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A Smoothing Method for Sparse Optimization

over Polyhedral Sets

M. Haddou∗ T. Migot†

Abstract

In this paper, we investigate a class of heuristic schemes to solve the

NP-hard problem of minimizing `0-norm over a polyhedral set. A well-

known approximation is to consider the convex problem of minimizing

`1-norm. We are interested in �nding improved results in cases where the

problem in `1-norm does not provide an optimal solution to the `0-norm
problem. We consider a relaxation technique using a family of smooth con-

cave functions depending on a parameter. Some other relaxations have

already been tried in the literature and the aim of this paper is to provide

a more general context. This motivation allows deriving new theoretical

results that are valid for general constraint set. We use a homotopy al-

gorithm, starting from a solution to the problem in `1-norm and ending

in a solution of the problem in `0-norm. We show the existence of the

solutions of the subproblem, convergence results, a kind of monotonicity

of the solutions as well as error estimates leading to an exact penaliza-

tion theorem. We also provide keys for implementing the algorithm and

numerical simulations.

Mathematics Subject Classi�cation. 90-08 and 65K05
Keywords : smoothing functions ; sparse optimization ; concave minimization
; l0-norm

Introduction

Consider a polyhedron F de�ned by linear inequalities, F = {x ∈ Rn| Ax ≤ b} ∩ Rn+
for some b ∈ Rm and A ∈ Rm×n, which we suppose non-empty and not reduced
to a singleton. Although we consider a polyhedron here, most of the results
presented in this article can be generalized as F being a closed convex set in
Rn+. One should note that the hypothesis of considering a polyhedron in the
non-negative orthant is not restrictive. It is only assumed to simplify the pre-
sentation and to avoid the absolute value in the de�nition of the problem.

∗IRMAR-INSA Rennes ; mounir.haddou@insa-rennes.fr
†IRMAR-INSA Rennes ; tangi.migot@insa-rennes.fr
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We are interested in �nding the sparsest point over this polyhedron, which
is equivalent to minimize the `0-norm, i.e.

min
x∈F
‖x‖0, (P0)

where

∀x ∈ Rn, ‖x‖0 :=

n∑
i=1

s(|xi|), where for t ∈ R, s(t) = {0 if t = 0 ; 1 otherwise}.

(1)
Note that the `0-norm is not a norm as it does not have the homogeneity prop-
erty. (P0) is an NP-hard problem as shown in [49].

This problem has several applications and received a considerable interest
recently. Sparsity is involved in several domains including signal and image
processing [52, 34, 21, 43, 10], statistics [30, 61, 57], machine learning [9, 44, 46].
The compressed sensing [17, 22, 26, 23, 11, 12, 14] has been the most popular
application involving sparsity and creating cross-disciplinary attention in recent
years and stimulates a plethora of new applications of sparsity. For more details
about applications in image and signal modelling as well as a review on related
questions see [10] or [58].

The problem (P0) being di�cult to solve, a classical approximation consists
in solving the convex problem in `1-norm. The `1-norm is denoted by

∀x ∈ Rn, ||x||1 =

n∑
i=1

|xi|. (2)

The convex problem in `1-norm is de�ned by

min
x∈F
||x||1. (P1)

It can be seen as a convexi�cation of (P0), because the absolute value of x is
the convex envelope of s(x) for x ∈ [−1, 1]. Furthermore, (P1) has the bene�ts
that it can be reformulated as a linear program.

This approach has been extensively studied in [24, 13, 14, 17, 27, 31, 60]
and in particular with inequality constraints. Moreover, several criteria have
been found which guarantee that solving (P1) will also solve (P0) under various
assumptions involving the coe�cients of the matrix A. These criteria, denoted
mutual coherence [25], restricted isometry property [14], null space property
[19], exact recovery condition [59, 31], and the range space property [66], show
the e�ciency of this convex approximation to solve (P0).

A more sophisticated version of this convex formulation and computationally
e�cient approach consider a reweighted-`1 problem as proposed in [15] and later
studied in several recent papers, see [2, 50, 65, 64, 18, 67, 68]. It is clear from
this references that the study of the convex problem (P1) to solve (P0) is of
great importance.

Also formulation (P1) does not solve all the time the initial problem. Con-
sider for instance the following example in two dimension.
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Example 0.1. Given a matrix A ∈ Rn×n and a vector b ∈ Rn such that

A =

(
−0.1 −1
−10 −1

)
and b =

(
−1
−10

)
. (3)

Geometrical observation allows to conclude that the solution of problem (P1)
is ( 10

11 ,
10
11 )T , while solution of problem (P0) are of the form (0, 10 + ε)T and

(10 + ε, 0)T with ε ≥ 0.

Nonconvex optimization has been one of the main approach to tackle this
problem [63, 28, 7, 62, 39]. For instance, in [28, 7], the authors proposed a
reformulation of the problem as a mathematical program with complementarity
constraints. Thresholding algorithms have also some recent popularity in [62,
20, 8, 51, 5, 42]. A Di�erence of Convex (DC) decomposition of the `0-norm
combined with DC Algorithm has been used in [39]. We are interested here
in nonconvex methods to improve the solution we get by solving (P1) in the
general case where this approach does not solve the initial problem. In this aim,
several concave relaxations of ||.||0 have been tried in the literature.

An intuitive approach trying to bridge the gap between the `1-norm and
the `0-norm has been to study homotopy methods based on the `p-norm for
0 ≤ p ≤ 1. This approach has been initiated in [35] and later analyzed in
[32, 16, 29, 38, 33], where the authors prove the link between (P0) and (P1) as
well as conditions involving the coe�cients of A to show a su�cient convergence
condition, so that p does not have to decrease to 0 but only to some small
value. The homotopy method considers non-convex subproblems and solving
the problem in `p is not a trivial task. In [32], the authors study a linearization
algorithm, while in [33] the authors consider an interior-point method to solve
the subproblems. Besides, the problem of minimizing the `p-norm might lead
to numerical di�culties due to the non-di�erentiability at the origin, in [38] the
authors consider a smoothing of the `p-norm to circumvent this problem.

Following the progress made during the last decade in the study of reweighted
`1-norm and `p-norm, we study here smooth regularizations. In [48] and related
works the authors present a general family of smoothing function including the
gaussian family and propose a homotopy method starting from the `2-norm
solutions.

Approximating the `0-norm by smooth functions through an homotopy method
starting from the `1-norm has been studied in the PhD thesis [53] and in
[55, 54, 41]. In these works, the authors consider a selection of minimization
problems using smooth functions such that (t + r)p with r > 0 and 0 < p < 1,
−(t + r)−p with r > 0 and 1 < p, log(t + r) with 0 < r << 1 or 1 − e−rt with
r > 0 and p ∈ N. The subproblems of the homotopy algorithm are solved using
a Frank and Wolfe approach [55], also called SLA in [32], and this method is
further studied in [40].

The aim of this paper is to pursue the study of smooth concave approxima-
tion of the `0-norm by o�ering a more general theoretical context for this study.
Focusing on concave functions is a logical choice considering that the `p-norm
is itself concave. The motivation here is to keep the good properties of the
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method from [55] and related work, a homotopy method between the `1-norm
and the `0-norm problems, and smoothness at the origin. In particular, such a
theoretical study has not been done in the literature.

The method considered here is a homotopy method with a parameter r such
that the method recovers the `1-norm problem for r large and the `0-norm prob-
lem for r small. We provide here a complete analysis of the convergence of the
algorithm as well as a monotonicity study of the objective function during the
iterations of the homotopy scheme. We also prove the existence of the solutions
of the subproblems without any boundedness assumption on the constraints.

For the convex problem of minimizing the `1-norm, we already pointed out
that several criteria involving the coe�cients of the matrix A guarantee that
solving the problem is su�cient to compute a solution to (P0). Such a result
guarantees the good behavior of the method. Considering our homotopy algo-
rithm, we show a similar result independently of the constraints that state that
it is not necessary to tend r to zero to compute a solution of (P0). It can be
seen as an exact penalty result. This property is a key to ensure the interest of
the method.

Most of the theoretical results presented here are valid for any non-empty
closed convex set F , which make them valid for several smoothing functions but
also for several formulations of the problem.

In order to validate our approach, we give technical details and some nu-
merical results on a Frank and Wolfe method to solve the subproblems of the
homotopy scheme. In particular, these results show that we manage to improve
the results given by the `1 norm, which shows the validity of our approach.

This document is organized as follows. Section 1 introduces a general for-
mulation of the relaxation methods using concave functions. Section 2 discusses
convergence and monotonicity results leading to a homotopy method. Section
3 proves error estimates and an exact penalization theorem. Finally, Section 4
presents the algorithm with several remarks concerning its implementation and
numerical results can be found in Section 5.

1 A smoothing method

We consider a family of smooth functions designed to approximate the `0-norm.
This family has already been used in the di�erent context of complementarity
[37, 1] and image restoration [6]. These functions are smooth non-decreasing
concave functions such that

θ : R→]−∞, 1[ with θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1. (4)

One way to build θ functions is to consider non-increasing probability density
functions f : R+ → R+ and then take the corresponding cumulative distribution
function

∀t ≥ 0, θ(t) =

∫ t

0

f(x)dx and ∀t < 0, θ(t) < 0. (5)
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By de�nition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0. (6)

The non-increasing hypothesis on f gives the concavity of θ.
Examples of this family are θ1(t) = t/(t+ 1) if t ≥ 0 and θ1(t) = t if t < 0,

θ2(t) = 1− e−t with t ∈ R.
Then using a scaling technique similar to the perspective functions in convex

analysis we de�ne θ(t, r) := θ
(
t
r

)
for r > 0 and we get

θ(0, r) = 0 ∀r > 0 and lim
r→0

θ(t, r) = 1 ∀t > 0. (7)

For the previous examples of this family and t ≥ 0 we have θ1(t, r) = t/(t+ r),
θ2(t, r) = 1− e−t/r. The function θ1(t, r) will be extensively used in this paper.

Throughout this paper we will consider the concave optimization problem
for r > 0

min
x∈F

n∑
i=1

θ(xi, r). (Pr)

Before moving to the proofs of convergence, we give a result on the existence
of solutions of (Pr). The proof relies on an argument similar to the use of
asymptotic cones and directions as introduced in [3].

Theorem 1.1. Let F ⊂ Rn+ be a non-empty closed convex set. The optimal set
of Pr for r > 0 is non-empty.

Proof. Since
∑n
i=1 θ(xi, r) is bounded below on the closed set F it admits an in-

�mum. Now, assume by contradiction that there exists an unbounded sequence
{xn} such that xn ∈ F, ∀n and

lim
n→∞

f(xn) = inf
x∈F

f(x) < f(x0).

Let {dn} be the sequence de�ned for all n by

dn :=
xn − x0

‖xn‖
.

This sequence is bounded, therefore it converges, up to a subsequence, to some
limit, limn→∞ dn = limn→∞ xn/‖xn‖ = d ∈ F∞, where F∞ denotes the cone
of asymptotic directions of F (cf. [3]). Since F is a closed convex set, it holds
for all x ∈ F that

x+ αd ∈ F, ∀α ≥ 0.

Then, since F ⊂ Rn+, we obtain that d ≥ 0.
Using component-wise monotonicity and continuity assumption on θ gives

lim
n→∞

f(x+ αndn) ≥ f(x), ∀x ∈ F
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as long as αn > 0 for all n and the sequence {αndn} admits some limit. Choosing
x = x0, αn = ‖xn‖ and dn as de�ned above, we obtain

lim
n→∞

f(x0 + αndn) = lim
n→∞

f(xn) ≥ f(x0),

which is a contradiction with our initial assumption. This completes the proof.

2 Convergence

In this section, we will show the link between problems (P0), (P1) and (Pr). We
denote S∗||.||0 the set of solutions of (P0), S∗||.||1 the set of solutions of (P1) and

S∗r the set of solutions of (Pr).
Our aim is to illustrate that for r su�ciently large (Pr) is close to (P1) (see

Theorem 2.2), and for r su�ciently small (Pr) is close to (P0) (see Theorem 2.1).
In this way, we de�ne an homotopy method starting from r large and decreasing
r step by step. Thus, we use the convex approximation (P1) and come closer
and closer to the problem we want to solve. A monotonicity-kind result of
the sequence computed by the homotopy scheme is proved in Theorem 2.3.
Finally, Theorem 2.4 shows that this formulation may also be of interest for
more complicated objective function than the one in (P0).

Theorem 2.1 gives convergence of (Pr) to (P0) for r decreasing to 0.

Theorem 2.1 (Convergence to `0-norm). Let F ⊂ Rn+ be a non-empty closed
convex set. Every limit point of any sequence {xr}r, such that xr ∈ S∗r and
r ↓ 0, is an optimal solution of (P0).

Proof. Given x̄ the limit of the sequence {xr}r, up to a subsequence, and x∗ ∈
S∗||.||0 . Since F is a closed set one has x̄ ∈ F . Furthermore we have for any r in
the corresponding subsequence

∑
i∈supp(x̄)

θ(xr,i, r) ≤
n∑
i=1

θ(xr,i, r) ≤
n∑
i=1

θ(x∗i , r) ≤ ‖x∗‖0. (8)

Moreover the de�nition of θ(., r) functions, for r > 0 and t ∈ Rn give

n∑
i=1

lim
r↓0

θ(ti, r) = ||t||0. (9)

Replacing into (8) we get
||x̄||0 ≤ ||x∗||0, (10)

and thanks to the de�nition of x̄

||x̄||0 = ||x∗||0. (11)
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We now give another convergence result from [32], which adds that the
convergence appears in a �nite number of iteration in the case, where the feasible
set of (P0) is a polyhedron.

Proposition 2.1. Given a non-empty polyhedron F ⊂ Rn+. Then there exists a
r̄ such that for all r ≤ r̄ a vertex of F is an optimal solution of (P0) and (Pr≤r̄).

Proof. (Pr) is a problem of minimizing a concave function over a polyhedron F.
We can use Corollary 32.3.4 of [56], since there is no half-line in F such that
θ(., r) is unbounded below, so the in�mum over F is attained and it is attained
at one of the extremal points of F .

Given that there is a �nite number of extremal point, one vertex, say x′, will
repeadetly solve (Pr) for some increasing in�nite sequence R = (r0, r1, r2, ...).
Moreover the objective function of (Pr) is non-increasing and bounded below
by the in�mum of `0-norm, so

n∑
i=1

θ(x′i, rj) = min
x∈F

n∑
i=1

θ(xi, rj) ≤ inf
x∈F
||x||0. (12)

Going through the limit in R for j →∞ and as the concave function is contin-
uous and x′ ∈ F , we have the results.

Theorem 2.2 and Proposition 2.1 show that the scheme converge to (P0) as
r decreases to zero.

The next theorem shows that for r su�ciently large the solutions of (Pr) are
the same than solutions of (P1). This will be especially useful as an initialization
of the homotopy scheme.

Theorem 2.2 (Convergence to `1-norm). Let F ⊂ Rn+ be a non-empty closed
convex set. Every limit point of any sequence {xr}r, such that xr ∈ S∗r for
r ↑ ∞, is an optimal solution of (P1).

Proof. As r > 0, we can use a scaling technique for S
∗(2)
r = argmin

x∈F

∑n
i=1 rθ(xi, r)

min
x∈F

n∑
i=1

θ(xi, r) ⇐⇒ min
x∈F

n∑
i=1

rθ(xi, r), (13)

S∗r = S∗(2)
r . (14)

So, it is su�cient to show that every limit point of any sequence {xr}r, such
that xr ∈ S∗r for r ↑ ∞, is an optimal solution of (P1).

Given xr ∈ S∗(2)
r and x̄ ∈ S∗||.||1 . We use the �rst order Taylor's theorem for

θ(t) in 0,

θ(t) = tθ′(0) + g(t), where lim
t→0

g(t)

t
= 0. (15)

By concavity of the functions θ, it holds that θ′(0) > 0.
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By de�nition of x̄, we get

n∑
i=1

rθ(xri , r) ≤
n∑
i=1

rθ(x̄i, r). (16)

Now, using (15) yields

n∑
i=1

xri θ
′(0) + rg(

xri
r

) ≤
n∑
i=1

xri θ
′(0) + rg(

x̄i
r

), (17)

n∑
i=1

xri −
n∑
i=1

x̄i ≤
r

θ′(0)

n∑
i=1

g(
x̄i
r

)− r

θ′(0)

n∑
i=1

g(
xri
r

), (18)

≤ 1

θ′(0)

∣∣∣∣∣
n∑
i=1

g( x̄i

r )
x̄i

r

x̄i

∣∣∣∣∣+
1

θ′(0)

∣∣∣∣∣
n∑
i=1

g(
xr
i

r )
xr
i

r

xri

∣∣∣∣∣ , (19)

≤ 1

θ′(0)

(
n∑
i=1

∣∣∣∣g( x̄i

r )
x̄i

r

∣∣∣∣
)(

n∑
i=1

x̄i

)
, (20)

+
1

θ′(0)

(
n∑
i=1

∣∣∣∣∣g(
xr
i

r )
xr
i

r

∣∣∣∣∣
)(

n∑
i=1

xri

)
, (21)

n∑
i=1

xri ≤

(
n∑
i=1

x̄i

)
1 + 1

θ′(0)

(∑n
i=1

∣∣∣ g( x̄i
r )

x̄i
r

∣∣∣)
1− 1

θ′(0)

(∑n
i=1

∣∣∣∣ g( xr
i
r )

xr
i
r

∣∣∣∣) . (22)

Then, we show that the right-hand side in previous equation goes to 1, when
passing to the limit.

It holds true that

lim
r→+∞

x̄

r
= 0. (23)

Besides, by de�nition of xr yields

n∑
i=1

θ(xri , r) ≤
n∑
i=1

θ(x̄i, r) (24)

lim
r→+∞

n∑
i=1

θ(xri , r) ≤ lim
r→+∞

n∑
i=1

θ(x̄i, r) ≤ 0. (25)

so, we get

lim
r→+∞

n∑
i=1

θ(xri , r) = 0. (26)

By de�nition of functions θ, it is true that θ(x, r) := θ(x/r) and θ−1(0, r) = 0.
Thus, by previous equation we obtain

lim
r→+∞

xri
r

= 0 ∀i. (27)
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Using (23) and (27) it follows

lim
r→+∞

x̄i
r

= 0 =⇒ lim
r→+∞

g( x̄i

r )
x̄i

r

= 0, (28)

lim
r→+∞

xri
r

= 0 =⇒ lim
r→+∞

g(
xr
i

r )
xr
i

r

= 0. (29)

Then going to the limit in (22) yields

lim
r→+∞

n∑
i=1

xri ≤
n∑
i=1

x̄i. (30)

However, by de�nition of x̄, it always hold that
∑n
i=1 x̄i ≤

∑n
i=1 xi for all x

feasible for (P1). Since, this is true for the limit point of the sequence {xr}r,
the inequality in (30) is actually an equality. So, the limit point of the sequence
{xr}r is also a solution of (P1). This proves the result.

The next theorem gives a monotonicity result, which illustrates the relations
between the three problems (P0), (P1) and (Pr). By monotonicity, we mean that
for a given feasible point we want a relation of monotony in r for the objective
function of (P1), (Pr) and (P0). As the components of the `0-norm and the
θr(t) are in [0, 1[ it is necessary to put the components of `1-norm in a similar
box, which explains the change of variable in the theorem.

Remark 2.1. In the following theorem we use the hypothesis that θ functions
are convex in r. This is not so restrictive as we think several functions verify
it. If we take the three examples of θ functions given in the introduction, θ1 and
θlog := log(1 + x)/ log(1 + x+ r) are convex in r but not θ2.

Theorem 2.3 (Monotonicity of solutions). Given x ∈ F , we de�ne y :=
x/(||x||∞ + ε) where ε > 0, so that y ∈ [0, 1[n. Let a function Ψ(t, r) : [0, 1[→
[0, 1[ be de�ned as

Ψ(t, r) =
θ(t, r)

θ(1, r)
. (31)

We consider here functions θ that are convex with respect to r. For r and r̄ such
that 0 < r̄ < r < +∞, then one has

||y||1 ≤
n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄) ≤ ||y||0. (32)

Proof. The proof is divided in three step regarding the three inequalities.
The functions θ are sub-additive functions, since they concave and θ(0) = 0.

Then, it follows
θ(yi, r) ≥ yi θ(1, r). (33)
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Therefore, we get

n∑
i=1

Ψ(yi, r)− ||y||1 =

n∑
i=1

(
θ(yi, r)

θ(1, r)
− yi), (34)

≥ 0, (35)

which leads to the �rst inequality

||y||1 ≤
n∑
i=1

Ψ(yi, r). (36)

We continue with the second inequality showing that Ψ(y, r) functions are non-
increasing in r, i.e.

n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄). (37)

The functions Ψ(y, r) is non-increasing in r if its derivative with respect to r

∂

∂r
Ψ(y, r) =

( ∂∂r θ(y, r))θ(1, r)− ( ∂∂r θ(1, r))θ(y, r)

θ(1, r)2
, (38)

is negative. Since θ(y, r) is an non-decreasing function in y we have

θ(y, r)

θ(1, r)
< 1, (39)

and
∂

∂r
θ(y, r) = − 1

r2
,
∂

∂y
θ(y, r) < 0. (40)

So, θ(y, r) is non-increasing function in r. Using convexity of θ(y, r) in r it
follows

∂
∂r θ(y, r)
∂
∂r θ(1, r)

=
∂
∂r θ(1, r/y)
∂
∂r θ(1, r)

≥ 1. (41)

Then in (38) the derivative with respect to r is negative and we have (37).
Finally, since θ(y, r) is non-decreasing in y and y ∈ [0, 1[n one has

||y||0 −
n∑
i=1

Ψ(yi, r̄) =

n∑
i=1;yi 6=0

1− θ(yi, r̄)

θ(1, r̄)
≥ 0, (42)

which gives the last inequality and completes the theorem.

Remark 2.2. Both choice of scaling parameter in Theorem 2.2 and Theorem
2.3 are linked. In the former, we set that limr→+∞ r

∑n
i=1 θ(xi, r) =

∑n
i=1 xi,

so evaluating in one dimension and x = 1 we have limr→+∞ rθ(1, r) = 1 and
then we see that r and 1/θ(1, r) have the same behavior for r su�ciently large.
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All these results lead us to the general behavior of the method. First, we
start from one solution of (P1) then by decreasing parameter r the solution of
(Pr) becomes closer to a solution of (P0).

Another approach would be to de�ne a new problem which selects one solu-
tion of the possibly many optimal solutions of (P0). We consider the following
problem which is a selective version of (Pr)

min
x∈F

n∑
i=1

θ(xi, r) +

n∑
i=1

r
i

2n+1xi. (Pr−sel)

We will use a lexicographic norm and we note

||y||lex < ||x||lex ⇐⇒ ∃i ∈ {1, ..., n}, yi < xi and ∀ 1 ≤ j < i, yj = xj . (43)

In the next theorem we want to choose the solution of (P0) which has the
smallest lexicographic norm. From the previous equation it is clear that this
optimal solution is unique.

Theorem 2.4 (Convergence of the selective concave problem). We use func-
tions θ such that θ ≥ θ1. Given {xr}r the sequence of solutions of (Pr−sel) and
x̄ a limit point of this sequence. Then, x̄ is the unique solution of S∗||.||0 such

that ∀y ∈ S∗||.||0 , ||x̄||lex ≤ ||y||lex.

Proof. Let x∗ be an optimal solution of (P0) such that ∀y ∈ S∗||.||0 , ||x
∗||lex ≤

||y||lex and x̄ the limit of a sequence of {xr}r solution of (Pr−sel). So, there
exists a r̄ such that for every r < r̄ we have x̄ solution of (Pr−sel), up to a
subsequence, and

n∑
i=1

θ(x̄i, r) +

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

θ(x∗i , r) +

n∑
i=1

r
i

2n+1x∗i ≤ ‖x∗‖0 +

n∑
i=1

r
i

2n+1x∗i .

(44)
Going to the limit for r ↓ 0 we have

||x̄||0 ≤ ||x∗||0, (45)

which is an equality by de�nition of x∗ and prove the �rst part of the theorem.
Now we need to verify the selection of the solution. Using that functions θ are
bounded by 1, one has

n∑
i=1

(θ(x̄i, r)− 1) + k +

n∑
i=1

r
i

2n+1 x̄i ≤ k +

n∑
i=1

r
i

2n+1x∗i , (46)

using that θ ≥ θ1

n∑
i=1

(θ1(x̄i, r)− 1) +

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

(θ(x̄i, r)− 1) +

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i .

(47)
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Now, for r su�ciently small, such that min{i|xi 6=0} x̄i ≥
√
r, we have

−k r

r +
√
r

+

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i , (48)

where k denotes the optimal value of (P0), i.e. ‖x̄‖0 = ‖x∗‖0 = k.

Dividing by r
1

2n+1 in the previous inequality yields

−k r

r
1

2n+1 (r +
√
r)

+ x1 +

n∑
i=2

r
i

2n+1 x̄i ≤ x∗1 +

n∑
i=2

r
i

2n+1x∗i . (49)

Therefore, going to the limit for r ↓ 0 one has

x̄1 ≤ x∗1 (50)

which is an equality by hypothesis on x∗ being the smallest ||.||lex solution of
(P0). So, as x̄1 = x∗1 in (48) one has

−k r

r +
√
r

+

n∑
i=2

r
i

2n+1 x̄i ≤
n∑
i=2

r
i

2n+1x∗i . (51)

By induction we get x̄i = x∗i , ∀i ∈ {1, ..., n} and so x̄ = x∗, because we have

∀j ∈ {1, ..., n}, lim
r→0

r

r
j

2n+1 (r +
√
r)

= 0. (52)

Finally we have the results as x̄ is the optimal solution which has the smallest
lexicographic norm.

Remark 2.3. If we try to get an equivalent result as in Theorem 2.2 for this
selection problem, it is clear that for r su�ciently large we will solve the `1-norm
problem but with a reversed lexicographical order than the one we are looking for,
i.e. for a non-decreasing sequence of rj

x̄ = lim
j→∞
{xrj}rj with xrj ∈ S∗rj−sel =⇒ x̄ ∈ S∗||.||1 and x̄ = arg max

y∈S∗||.||1
||y||lex.

(53)
This will de�nitely prevent us of any kind of monotonicity result such as Theo-
rem 2.3. So, unless S∗||.||0 admits only one solution, the initial point as a solution

of (P1) has no chance of being a good initial point. This argument and the fact
that this problem looks numerically not advisable lead us not to follow the study
of this selective problem.

3 Error estimate

In this section we focus on what happen when r becomes small. We denote
card(I) the number of elements in a set I. Note that the following results are
given for functions θ ≥ θ1 with θ1(t, r) = t/(t+ r) for t, r ∈ R+.
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Lemma 3.1. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be
the optimal value of problem (P0) and I(x, r) = {i|xi ≥ kr}. Then one has

xr ∈ arg min
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k. (54)

Proof. We use a proof by contradiction. Consider that card(I(xr, r)) ≥ k + 1
and we have xr ∈ arg minx∈F

∑n
i=1 θ(xi, r), then

n∑
i=1

θ(xri , r) ≥ (k + 1)θ(kr, r) ≥ (k + 1)θ1(kr, r) = (k + 1)
kr

kr + r
= k, (55)

which is a contradiction with the de�nition of xr.

This lemma gives us a theoretical stopping criterion for the decrease of r,
as for r < r̄ = minxr

i 6=0 x
r
i /k, x

r becomes an optimal solution. In the following
lemma we look at the consequences in the evaluation of θ.

Lemma 3.2. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be
the optimal value of problem (P0) and

r̄ = min
xr
i 6=0

xri /k.

Then one has

r ≤ r̄ ⇐⇒ θ(min
xr
i 6=0

xri , r) ≥ θ1(min
xr
i 6=0

xri , r) ≥
k

k + 1
. (56)

Proof. We �rst show the equivalence in (56) for θ1. Assume that

θ1(min
xr
i 6=0

xri , r) ≥
k

k + 1
. (57)

Using the expression of θ1, it follows

θ1(min
xr
i 6=0

xri , r) =
minxr

i 6=0 x
r
i

minxr
i 6=0 xri + r

≥ k

k + 1
(58)

⇐⇒ min
xr
i 6=0

xri (k + 1) ≥ k(min
xr
i 6=0

xri + r) (59)

⇐⇒ min
xr
i 6=0

xri ≥ kr (60)

⇐⇒ r̄ =
minxr

i 6=0 x
r
i

k
≥ r. (61)

Considering the functions θ such that θ ≥ θ1, the equivalence follows in the
exact same way. This proves the result.

Both previous lemmas lead us to the following theorem, which is an exact
penalization result for our method.

13



Theorem 3.1 (Exact Penalization Theorem). Consider θ functions where θ ≥
θ1. Let N 3 k = ||x∗||0 < n be the optimal value of problem (P0) and xr ∈ S∗r .
Then one has

θ(min
xr
i 6=0

xri , r) ≥
k

k + 1
=⇒ xr ∈ S∗||.||0 . (62)

Proof. By Lemma 3.2 and with r̄ = minxr
i 6=0 x

r
i /k one has

θ(min
xr
i 6=0

xri , r) ≥
k

k + 1
⇐⇒ r ≤ r̄. (63)

Then by Lemma 3.1 and using xr ∈ S∗r we have

xr ∈ argmin
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k. (64)

Finally, using r ≤ r̄ and that k is the optimal value of problem in `0-norm we
have the result.

We use in the previous result the minimum non-zero component of xr, which
is logical as we expect that for r su�ciently small the sequence of {minxr

i 6=0 x
r
i }r

should be increasing. The following lemma gives us a clue on this behavior.

Lemma 3.3. Consider θ functions where θ ≥ θ1. Let x∗ ∈ S∗||.||0 , ||x
∗||0 = k

and

r∗ =
1

k
min
x∗i 6=0

x∗i .

Then one has
∀r ≤ r∗, xr ∈ S∗r =⇒ min

xr
i 6=0

xri ≤ min
x∗i 6=0

x∗i . (65)

Proof. Suppose that min
xi 6=0

xi > min
x∗i 6=0

x∗i . Since x
r ∈ S∗r we have

n∑
i=1

θ(xr, r) ≥
n∑
i=1

θ(xr, r∗) (66)

> (k + 1)θ(min
x∗i 6=0

x∗i , r
∗) (67)

> (k + 1)
kr∗

kr∗ + r∗
(68)

= k, (69)

which is in contradiction with the de�nition of xr.

4 Algorithm

The previous results allow us to build a generic algorithm

[Thetal0]

{r
k}k∈N, r0 > 0 and lim

k→+∞
rk = 0,

�nd xk : xk ∈ arg min
x∈F

∑n
i=1 θ(xi, r

k).
(70)
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Now, several questions remain to be answered such as initialization, choice of the
sequence {rk} and the method used to solve the concave minimization problems.
In Section 3, we have shown an exact penalization result, which help us building
a stopping criterion. We make a few remarks about these questions. Note that
interesting related remarks can be found in [48].

Remark 4.1 (On the behavior of θ functions). These concave functions are
acting as step function for r su�ciently small, i.e.

θ(t, r) '

{
1 if t >> r

0 if t << r
. (71)

This gives a strategy to update r. Let xk be our current iterate and rk the
corresponding parameter. We divide our iterate into two sets, those with indices
in I = {i | xki ≥ rk} and the others with indices in Ī = {i | xki < rk}. We can see
I as the set of indices of the "non-zero" components and Ī as the set of indices
of the "zero" components of xk. So we will choose rk+1 around maxi∈Ī x

k
i to

ask whether or not it belongs to zeros and we repeat this operation until r is
su�ciently small to consider Ī the set of e�ective zeros. Also this is a general
behavior, to be sure to have decrease of r one should add a �xed parameter of
minimum decrease.

Remark 4.2 (Initialization). It is the main purpose of our method to start with
the solution x0 of the problem (P1), which is a convex problem. So, we need to
�nd the r0 related to x0. A natural, but non-trivial, way of doing this would be
to �nd the parameter which minimizes the following problem

min
r>0
||

N∑
i=1

θ(x0
i , r)− ||x0||1 ||22. (72)

A simpler idea is to be inspired from last remark and put r0 as a value which is
just beyond the top value of x0

i .

Remark 4.3 (Stopping criterion). It has been shown, in Section 3, an exact
penalization theorem using the quantity k/(k+1), which depends on the solution
we are looking for. Numerically, we can make more iterations but being sure to
satisfy this criterion using the fact that ||x0||0 ≥ k, which gives the following
criterion

θ(min
xr
i 6=0

xri , r) ≥
||x0||0
||x0||0 + 1

≥ k

k + 1
. (73)

Remark 4.4 (Algorithm for concave minimization). In the same way as in
[32] and [53] we will use a successive linearization algorithm (SLA) algorithm
to solve the concave minimization problem at each iteration in r. This algorithm
is a �nitely timestep Franck & Wolf algorithm, [45].

Proposition 4.1 (SLA algorithm for concave minimization). Given ε su�-
ciently small and rk. We know xk and we �nd xk+1 as a solution of the linear
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problem
min
x∈F

xt∇xθ(xk, rk), (74)

with x0 a solution of the problem (P1). We stop when

xk+1 ∈ F and (xk+1 − xk)t∇xθ(xk, rk) ≤ ε. (75)

This algorithm generates a �nite sequence with strictly decreasing objective func-
tion values.

Proof. see [[45], Theorem 4.2].

We note that this algorithm did not necessarily provide a global optimum as
it ends in a local solution, so we do not expect global solutions in our algorithm.
Besides, the gradient of functions θ in the objective tends to be very large as
θ′r(t) ≈ O(1/r), so it can be numerically e�cient to add a scaling parameter of
order r.

5 Numerical Simulations

Thanks to the previous sections, we have keys for an algorithm. We now present
some numerical results. These simulations have been done using MATLAB
language, [47], with the linear programming solver GUROBI, [36].

The precision in our simulations is ε = 10−8. We generate various polyhedron
F = {x ∈ Rn| b ∈ Rm, Ax ≤ b} ∩ Rn+ with m < n. In the same way as in [32]
we choose n = (500, 750, 1000) and in each case m = (40%, 60%, 80%). For
each pair (n,m), we choose randomly one hundred problems. We take a random
matrix A of size m×n and a default sparse solution xinit with 10% of non-zero
components. We get b by computing the matrix-vector product b = Axinit.
Finally, we compare the sparsity of the solution from Thetal0-algorithm using
θ1 (#θ1), the default sparse solution (#`0) and the initial iterate (#`1). We
get the initial iterate as a solution of problem (P1). The item # indicates the
number of non-zero components in a vector.

Results are sum up in Table 1. The �rst two columns give the dimensions
of the problems. Column 3 gives the number of problems, where the solution of
Thetal0-algorithm has at least the same sparsity as the default sparse solution.
In the same vein, Column 4 compares the sparsity of the solution in `1-norm
with the default sparse solution. Column 5 gives the number of problems where
the solution by Thetal0-algorithm improves strictly the solution by `1-norm.

These results validate our algorithm, as in the majority of the cases it man-
ages to �nd at least an equivalent solution to the default sparse solution. One
may notice that in many cases the `1-norm minimization solution solves the
problem in `0-norm, which is not surprising according to [22].

In Figure 1, we show the behavior of the minimum non-zero component of
the current iterate along the iterations in r for one example. We can see the
increasing behavior that is the general behavior expected in the Remark 4.3.
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Table 1: Numerical results with random F =
{
x ∈ Rn+| b ∈ Rm, Ax ≤ b

}
, di-

mensions of the problem are �rst 2 columns. Compare a default sparse solution
with 10% of non-zero components, #l0, the initial iterate solution of (P1), #l1,
and the solution by θ-algorithm with function θ1, #θ1. The item # indicates
the number of non-zeros.

n m #`0 ≥ #θ1 #`1 ≤ #`0 #θ1 < #`1

1000 800 100 100 0
1000 600 100 98 2
1000 400 50 1 99
750 600 100 100 0
750 450 100 98 2
750 300 54 0 100
500 400 100 100 0
500 300 100 94 6
500 200 63 0 100

6 Conclusion and Outlook

We proposed a class of heuristic schemes to solve the NP-hard problem of min-
imizing the `0-norm. Our method requires �nding a sequence of solutions from
concave minimization problems, which we solved with a successive linearization
algorithm. These methods have the bene�t that they can only improve the
solution we get by solving the `1-norm problem. We gave an existence result,
convergence results, an exact penalization theorem, and keys to implement the
methods. To con�rm the validity of this algorithm we gave numerical results
from randomly generated problems.

Further studies can investigate the special case where the `1-norm solves the
`0-norm problem, to �nd an improved stopping condition. Thanks to several
studies, for instance [22], we have criteria which can help us identify the cases
where the solution we get by solving (P1) is an optimal solution of (P0). We
wonder if there exists a better su�cient condition than the one presented here
in the case where xr ∈ S∗||.||1 ∩ S

∗
r

We can also study a very similar problem which is the one of minimizing
`0-norm with noise, see for instance [26] or [4], that is

(P0,δ) min ||x||0 s.t. Ax ≤ b+ δ. (76)

As a �rst step in this direction we run our heuristic schemes on some perturbed
problems. We generate polyhedron in a similar way as in the previous section
with noise in b = Axinit + ϑ, where ϑ follows N (0, σ2In×n). We build a signal
to noise ratio (SNR) for several values of σ2 from 0.5 to 0,

SNR = 20 log(
||x∗||2

||x∗ − xb||2
), (77)
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Figure 1: Evolution of the minimum non-zero component of xr in function of
the parameter r ↓ 0.

where x∗ and xb are generated by our algorithm. The former comes from the
problem without noise and the later from the perturbed problem. We choose
dimensions n = 500 and m = 200. Then, for one hundred randomly selected
problems we compute the mean of the SNR. Results in Figure 2 show very

Figure 2: Performance of θ-algorithm in presence of noise, using function
θ1(t, r) = t/(t+ r). n = 500, m = 200. Mean of SNR for 100 random problems
in function of σ2.

18



logical behavior as more noises is present more informations are lost. Further
work could compare these results with existing methods and shows theoretical
study, which could help building an improved algorithm.
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