theorem. An interesting open question is to know whether it
is unique.

Remark 1. In [C], Cortier asserts that Theorem 1 is somehow optimal.
Indeed, as explained in this paper, if in Theorem 1 one modifies the condition
on the mean curvature of the inner boundary by the condition H ≤ α
with α > 1, then one can construct asymptotically hyperbolic metrics of
constant scalar curvature equals to −n(n−1) with a compact inner boundary
satisfying H ≤ α and an arbitrary energy-momentum tensor. In particular,
the energy-momentum tensor can be chosen to be space-like and this should
contradicts our Theorem 2 and 3. In fact this is not the case : in Cortier’s
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construction, the number α > 1 is fixed and then the “counter-example”
is produced. However, in our statement, the fact is that the bound on the
mean curvature depends on the geometry of the boundary. This is why these
counter-examples do not satisfy our assumptions.

3.1. The Schrödinger-Lichnerowicz formula. The first main ingredient
for the proof of Theorem 2 and 3 is the integral version of the Schrödinger-
Lichnerowicz formula for (AH) manifolds. First, let us recall briefly some
basic facts about spin geometry and fix the notations. For more details, we
refer for example to [LM, BHMMM, Gin].

Let (Mn, g) be an n-dimensional Riemannian spin (AH) manifold, sup-
posed connected from now on, and denote by ∇ the Levi-Civita connection
on its tangent bundle TM . We also denote by ∇/ the Levi-Civita connection
associated with the induced metric on the inner boundary Σ of M . Then
the Gauß formula states that

∇/XY = ∇XY + g(AX,Y )N,

where X,Y are vector fields tangent to the hypersurface Σ, the vector field
N is the inner unit field normal to Σ and A stands for the shape operator
defined by

(9) ∇XN = AX, ∀X ∈ Γ(TΣ).

The mean curvature of Σ is then obtained by taking the normalized trace
of A, that is (n− 1)H = trA, in such a way that the inner round boundary
of Hn \B(r0) has positive mean curvature.

On the other hand, since the manifold is spin, we choose a spin structure
on M and consider the corresponding spinor bundle SM . Equipped with γ,
the Clifford multiplication, SM becomes a bundle of complex left modules
over the complex Clifford bundle C`(M) of the manifold M . On the spinor
bundle SM , one also has a natural Hermitian metric, denoted by 〈 , 〉,
and the spinorial Levi-Civita connection ∇ acting on spinor fields. The
Hermitian metric and ∇ are compatible with the Clifford multiplication and
compatible with each other, in such a way that (SM,γ, 〈 , 〉,∇) is a Dirac
bundle in the sense of [LM]. The Dirac operator D on SM is the first order
elliptic differential operator locally given by

D =
n∑
i=1

γ(ei)∇ei ,

where {e1, . . . , en} is a local orthonormal frame of TM .
Consider now the restriction

S/Σ := SM |Σ
which is a left module over C`(Σ) for the induced Clifford multiplication
defined by

γ/(X)ψ = γ(X)γ(N)ψ
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for every ψ ∈ Γ(S/Σ) and X ∈ Γ(TΣ). We endow S/Σ with the Hermit-
ian metric 〈 , 〉 induced from that of SM as well as the spin Levi-Civita
connection

(10) ∇/Xψ = ∇Xψ +
1

2
γ/(AX)ψ = ∇Xψ +

1

2
γ(AX)γ(N)ψ

for every ψ ∈ Γ(S/Σ) andX ∈ Γ(TΣ). With these constructions, (S/Σ, γ/, 〈 , 〉,∇/ )
is also a Dirac bundle over Σ. We will denote by D/ : Γ(S/Σ) → Γ(S/Σ) the
Dirac operator associated with the Dirac bundle S/Σ. It is a well-known
fact that D/ is a first order elliptic differential operator which is formally
L2-selfadjoint. By (10), we have for any spinor field ψ ∈ Γ(SM),

D/ψ =
n−1∑
j=1

γ/(ej)∇/ ejψ = −n− 1

2
Hψ − γ(N)Dψ −∇Nψ,

where {e1, . . . , en−1} is a local orthonormal frame of TΣ. Moreover, from
(9) and (10), it is straightforward to see that the skew-commutativity rule

(11) D/
(
γ(N)ψ

)
= −γ(N)D/ψ

holds for any spinor field ψ ∈ Γ(S/Σ). From this fact, we observe that the
spectrum of D/ is always symmetric with respect to zero, while this is the
case for the Dirac operator DΣ of the intrinsic spinor bundle when n is odd.
If n is even, the spectrum of DΣ is not necessarily symmetric. In fact, in
this case, the spectrum of D/ is just the symmetrization of the spectrum of
DΣ. Consequently, any assumptions on the spectrum of DΣ automatically
translates to assumptions on the spectrum of D/ .

In the hyperbolic setting, we have to consider another Dirac-type operator
which arises as associated to the following modification of the spin Levi-
Civita connection

(12) ∇±X := ∇X ± (i/2)γ(X)

forX ∈ Γ(TM). Note that∇±-parallel spinor fields correspond to imaginary
Killing spinors with Killing number ∓(i/2). The associated Dirac operators
are thus defined for all ψ ∈ Γ(SM) by

D±ψ :=

n∑
j=1

γ(ej)∇±ejψ = Dψ ∓ n

2
iψ.

Since D± are zero order modifications of the Dirac operator D, they also de-
fine first order elliptic differential operators. From the classical Schrödinger-
Lichnerowicz formula

D2 = ∇∗∇+
1

4
Rg

and an integration by parts on the manifold MR = M \ {r ≥ R} ⊂ M , we
get ∫

MR

〈Dψ,ϕ〉 dM =

∫
MR

〈ψ,Dϕ〉 dM −
∫

ΣR

〈γ(ÑR)ψ,ϕ〉 dΣR(13)
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where ÑR is the inner unit normal vector field to ΣR = ∂MR = Σ q SR
(which is given by N on Σ and NR on SR). Now we can compute the corre-
sponding formulae for the modified connections ∇± and the corresponding
Dirac operators D± (see the proof of Theorem 4.7 in [CH]):

Lemma 2. For any smooth spinor field ψ on MR, we have

−
∫
SR
〈∇±NR

ψ + γ(NR)D±ψ,ψ〉 dSR = −
∫

Σ
〈D/±ψ +

n− 1

2
Hψ,ψ〉 dΣ

+

∫
MR

(
|∇±ψ|2 +

1

4

(
Rg + n(n− 1)

)
|ψ|2 − |D±ψ|2

)
dM.

Here, the operators D/± are given for any ψ ∈ Γ(S/Σ) by

D/±ψ := D/ψ ± n− 1

2
iγ(N)ψ.

An important feature for our concern is the study their spectra.

3.2. On the spectra of D/±. Here we relate the spectra of the operatorsD/±

to the spectrum of the Dirac operator D/ . Then, from well-known eigenvalue
estimates on the first eigenvalue of D/ , we deduce a lower bound for their
eigenvalues (see Proposition 4).

Proposition 3. The operators D/± are first order elliptic and self-adjoint
differential operators. Moreover, if the Dirac operator D/ is invertible, then

Spec(D/+) = Spec(D/−) =
{
λ̃ = ±

√
λ2 +

(n− 1)2

4
/ λ ∈ Spec(D/ )

}
and for any λ ∈ Spec(D/±) the map γ(N) : Eλ(D/±) −→ E−λ(D/∓) is an iso-
morphism. Here Eλ(D/±) denote the eigenspaces associated with the eigen-
value λ for the corresponding operators.

Proof : Since D/± are zero order modifications of the extrinsic Dirac oper-
ator it is obvious to see that they are elliptic first order differential operators.
Moreover, since D/ is self-adjoint with respect to the L2-scalar product on
Σ and since the map iγ(N) is pointwise Hermitian, it is straightforward to
check that D/± are also self-adjoint for the L2-scalar product. In particu-
lar, since Σ is compact, their spectra consist of unbounded sequence of real
numbers (µ±k )k∈Z. Note that it is clear from (11) that

D/±(γ(N)ψ) = −γ(N)D/∓ψ(14)

for all ψ ∈ Γ(S/Σ). Since by (11) the operator D/ anticommutes with iγ(N),
the operatorsD/± leave invariant the finite-dimensional space Eλ(D/ )⊕E−λ(D/ )
and they act on as

D/± =

(
λ ±n−1

2
±n−1

2 −λ

)
.

We conclude by noting that these two matrices have the same characteristic
polynomials. q.e.d.
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This result implies in particular that the spectra of D/+ and D/− coincide
and are symmetric with respect to zero. For this reason we denote their
spectra by (µk)k∈Z? in such a way that

µk > 0 for k > 0 and µk = −µ−k for k ∈ Z?.
Now from well-known estimates of the first author [Hi1, Hi2] and C. Bär
[Bä] on the first eigenvalue of the Dirac operator and from the previous
characterization of the spectrum of D/±, we immediately get:

Proposition 4. Let (Σn−1, g) be an oriented compact hypersurface in an
n-dimensional Riemannian spin manifold. The first positive eigenvalue µ1

of D/± satisfies:

(1) If n = 3 and Σ2 is homeomorphic to a 2-sphere then

µ2
1 Areag(Σ) ≥ 4π + Areag(Σ).(15)

Moreover equality occurs if and only of (Σ2, g) is isometric to a round
sphere.

(2) If n ≥ 4 and (Σn−1, g) has a positive Yamabe invariant Y (Σ) then

µ2
1 Volg(Σ)

2
n−1 ≥ n− 1

4(n− 2)
Y (Σ) +

(n− 1)2

4
Volg(Σ)

2
n−1 .(16)

Moreover equality occurs if and only if (Σn−1, g) carries a non-trivial
real Killing spinor.

This estimate on µ1 will appear to be crucial in the proof of Theorem 2
and 3 because of the choice of the boundary condition we describe now.

3.3. An Atiyah-Patodi-Singer boundary condition. In this section,
we introduce the boundary condition which we will use to prove Theorem 2
and 3. This condition appears naturally by looking at the Σ-boundary term
in the formula of Lemma 2. Note that it differs from the one used in [CH]
to prove Theorem 1. This condition has been used by the first two authors
and A. Roldán in [HMR] to prove lower bounds for the first eigenvalue
of the Dirac operator on compact manifolds bounding compact domains
with Rg ≥ −n(n − 1). It belongs to the broad class of spectral conditions
introduced by Atiyah, Patodi and Singer [APS] to prove the index theorem
for manifolds with boundary.

From Proposition 3, we know that the first order operators D/± are self-
adjoint, elliptic and their spectra are unbounded discrete sets of real numbers
(µk)k∈Z. Moreover, there exists a complete orthonormal basis of the Hilbert
space L2(S/Σ) consisting of associated smooth eigenspinors. Now let

P±+ : L2(S/Σ) −→ L2(S/Σ)

be the L2-orthogonal projections onto the subspace spanned by the eigen-
spinors corresponding to the positive eigenvalues of D/±. It is shown in
[BC] that such maps P±+ provide (global) elliptic boundary conditions for
the Dirac-type operator D±. As a direct consequence of Formula (13) and
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Proposition 3, we obtain that the adjoint of the operators D± under the
boundary condition P±+ are the operators D∓ under the boundary condi-

tion P∓+.
On the hyperbolic space (Hn, b), we have a set of distinguished spinor

fields, the imaginary Killing spinor fields. These are solutions ϕ of the
overdetermined partial differential equation

∇bXϕ = ∓ i
2
γ(X)ϕ

for all X ∈ Γ(THn) and where ∇b is the Levi-Civita connection associated
with the hyperbolic metric b. Using the ball model (Bn, ω2δ) of the hyper-
bolic space Hn with ω(x) = 2/(1− |x|2), Baum [Bm] gave a nice and simple
description of these particular fields. Indeed, under a conformal change of
the metric, we can identify the spinor bundle over (Bn, δ) with the one over
(Hn, b) in such a way that to any constant spinor u ∈ Γ(SBn) corresponds
an imaginary Killing spinor fields ϕ±u on Hn by letting

ϕ±u (x) =

√
2

1− |x|2
(
1∓ iγδ(x)

)
u.

Here we omit the identification between SBn and SHn and γδ denotes the
Euclidean Clifford multiplication. A straightforward calculation shows that
for any such ϕu, the function Vu = |ϕu|2b is always an element of N . More
importantly again is the fact that any future-directed combination V(0) −∑
aiV(i), with (ai) ∈ Sn−1, can be obtained as a Vu for some imaginary

Killing spinor ϕu. The choice of the boundary conditions P±+ are due to the
fact that imaginary Killing spinors ϕ±u are solutions of D±ϕ±u = 0 with our
boundary conditions on Hn \ B(r0) where B(r0) ⊂ Hn is a geodesic ball of
radius r0 > 0. This was not the case for the boundary condition used in
[CH] to prove Theorem 1.

3.4. Proof of Theorem 2 and 3. We closely follow the analytic setting
developed by Bartnik and Chruściel in [BC]. For this, we observe that under
our assumptions, we have:
• A weighted Poincaré inequality (Definition 8.2 in [BC]), that is there

exits w ∈ L1
loc(M) with ess infΩw > 0 for all relatively compact Ω in M such

that for all ψ ∈ C1
c (M), the space of C1 compactly supported spinor fields

on M , we have ∫
M
|ψ|2w dM ≤

∫
M
|∇±ψ|2dM.(17)

Indeed, it is easy to see that Γ±, the symmetric parts of the connections ∇±
are given by Γ±X = ∓(i/2)γ(X) so that we can check that the assumptions
of Theorem 9.10 in [BC] are fulfilled.
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• A Schrödinger-Lichnerowicz estimate for the pairs (D±,P±+) (Definition

8.4 in [BC]): indeed first note that for ψ ∈ C1
c (M), we can write

ψ|Σ =
∑
k∈Z?

AkΦ
±
k =

∑
k<0

AkΦ
±
k + P±+ψ|Σ

with (Ak)k∈Z? ⊂ C and where (Φ±k )k∈Z? is a complete L2-orthonormal basis
of S/Σ consisting of smooth eigenspinors for D/± associated with the eigen-
value µk. Then the boundary term (on Σ) in the Schrödinger-Lichnerowicz
formula of Lemma 2 can be bounded as follows∫

Σ
〈D/±ψ +

n− 1

2
Hψ,ψ〉 dΣ ≤

∑
k>0

(
µk +

n− 1

2
sup

Σ
(H)

)
|Ak|2

+
(n− 1

2
sup

Σ
(H)− µ1

)∑
k<0

|Ak|2.

The assumptions (7) and (8) on the mean curvature combined with the lower
bounds on µ1 given by (15) and (16) allow to show that the second term in
the right-hand side of the previous inequality is non-positive and to bound
the first term in such a way that we finally get∫

Σ
〈D/±ψ +

n− 1

2
Hψ,ψ〉 dΣ ≤

∫
Σ
|J ±P±+ψ|Σ|2 dΣ.

Here J ± :=
(
|D/±| + n−1

2 supΣ(H)
)1/2

is the pseudo-differential operator
defined by

J ±ψ|Σ =
∑
k∈Z?

(
|µk|+

n− 1

2
sup

Σ
(H)

)1/2
AkΦ

±
k .

From this estimate, the Schrödinger-Lichnerowicz formula of Lemma 2 and
the fact that Rg ≥ −n(n− 1) we conclude that the pairs (D±,P±+) satisfy a

Schrödinger-Lichnerowicz estimate, that is for all ψ ∈ C1
c (M), we have∫

M
|∇±ψ|2 dM ≤

∫
M
|D±ψ|2 dM +

∫
Σ
|J ±P±+ψ|Σ|2 dΣ.(18)

Now consider the space

C1,±
c (M) := {ψ ∈ C1

c (M) /P±+ψ|Σ = 0}
on which a norm is given by

||ψ||2H± :=

∫
M

(
|∇±ψ|2 +

1

4

(
Rg + n(n− 1)

)
|ψ|2

)
dM

since we assumed Rg ≥ −n(n− 1). Therefore the space

H± := || . ||H± − completion of C1,±
c (M)

is a Hilbert space. The Poincaré inequality (17) ensures that H± embeds
continuously in H1

loc. In particular, it implies that any ψ ∈ H± can be
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represented by a spinor field in H1
loc with P±+ψ|Σ = 0. Consider now the

bilinear form defined by

α(ϕ,ψ) :=

∫
M
〈D+ϕ,D+ψ〉 dM

for ϕ, ψ ∈ H+. From Lemma 8.5 in [BC], we get that the map
ψ ∈ H+ 7→ D+ψ ∈ L2 is continuous and so α is also continuous on H+×H+.
Moreover, using the weighted Poincaré inequality (17) and the Schrödinger-
Lichnerowicz estimate (18), we immediately observe that α is coercive on
H+. So if for χ ∈ L2, we define the continuous linear form

Lχ(ψ) =

∫
M
〈χ,D+ψ〉 dM

on H+, the Lax-Milgram theorem implies that there exists a unique ξ0 ∈ H+

satisfying for all ψ ∈ H+ ∫
M
〈ζ,D+ψ〉 dM = 0

with ζ := D/+ξ0−χ. This leads to the fact that ζ ∈ L2 is a weak solution of
the boundary value problem{

(D+)?ζ = 0 on M,
(P+

+)?ζ|Σ = 0 along Σ

which from Section 3.3 reads as{
D−ζ = 0 on M,
P−+ζ|Σ = 0 along Σ.

From the ellipticity of the Dirac-type operator D− and the boundary con-
dition P−+, we conclude that ζ ∈ H− ∩ L2 is in fact a strong solution of
this boundary value problem. Now it follows from standard arguments (see
[AD, BC]) that, under the assumptions of Theorem 2 and 3, the operator
D− defined on H− has a trivial L2-kernel. This implies in particular that
ζ ≡ 0 and so ξ0 ∈ H+ is the unique solution of the boundary value problem{

D+ξ0 = χ on M,
P+

+ξ0|Σ = 0 along Σ.

To summarize, we proved the following existence result:

Proposition 5. Under the assumptions of Theorem 2 and 3, for all χ ∈ L2

there exists a unique ξ0 ∈ H± such that D±ξ0 = χ.

Now we can apply the classical Witten’s argument to conclude. To ev-
ery constant spinor u ∈ Γ(SBn) is associated an imaginary Killing spinor
ϕu ∈ Γ(SHn) with Killing number −(i/2) (see Section 3.3). Since (Mn, g)
is asymptotically hyperbolic, we can identify the spinor bundle over Mext =
M \K with the one over Hn \B (by using the chart at infinity). So, through
this identification, the field ϕu on Hn is mapped to a spinor field over Mext,
also denoted by ϕu. Let η be a cut-off function that vanishes outside of Mext
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and is equal to 1 for large r and consider the spinor field ηϕu. It is now a
classical fact [AD] that D+(ηϕu) ∈ L2 and so Proposition 5 applies to get
the existence of ψu ∈ H+ such that D+ψu = −D+(ηϕu). In other words,
the spinor field ξu = ψu + ηϕu is a solution of the boundary value problem{

D+ξu = 0 on M,
P+

+ξu |Σ = 0 along Σ.

If ψu was an element of C1,+
c (M) one could directly apply the Schrödinger-

Lichnerowicz formula of Lemma 2 and calculations in [CH] to conclude that

1

4
HΨ(Vu) =

∫
M

(
|∇+ξu|2 +

1

4

(
Rg + n(n− 1)

)
|ξu|2

)
−
∫

Σ
〈D/+ψu +

n− 1

2
Hψu, ψu〉 dΣ(19)

and so HΨ(Vu) ≥ 0 for Rg ≥ −n(n − 1) and H satisfying (7) and (8).
Actually, it is not difficult to show that the previous equality holds for
ψu ∈ H±. This is a simple consequence of the fact that the right-hand
side of (19) is continuous on H+ (and C1,+

c (M) is dense in H+). Now, as
mentioned in Section 3.3, any future-directed null V ∈ N is obtained as Vu,
the squared norm of an imaginary Killing spinor field. We then deduce that
the mass functional is non-negative on any such vectors V ∈ N and this
implies that HΨ is causal and future-directed.

Assume now that the mass functional HΨ is null or zero. From the
Schrödinger-Lichnerowicz formula (19), the spinor field ξu has to be an
imaginary Killing spinor field on M and so M is an Einstein manifold with
constant negative scalar curvature equals to −n(n − 1). Moreover, we also
have equality in the estimates (15) and (16) depending on whether n = 3 or
n ≥ 4.

Suppose first that n = 3. First since (M3, g) is Einstein, it implies that
M has constant sectional curvature −1. Moreover, equality in (15) implies
that (Σ2, g) is isometric to a round sphere. On the other hand, integrating
the Gauß formula on Σ with the help of the Gauß-Bonnet formula gives

8π = 2

∫
Σ

(
H2 − 1

)
dΣ−

∫
Σ
|O|2 dΣ

where O is the traceless part of the second fundamental form. This identity
combined with the upper bound (7) on the mean curvature of Σ implies that
(Σ2, g) is isometric to a totally umbilical round sphere with constant mean
curvature. Moreover, the second fundamental form of Σ in M agrees with
the one of Σ in H3. We can then glue along Σ in M a geodesic ball of the

hyperbolic space to obtain a smooth and complete Riemannian manifold M̃
with constant negative sectional curvature in which a round sphere is em-

bedded and so M̃ is isometric to H3 (see Corollary 7 in [HMR] for example).
We finally deduce that M is isometric to the complement of a geodesic ball
in H3.
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For n ≥ 4, the previous method cannot be applied since we only have the
existence of one imaginary Killing spinor ξu ∈ Γ(SM) so that we can only
deduce that (Mn, g) is Einstein with negative scalar curvature −n(n − 1).
On the other hand, the restriction of ξu to Σ, which is the spinor field ψu,
has to be an eigenspinor for the operator D/+ associated with the eigenvalue
−µ1. Moreover, as observed in Proposition 4, this implies the existence of a
real Killing spinor on Σ. However, from the relation between the eigenspaces
of D/+ and D/ established in the proof of Lemma 3, it is straightforward to
observe that the spinor field

ψ̃u :=
n− 1

2
γ(N)ψu − i (µ1 − λ1)ψu(20)

has to be a real Killing spinor that is

∇/X ψ̃u = − λ1

n− 1
γ(X)γ(N)ψ̃u(21)

for all X ∈ Γ(TΣ). Here λ1 =

√
µ2

1 −
(n−1)2

4 is the first positive eigenvalue

of the Dirac operator D/ . Now differentiating equality (20) along Σ using
the fact that ψu is an imaginary Killing spinor and the spin Gauß formula
(10) gives

∇/X ψ̃u =
n− 1

4
iγ(X)γ(N)ψu −

1

2
(µ1 − λ1)γ(X)ψu

+
n− 1

4
γ(AX)ψu −

i

2
(µ1 − λ1)γ(AX)γ(N)ψu(22)

for all X ∈ Γ(TΣ). On the other hand, replacing ψ̃u in the right-hand side
of (21) by its expression (20) gives, for all X ∈ Γ(TΣ):

∇/X ψ̃u =
λ1

2
γ(X)ψu + i

λ1

n− 1
(µ1 − λ1)γ(X)γ(N)ψu.(23)

Hence, the last two equations, lead to

γ
(1

2
AX − µ1

n− 1
X
)(n− 1

2
ψu − i (µ1 − λ1)γ(N)ψu

)
= 0

for all X ∈ Γ(TΣ). Now since ψu is an imaginary Killing spinor it has no
zero, we conclude that the same property holds for the spinor field n−1

2 ψu−
i (µ1 − λ1)γ(N)ψu by invertibility of the matrix(

n−1
2 −(µ1 − λ1)

−(µ1 − λ1) n−1
2

)
.

This allows to conclude that Σ is totally umbilical with constant mean cur-
vature equal to 2µ1

n−1 .
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[dLG] L.L. de Lima, F. Girão, An Alexandrov-Frenchel-type inequality in hyperbolic
space with an application to a Penrose inequality, arxiv:1209.0438v3.

[GHHP] G.W. Gibbons, S.W. Hawking, G.T. Horowitz and M.J.Perry, Positive mass
theorems for black holes, Commun. Math. Phys. 88, 295-308 (1983).

[Gin] N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, 1976 (2009).
[He1] M. Herzlich, A Penrose-like inequality for the mass of Riemannian asymptotically

flat manifolds, Commun. Math. Phys. 188, no. 1, 121-133 (1997).
[He2] M. Herzlich, Minimal surfaces, the Dirac operator and the Penrose inequality,
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