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In this paper, we investigate a class of heuristic schemes to solve the NP-hard problem of minimizing 0-norm over a polyhedral set. A wellknown approximation is to consider the convex problem of minimizing 1-norm. We are interested in nding improved results in cases where the problem in 1-norm does not provide an optimal solution to the 0-norm problem. We consider a relaxation technique using a family of smooth concave functions depending on a parameter. Some other relaxations have already been tried in the literature and the aim of this paper is to provide a more general context. This motivation allows deriving new theoretical results that are valid for general constraint set. We use a homotopy algorithm, starting from a solution to the problem in 1-norm and ending in a solution of the problem in 0-norm. We show the existence of the solutions of the subproblem, convergence results, a kind of monotonicity of the solutions as well as error estimates leading to an exact penalization theorem. We also provide keys for implementing the algorithm and numerical simulations.

Introduction

Consider a polyhedron F dened by linear inequalities,

F = {x ∈ R n | Ax ≤ b} ∩ R n +
for some b ∈ R m and A ∈ R m×n , which we suppose non-empty and not reduced to a singleton. Although we consider a polyhedron here, most of the results presented in this article can be generalized as F being a closed convex set in R n + . One should note that the hypothesis of considering a polyhedron in the non-negative orthant is not restrictive. It is only assumed to simplify the presentation and to avoid the absolute value in the denition of the problem.

We are interested in nding the sparsest point over this polyhedron, which is equivalent to minimize the 0 -norm, i.e. (1) Note that the 0 -norm is not a norm as it does not have the homogeneity property. (P 0 ) is an NP-hard problem as shown in [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF].

This problem has several applications and received a considerable interest recently. Sparsity is involved in several domains including signal and image processing [START_REF] Pennebaker | JPEG: Still image data compression standard[END_REF][START_REF] Gorodnitsky | Neuromagnetic source imaging with focuss: a recursive weighted minimum norm algorithm[END_REF][START_REF] Donoho | De-noising by soft-thresholding[END_REF][START_REF] Mallat | A wavelet tour of signal processing[END_REF][START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF], statistics [START_REF] Friedman | The elements of statistical learning[END_REF][START_REF] Vapnik | The nature of statistical learning theory[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], machine learning [START_REF] Bradley | Feature selection via concave minimization and support vector machines[END_REF][START_REF] Mangasarian | Machine learning via polyhedral concave minimization[END_REF][START_REF] Mangasarian | Minimum-support solutions of polyhedral concave programs[END_REF]. The compressed sensing [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Donoho | Neighborly polytopes and sparse solutions of underdetermined linear equations[END_REF][START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Donoho | Compressed sensing[END_REF][START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candes | Decoding by linear programming[END_REF] has been the most popular application involving sparsity and creating cross-disciplinary attention in recent years and stimulates a plethora of new applications of sparsity. For more details about applications in image and signal modelling as well as a review on related questions see [START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF] or [START_REF] Tropp | Computational methods for sparse solution of linear inverse problems[END_REF].

The problem (P 0 ) being dicult to solve, a classical approximation consists in solving the convex problem in 1 -norm. The 1 -norm is denoted by

∀x ∈ R n , ||x|| 1 = n i=1 |x i |.
(

) 2 
The convex problem in 1 -norm is dened by

min x∈F ||x|| 1 . (P 1 )
It can be seen as a convexication of (P 0 ), because the absolute value of x is the convex envelope of s(x) for x ∈ [-1, 1]. Furthermore, (P 1 ) has the benets that it can be reformulated as a linear program. This approach has been extensively studied in [START_REF] Donoho | For most large underdetermined systems of linear equations the minimal 1 -norm solution is also the sparsest solution[END_REF][START_REF] Candes | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candes | Decoding by linear programming[END_REF][START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF][START_REF] Fuchs | On sparse representations in arbitrary redundant bases[END_REF][START_REF] Tropp | Just relax: Convex programming methods for identifying sparse signals in noise[END_REF]] and in particular with inequality constraints. Moreover, several criteria have been found which guarantee that solving (P 1 ) will also solve (P 0 ) under various assumptions involving the coecients of the matrix A. These criteria, denoted mutual coherence [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF], restricted isometry property [START_REF] Candes | Decoding by linear programming[END_REF], null space property [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], exact recovery condition [START_REF] Tropp | Greed is good: Algorithmic results for sparse approximation[END_REF][START_REF] Fuchs | On sparse representations in arbitrary redundant bases[END_REF], and the range space property [START_REF] Zhao | Rsp-based analysis for sparsest and least 1 -norm solutions to underdetermined linear systems[END_REF], show the eciency of this convex approximation to solve (P 0 ).

A more sophisticated version of this convex formulation and computationally ecient approach consider a reweighted-1 problem as proposed in [START_REF] Candes | Enhancing sparsity by reweighted 1 minimization[END_REF] and later studied in several recent papers, see [START_REF] Asif | Sparse recovery of streaming signals using 1 -homotopy[END_REF][START_REF] Needell | Noisy signal recovery via iterative reweighted l1-minimization[END_REF][START_REF] Xie | Rewighted l1-minimization for sparse solutions to underdetermined linear systems[END_REF][START_REF] Wipf | Iterative reweighted 1 and 2 methods for nding sparse solutions[END_REF][START_REF] Chen | Convergence of the reweighted 1 minimization algorithm for 2p minimization[END_REF][START_REF] Zhao | A new computational method for the sparsest solutions to systems of linear equations[END_REF][START_REF] Zhao | Constructing new weighted 1 -algorithms for the sparsest points of polyhedral sets[END_REF]. It is clear from this references that the study of the convex problem (P 1 ) to solve (P 0 ) is of great importance.

Also formulation (P 1 ) does not solve all the time the initial problem. Consider for instance the following example in two dimension.

Example 0.1. Given a matrix A ∈ R n×n and a vector b ∈ R n such that

A = -0.1 -1 -10 -1 and b = -1 -10 . (3) 
Geometrical observation allows to conclude that the solution of problem (P 1 ) is ( 1011 , 10 11 ) T , while solution of problem (P 0 ) are of the form (0, 10 + ) T and (10 + , 0) T with ≥ 0.

Nonconvex optimization has been one of the main approach to tackle this problem [START_REF] Weston | Use of the zeronorm with linear models and kernel methods[END_REF][START_REF] Feng | Complementarity formulations of l0-norm optimization problems[END_REF][START_REF] Bi | Exact penalty decomposition method for zeronorm minimization based on mpec formulation[END_REF][START_REF] Voronin | A new generalized thresholding algorithm for inverse problems with sparsity constraints[END_REF][START_REF] Le Thi | Dc approximation approaches for sparse optimization[END_REF]. For instance, in [START_REF] Feng | Complementarity formulations of l0-norm optimization problems[END_REF][START_REF] Bi | Exact penalty decomposition method for zeronorm minimization based on mpec formulation[END_REF], the authors proposed a reformulation of the problem as a mathematical program with complementarity constraints. Thresholding algorithms have also some recent popularity in [START_REF] Voronin | A new generalized thresholding algorithm for inverse problems with sparsity constraints[END_REF][START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Blumensath | Gradient pursuits[END_REF][START_REF] Needell | Cosamp: Iterative signal recovery from incomplete and inaccurate samples[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Malioutov | Iterative log thresholding[END_REF]. A Dierence of Convex (DC) decomposition of the 0 -norm combined with DC Algorithm has been used in [START_REF] Le Thi | Dc approximation approaches for sparse optimization[END_REF]. We are interested here in nonconvex methods to improve the solution we get by solving (P 1 ) in the general case where this approach does not solve the initial problem. In this aim, several concave relaxations of ||.|| 0 have been tried in the literature.

An intuitive approach trying to bridge the gap between the 1 -norm and the 0 -norm has been to study homotopy methods based on the p -norm for 0 ≤ p ≤ 1. This approach has been initiated in [START_REF] Gribonval | Sparse decomposition in unions of bases[END_REF] and later analyzed in [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF][START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Foucart | Sparsest solutions of underdetermined linear systems via q -minimization for 0 < q ≤ 1[END_REF][START_REF] Lai | An unconstrained q minimization with 0 ≤ q ≤ 1 for sparse solution of underdetermined linear systems[END_REF][START_REF] Ge | A note on the complexity of l p minimization[END_REF], where the authors prove the link between (P 0 ) and (P 1 ) as well as conditions involving the coecients of A to show a sucient convergence condition, so that p does not have to decrease to 0 but only to some small value. The homotopy method considers non-convex subproblems and solving the problem in p is not a trivial task. In [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF], the authors study a linearization algorithm, while in [START_REF] Ge | A note on the complexity of l p minimization[END_REF] the authors consider an interior-point method to solve the subproblems. Besides, the problem of minimizing the p -norm might lead to numerical diculties due to the non-dierentiability at the origin, in [START_REF] Lai | An unconstrained q minimization with 0 ≤ q ≤ 1 for sparse solution of underdetermined linear systems[END_REF] the authors consider a smoothing of the p -norm to circumvent this problem.

Following the progress made during the last decade in the study of reweighted 1 -norm and p -norm, we study here smooth regularizations. In [START_REF] Mohimani | A fast approach for overcomplete sparse decomposition based on smoothed norm[END_REF] and related works the authors present a general family of smoothing function including the gaussian family and propose a homotopy method starting from the 2 -norm solutions.

Approximating the 0 -norm by smooth functions through an homotopy method starting from the 1 -norm has been studied in the PhD thesis [START_REF] Rinaldi | Mathematical programming methods for minimizing the zeronorm over polyhedral sets[END_REF] and in [START_REF] Rinaldi | Concave programming for minimizing the zero-norm over polyhedral sets[END_REF][START_REF] Rinaldi | Concave programming for nding sparse solutions to problems with convex constraints[END_REF][START_REF] Lorenzo | A concave optimization-based approach for sparse portfolio selection[END_REF]. In these works, the authors consider a selection of minimization problems using smooth functions such that (t + r) p with r > 0 and 0 < p < 1, -(t + r) -p with r > 0 and 1 < p, log(t + r) with 0 < r << 1 or 1 -e -rt with r > 0 and p ∈ N. The subproblems of the homotopy algorithm are solved using a Frank and Wolfe approach [START_REF] Rinaldi | Concave programming for minimizing the zero-norm over polyhedral sets[END_REF], also called SLA in [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF], and this method is further studied in [START_REF] Liuzzi | Solving \ _0-penalized problems with simple constraints via the frankwolfe reduced dimension method[END_REF].

The aim of this paper is to pursue the study of smooth concave approximation of the 0 -norm by oering a more general theoretical context for this study. Focusing on concave functions is a logical choice considering that the p -norm is itself concave. The motivation here is to keep the good properties of the method from [START_REF] Rinaldi | Concave programming for minimizing the zero-norm over polyhedral sets[END_REF] and related work, a homotopy method between the 1 -norm and the 0 -norm problems, and smoothness at the origin. In particular, such a theoretical study has not been done in the literature.

The method considered here is a homotopy method with a parameter r such that the method recovers the 1 -norm problem for r large and the 0 -norm problem for r small. We provide here a complete analysis of the convergence of the algorithm as well as a monotonicity study of the objective function during the iterations of the homotopy scheme. We also prove the existence of the solutions of the subproblems without any boundedness assumption on the constraints.

For the convex problem of minimizing the 1 -norm, we already pointed out that several criteria involving the coecients of the matrix A guarantee that solving the problem is sucient to compute a solution to (P 0 ). Such a result guarantees the good behavior of the method. Considering our homotopy algorithm, we show a similar result independently of the constraints that state that it is not necessary to tend r to zero to compute a solution of (P 0 ). It can be seen as an exact penalty result. This property is a key to ensure the interest of the method.

Most of the theoretical results presented here are valid for any non-empty closed convex set F , which make them valid for several smoothing functions but also for several formulations of the problem.

In order to validate our approach, we give technical details and some numerical results on a Frank and Wolfe method to solve the subproblems of the homotopy scheme. In particular, these results show that we manage to improve the results given by the 1 norm, which shows the validity of our approach.

This document is organized as follows. Section 1 introduces a general formulation of the relaxation methods using concave functions. Section 2 discusses convergence and monotonicity results leading to a homotopy method. Section 3 proves error estimates and an exact penalization theorem. Finally, Section 4 presents the algorithm with several remarks concerning its implementation and numerical results can be found in Section 5.

A smoothing method

We consider a family of smooth functions designed to approximate the 0 -norm. This family has already been used in the dierent context of complementarity [START_REF] Haddou | Smoothing methods for nonlinear complementarity problems[END_REF][START_REF] Abdallah | Solving absolute value equation using complementarity and smoothing functions[END_REF] and image restoration [START_REF] Bergounioux | A new relaxation method for a discrete image restoration problem[END_REF]. These functions are smooth non-decreasing concave functions such that

θ : R →] -∞, 1[ with θ(t) < 0 if t < 0, θ(0) = 0 and lim t→+∞ θ(t) = 1. (4) 
One way to build θ functions is to consider non-increasing probability density functions f : R + → R + and then take the corresponding cumulative distribution function

∀t ≥ 0, θ(t) = t 0 f (x)dx and ∀t < 0, θ(t) < 0. (5) 
By denition of f we can verify that

lim t→+∞ θ(t) = +∞ 0 f (x)dx = 1 and θ(0) = 0 0 f (x)dx = 0. (6) 
The non-increasing hypothesis on f gives the concavity of θ.

Examples of this family are θ

1 (t) = t/(t + 1) if t ≥ 0 and θ 1 (t) = t if t < 0, θ 2 (t) = 1 -e -t with t ∈ R.
Then using a scaling technique similar to the perspective functions in convex analysis we dene θ(t, r) := θ t r for r > 0 and we get

θ(0, r) = 0 ∀r > 0 and lim r→0 θ(t, r) = 1 ∀t > 0. (7) 
For the previous examples of this family and t ≥ 0 we have θ 1 (t, r) = t/(t + r), θ 2 (t, r) = 1 -e -t/r . The function θ 1 (t, r) will be extensively used in this paper.

Throughout this paper we will consider the concave optimization problem for r > 0

min x∈F n i=1 θ(x i , r). (P r )
Before moving to the proofs of convergence, we give a result on the existence of solutions of (P r ). The proof relies on an argument similar to the use of asymptotic cones and directions as introduced in [START_REF] Auslender | Asymptotic cones and functions in optimization and variational inequalities[END_REF]. Theorem 1.1. Let F ⊂ R n + be a non-empty closed convex set. The optimal set of P r for r > 0 is non-empty.

Proof. Since n i=1 θ(x i , r) is bounded below on the closed set F it admits an inmum. Now, assume by contradiction that there exists an unbounded sequence {x n } such that x n ∈ F, ∀n and

lim n→∞ f (x n ) = inf x∈F f (x) < f (x 0 ).
Let {d n } be the sequence dened for all n by

d n := x n -x 0 x n .
This sequence is bounded, therefore it converges, up to a subsequence, to some limit,

lim n→∞ d n = lim n→∞ x n / x n = d ∈ F ∞ , where F ∞ denotes the cone of asymptotic directions of F (cf. [3]). Since F is a closed convex set, it holds for all x ∈ F that x + αd ∈ F, ∀α ≥ 0.
Then, since F ⊂ R n + , we obtain that d ≥ 0. Using component-wise monotonicity and continuity assumption on θ gives

lim n→∞ f (x + α n d n ) ≥ f (x), ∀x ∈ F
as long as α n > 0 for all n and the sequence {α n d n } admits some limit. Choosing x = x 0 , α n = x n and d n as dened above, we obtain

lim n→∞ f (x 0 + α n d n ) = lim n→∞ f (x n ) ≥ f (x 0 ),
which is a contradiction with our initial assumption. This completes the proof.

Convergence

In this section, we will show the link between problems (P 0 ), (P 1 ) and (P r ). We denote S * ||.||0 the set of solutions of (P 0 ), S * ||.||1 the set of solutions of (P 1 ) and S * r the set of solutions of (P r ).

Our aim is to illustrate that for r suciently large (P r ) is close to (P 1 ) (see Theorem 2.2), and for r suciently small (P r ) is close to (P 0 ) (see Theorem 2.1). In this way, we dene an homotopy method starting from r large and decreasing r step by step. Thus, we use the convex approximation (P 1 ) and come closer and closer to the problem we want to solve. A monotonicity-kind result of the sequence computed by the homotopy scheme is proved in Theorem 2.3. Finally, Theorem 2.4 shows that this formulation may also be of interest for more complicated objective function than the one in (P 0 ). Theorem 2.1 gives convergence of (P r ) to (P 0 ) for r decreasing to 0.

Theorem 2.1 (Convergence to 0 -norm). Let F ⊂ R n + be a non-empty closed convex set. Every limit point of any sequence {x r } r , such that x r ∈ S * r and r ↓ 0, is an optimal solution of (P 0 ). Proof. Given x the limit of the sequence {x r } r , up to a subsequence, and x * ∈ S * ||.||0 . Since F is a closed set one has x ∈ F . Furthermore we have for any r in the corresponding subsequence

i∈supp(x) θ(x r,i , r) ≤ n i=1 θ(x r,i , r) ≤ n i=1 θ(x * i , r) ≤ x * 0 . (8) 
Moreover the denition of θ(., r) functions, for r > 0 and t ∈ R n give

n i=1 lim r↓0 θ(t i , r) = ||t|| 0 . (9) 
Replacing into (8) we get

||x|| 0 ≤ ||x * || 0 , (10) 
and thanks to the denition of

x||x|| 0 = ||x * || 0 . (11) 
We now give another convergence result from [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF], which adds that the convergence appears in a nite number of iteration in the case, where the feasible set of (P 0 ) is a polyhedron. Proposition 2.1. Given a non-empty polyhedron F ⊂ R n + . Then there exists a r such that for all r ≤ r a vertex of F is an optimal solution of (P 0 ) and (P r≤r ). Proof. (P r ) is a problem of minimizing a concave function over a polyhedron F.

We can use Corollary 32.3.4 of [START_REF] Rockafellar | Convex analysis[END_REF], since there is no half-line in F such that θ(., r) is unbounded below, so the inmum over F is attained and it is attained at one of the extremal points of F .

Given that there is a nite number of extremal point, one vertex, say x , will repeadetly solve (P r ) for some increasing innite sequence R = (r 0 , r 1 , r 2 , ...). Moreover the objective function of (P r ) is non-increasing and bounded below by the inmum of 0 -norm, so

n i=1 θ(x i , r j ) = min x∈F n i=1 θ(x i , r j ) ≤ inf x∈F ||x|| 0 . ( 12 
)
Going through the limit in R for j → ∞ and as the concave function is continuous and x ∈ F , we have the results.

Theorem 2.2 and Proposition 2.1 show that the scheme converge to (P 0 ) as r decreases to zero.

The next theorem shows that for r suciently large the solutions of (P r ) are the same than solutions of (P 1 ). This will be especially useful as an initialization of the homotopy scheme. Theorem 2.2 (Convergence to 1 -norm). Let F ⊂ R n + be a non-empty closed convex set. Every limit point of any sequence {x r } r , such that x r ∈ S * r for r ↑ ∞, is an optimal solution of (P 1 ).

Proof. As r > 0, we can use a scaling technique for S * (2)

r = arg min x∈F n i=1 rθ(x i , r) min x∈F n i=1 θ(x i , r) ⇐⇒ min x∈F n i=1 rθ(x i , r), (13) 
S * r = S * (2) r . (14) 
So, it is sucient to show that every limit point of any sequence {x r } r , such that x r ∈ S * r for r ↑ ∞, is an optimal solution of (P 1 ). Given x r ∈ S * (2) r and x ∈ S * ||.||1 . We use the rst order Taylor's theorem for θ(t) in 0,

θ(t) = tθ (0) + g(t), where lim t→0 g(t) t = 0. ( 15 
)
By concavity of the functions θ, it holds that θ (0) > 0.

By denition of x, we get

n i=1 rθ(x r i , r) ≤ n i=1 rθ(x i , r). (16) 
Now, using (15) yields n i=1

x r i θ (0) + rg(

x r i r ) ≤ n i=1 x r i θ (0) + rg( xi r ), (17) 
n i=1 x r i - n i=1 xi ≤ r θ (0) n i=1 g( xi r ) - r θ (0) n i=1 g( x r i r ), (18) 
≤ 1 θ (0) n i=1 g( xi r ) xi r xi + 1 θ (0) n i=1 g( x r i r ) x r i r x r i , (19) 
≤ 1 θ (0) n i=1 g( xi r ) xi r n i=1 xi , (20) 
+ 1 θ (0) n i=1 g( x r i r ) x r i r n i=1 x r i , (21) n i=1 
x r i ≤

n i=1 xi 1 + 1 θ (0) n i=1 g( xi r ) xi r 1 -1 θ (0) n i=1
g(

x r i r )

x r i r .

Then, we show that the right-hand side in previous equation goes to 1, when passing to the limit. It holds true that

lim r→+∞ x r = 0. (23) 
Besides, by denition of x r yields

n i=1 θ(x r i , r) ≤ n i=1 θ( xi , r) (24) 
lim r→+∞ n i=1 θ(x r i , r) ≤ lim r→+∞ n i=1 θ( xi , r) ≤ 0. (25) 
so, we get

lim r→+∞ n i=1 θ(x r i , r) = 0. ( 26 
)
By denition of functions θ, it is true that θ(x, r) := θ(x/r) and θ -1 (0, r) = 0. Thus, by previous equation we obtain

lim r→+∞ x r i r = 0 ∀i. (27) 
Using ( 23) and ( 27) it follows

lim r→+∞ xi r = 0 =⇒ lim r→+∞ g( xi r ) xi r = 0, (28) 
lim r→+∞ x r i r = 0 =⇒ lim r→+∞ g( x r i r ) x r i r = 0. ( 29 
)
Then going to the limit in [START_REF] Donoho | Neighborly polytopes and sparse solutions of underdetermined linear equations[END_REF] yields

lim r→+∞ n i=1 x r i ≤ n i=1 xi . (30) 
However, by denition of x, it always hold that

n i=1 xi ≤ n i=1
x i for all x feasible for (P 1 ). Since, this is true for the limit point of the sequence {x r } r , the inequality in ( 30) is actually an equality. So, the limit point of the sequence {x r } r is also a solution of (P 1 ). This proves the result.

The next theorem gives a monotonicity result, which illustrates the relations between the three problems (P 0 ), (P 1 ) and (P r ). By monotonicity, we mean that for a given feasible point we want a relation of monotony in r for the objective function of (P 1 ), (P r ) and (P 0 ). As the components of the 0 -norm and the θ r (t) are in [0, 1[ it is necessary to put the components of 1 -norm in a similar box, which explains the change of variable in the theorem. Remark 2.1. In the following theorem we use the hypothesis that θ functions are convex in r. This is not so restrictive as we think several functions verify it. If we take the three examples of θ functions given in the introduction, θ 1 and θ log := log(1 + x)/ log(1 + x + r) are convex in r but not θ 2 . Theorem 2.3 (Monotonicity of solutions). Given x ∈ F , we dene y := x/(||x|| ∞ + ) where > 0, so that y ∈ [0, 1[ n . Let a function Ψ(t, r) : [0, 1[→ [0, 1[ be dened as

Ψ(t, r) = θ(t, r) θ(1, r) . (31) 
We consider here functions θ that are convex with respect to r. For r and r such that 0 < r < r < +∞, then one has

||y|| 1 ≤ n i=1 Ψ(y i , r) ≤ n i=1 Ψ ( y i , r) ≤ ||y|| 0 . (32) 
Proof. The proof is divided in three step regarding the three inequalities.

The functions θ are sub-additive functions, since they concave and θ(0) = 0. Then, it follows θ(y i , r) ≥ y i θ(1, r).

Therefore, we get

n i=1 Ψ(y i , r) -||y|| 1 = n i=1 ( θ(y i , r) θ(1, r) -y i ), (34) 
≥ 0,

which leads to the rst inequality

||y|| 1 ≤ n i=1 Ψ(y i , r). ( 36 
)
We continue with the second inequality showing that Ψ(y, r) functions are nonincreasing in r, i.e.

n i=1 Ψ(y i , r) ≤ n i=1 Ψ ( y i , r). (37) 
The functions Ψ(y, r) is non-increasing in r if its derivative with respect to r

∂ ∂r Ψ(y, r) = ( ∂ ∂r θ(y, r))θ(1, r) -( ∂ ∂r θ(1, r))θ(y, r) θ(1, r) 2 , (38) 
is negative. Since θ(y, r) is an non-decreasing function in y we have 

θ(y, r) θ(1, r) < 1, (39) 
Then in [START_REF] Lai | An unconstrained q minimization with 0 ≤ q ≤ 1 for sparse solution of underdetermined linear systems[END_REF] the derivative with respect to r is negative and we have [START_REF] Haddou | Smoothing methods for nonlinear complementarity problems[END_REF]. Finally, since θ(y, r) is non-decreasing in y and y ∈ [0, 1[ n one has

||y|| 0 - n i=1 Ψ(y i , r) = n i=1;yi =0 1 - θ(y i , r) θ(1, r) ≥ 0, (42) 
which gives the last inequality and completes the theorem.

Remark 2.2. Both choice of scaling parameter in Theorem 2.2 and Theorem 2.3 are linked. In the former, we set that lim r→+∞ r n i=1 θ(x i , r) = n i=1 x i , so evaluating in one dimension and x = 1 we have lim r→+∞ rθ(1, r) = 1 and then we see that r and 1/θ(1, r) have the same behavior for r suciently large.

All these results lead us to the general behavior of the method. First, we start from one solution of (P 1 ) then by decreasing parameter r the solution of (P r ) becomes closer to a solution of (P 0 ).

Another approach would be to dene a new problem which selects one solution of the possibly many optimal solutions of (P 0 ). We consider the following problem which is a selective version of (P r )

min x∈F n i=1 θ(x i , r) + n i=1 r i 2n+1 x i . (P r-sel )
We will use a lexicographic norm and we note

||y|| lex < ||x|| lex ⇐⇒ ∃i ∈ {1, ..., n}, y i < x i and ∀ 1 ≤ j < i, y j = x j . ( 43 
)
In the next theorem we want to choose the solution of (P 0 ) which has the smallest lexicographic norm. From the previous equation it is clear that this optimal solution is unique.

Theorem 2.4 (Convergence of the selective concave problem). We use functions θ such that θ ≥ θ 1 . Given {x r } r the sequence of solutions of (P r-sel ) and x a limit point of this sequence. Then, x is the unique solution of S * ||.||0 such that ∀y ∈ S * ||.||0 , ||x|| lex ≤ ||y|| lex . Proof. Let x * be an optimal solution of (P 0 ) such that ∀y ∈ S * ||.||0 , ||x * || lex ≤ ||y|| lex and x the limit of a sequence of {x r } r solution of (P r-sel ). So, there exists a r such that for every r < r we have x solution of (P r-sel ), up to a subsequence, and

n i=1 θ(x i , r) + n i=1 r i 2n+1 xi ≤ n i=1 θ(x * i , r) + n i=1 r i 2n+1 x * i ≤ x * 0 + n i=1 r i 2n+1 x * i .
(44) Going to the limit for r ↓ 0 we have

||x|| 0 ≤ ||x * || 0 , (45) 
which is an equality by denition of x * and prove the rst part of the theorem. Now we need to verify the selection of the solution. Using that functions θ are bounded by 1, one has

n i=1 (θ(x i , r) -1) + k + n i=1 r i 2n+1 xi ≤ k + n i=1 r i 2n+1 x * i , ( 46 
)
using that θ ≥ θ 1 n i=1 (θ 1 (x i , r) -1) + n i=1 r i 2n+1 xi ≤ n i=1 (θ(x i , r) -1) + n i=1 r i 2n+1 xi ≤ n i=1 r i 2n+1 x * i . (47) 
Now, for r suciently small, such that min {i|xi =0} xi ≥ √ r, we have

-k r r + √ r + n i=1 r i 2n+1 xi ≤ n i=1 r i 2n+1 x * i , (48) 
where k denotes the optimal value of (P 0 ), i.e. x 0 = x * 0 = k. Dividing by r 1 2n+1 in the previous inequality yields

-k r r 1 2n+1 (r + √ r) + x 1 + n i=2 r i 2n+1 xi ≤ x * 1 + n i=2 r i 2n+1 x * i . (49) 
Therefore, going to the limit for r ↓ 0 one has

x1 ≤ x * 1 (50) 
which is an equality by hypothesis on x * being the smallest ||.|| lex solution of (P 0 ). So, as x1 = x * 1 in (48) one has

-k r r + √ r + n i=2 r i 2n+1 xi ≤ n i=2 r i 2n+1 x * i . (51) 
By induction we get xi = x * i , ∀i ∈ {1, ..., n} and so x = x * , because we have

∀j ∈ {1, ..., n}, lim r→0 r r j 2n+1 (r + √ r) = 0. (52) 
Finally we have the results as x is the optimal solution which has the smallest lexicographic norm.

Remark 2.3. If we try to get an equivalent result as in Theorem 2.2 for this selection problem, it is clear that for r suciently large we will solve the 1 -norm problem but with a reversed lexicographical order than the one we are looking for, i.e. for a non-decreasing sequence of r j 

This will denitely prevent us of any kind of monotonicity result such as Theorem 2.3. So, unless S * ||.||0 admits only one solution, the initial point as a solution of (P 1 ) has no chance of being a good initial point. This argument and the fact that this problem looks numerically not advisable lead us not to follow the study of this selective problem.

Error estimate

In this section we focus on what happen when r becomes small. We denote card(I) the number of elements in a set I. Note that the following results are given for functions θ ≥ θ 1 with θ 1 (t, r) = t/(t + r) for t, r ∈ R + . Lemma 3.1. Consider θ functions where θ ≥ θ 1 . Let N k = ||x * || 0 < n be the optimal value of problem (P 0 ) and I(x, r) = {i|x i ≥ kr}. Then one has

x r ∈ arg min x∈F n i=1 θ(x i , r) ⇒ card(I(x r , r)) ≤ k. (54) 
Proof. We use a proof by contradiction. Consider that card(I(x r , r)) ≥ k + 1

and we have x r ∈ arg min x∈F n i=1 θ(x i , r), then n i=1 θ(x r i , r) ≥ (k + 1)θ(kr, r) ≥ (k + 1)θ 1 (kr, r) = (k + 1)
kr kr + r = k, (55) 
which is a contradiction with the denition of x r .

This lemma gives us a theoretical stopping criterion for the decrease of r, as for r < r = min x r i =0 x r i /k, x r becomes an optimal solution. In the following lemma we look at the consequences in the evaluation of θ. Lemma 3.2. Consider θ functions where θ ≥ θ 1 . Let N k = ||x * || 0 < n be the optimal value of problem (P 0 ) and r = min

x r i =0
x r i /k.

Then one has r ≤ r ⇐⇒ θ( min

x r i =0
x r i , r) ≥ θ 1 ( min

x r i =0 x r i , r) ≥ k k + 1 . (56) 
Proof. We rst show the equivalence in (56) for θ 1 . Assume that θ 1 ( min

x r i =0 x r i , r) ≥ k k + 1 . (57) 
Using the expression of θ 1 , it follows θ 1 ( min

x r i =0 x r i , r) = min x r i =0 x r i min x r i =0 x r i + r ≥ k k + 1 (58) 
⇐⇒ min

x r i =0

x r i (k + 1) ≥ k( min

x r i =0 x r i + r) (59) 
⇐⇒ min

x r i =0 x r i ≥ kr ( 60 
) ⇐⇒ r = min x r i =0 x r i k ≥ r. (61) 
Considering the functions θ such that θ ≥ θ 1 , the equivalence follows in the exact same way. This proves the result.

Both previous lemmas lead us to the following theorem, which is an exact penalization result for our method. Theorem 3.1 (Exact Penalization Theorem). Consider θ functions where θ ≥ θ 1 . Let N k = ||x * || 0 < n be the optimal value of problem (P 0 ) and x r ∈ S * r . Then one has θ( min

x r i =0 x r i , r) ≥ k k + 1 =⇒ x r ∈ S * ||.||0 . (62) 
Proof. By Lemma 3.2 and with r = min x r i =0 x r i /k one has θ( min

x r i =0 x r i , r) ≥ k k + 1 ⇐⇒ r ≤ r. (63) 
Then by Lemma 3.1 and using x r ∈ S * r we have

x r ∈ arg min x∈F n i=1 θ(x i , r) ⇒ card(I(x r , r)) ≤ k. (64) 
Finally, using r ≤ r and that k is the optimal value of problem in 0 -norm we have the result.

We use in the previous result the minimum non-zero component of x r , which is logical as we expect that for r suciently small the sequence of {min x r i =0 x r i } r should be increasing. The following lemma gives us a clue on this behavior. x * i .

Then one has ∀r ≤ r * , x r ∈ S * r =⇒ min

x r i =0
x r i ≤ min

x * i =0 x * i . (65) 
Proof. Suppose that min xi =0

x i > min

x * i =0
x * i . Since x r ∈ S * r we have

n i=1 θ(x r , r) ≥ n i=1 θ(x r , r * ) (66) 
> (k + 1)θ( min

x * i =0 x * i , r * ) (67) 
> (k + 1) kr * kr * + r * (68) = k, (69) 
which is in contradiction with the denition of x r .

Algorithm

The previous results allow us to build a generic algorithm 

Now, several questions remain to be answered such as initialization, choice of the sequence {r k } and the method used to solve the concave minimization problems. In Section 3, we have shown an exact penalization result, which help us building a stopping criterion. We make a few remarks about these questions. Note that interesting related remarks can be found in [START_REF] Mohimani | A fast approach for overcomplete sparse decomposition based on smoothed norm[END_REF].

Remark 4.1 (On the behavior of θ functions). These concave functions are acting as step function for r suciently small, i.e.

θ(t, r)

1 if t >> r 0 if t << r . (71) 
This gives a strategy to update r. Let x k be our current iterate and r k the corresponding parameter. We divide our iterate into two sets, those with indices in I = {i | x k i ≥ r k } and the others with indices in Ī = {i | x k i < r k }. We can see I as the set of indices of the "non-zero" components and Ī as the set of indices of the "zero" components of x k . So we will choose r k+1 around max i∈ Ī x k i to ask whether or not it belongs to zeros and we repeat this operation until r is suciently small to consider Ī the set of eective zeros. Also this is a general behavior, to be sure to have decrease of r one should add a xed parameter of minimum decrease. Remark 4.2 (Initialization). It is the main purpose of our method to start with the solution x 0 of the problem (P 1 ), which is a convex problem. So, we need to nd the r 0 related to x 0 . A natural, but non-trivial, way of doing this would be to nd the parameter which minimizes the following problem

min r>0 || N i=1 θ(x 0 i , r) -||x 0 || 1 || 2 2 . (72) 
A simpler idea is to be inspired from last remark and put r 0 as a value which is just beyond the top value of x 0 i . Remark 4.3 (Stopping criterion). It has been shown, in Section 3, an exact penalization theorem using the quantity k/(k +1), which depends on the solution we are looking for. Numerically, we can make more iterations but being sure to satisfy this criterion using the fact that ||x 0 || 0 ≥ k, which gives the following criterion θ( min

x r i =0 x r i , r) ≥ ||x 0 || 0 ||x 0 || 0 + 1 ≥ k k + 1 . ( 73 
)
Remark 4.4 (Algorithm for concave minimization). In the same way as in [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF] and [START_REF] Rinaldi | Mathematical programming methods for minimizing the zeronorm over polyhedral sets[END_REF] we will use a successive linearization algorithm (SLA) algorithm to solve the concave minimization problem at each iteration in r. This algorithm is a nitely timestep Franck & Wolf algorithm, [START_REF] Mangasarian | Machine learning via polyhedral concave minimization[END_REF].

Proposition 4.1 (SLA algorithm for concave minimization). Given suciently small and r k . We know x k and we nd x k+1 as a solution of the linear 

= x ∈ R n + | b ∈ R m , Ax ≤ b , di- mensions of
the problem are rst 2 columns. Compare a default sparse solution with 10% of non-zero components, #l 0 , the initial iterate solution of (P 1 ), #l 1 , and the solution by θ-algorithm with function θ 1 , #θ 1 . The item # indicates the number of non-zeros. We proposed a class of heuristic schemes to solve the NP-hard problem of minimizing the 0 -norm. Our method requires nding a sequence of solutions from concave minimization problems, which we solved with a successive linearization algorithm. These methods have the benet that they can only improve the solution we get by solving the 1 -norm problem. We gave an existence result, convergence results, an exact penalization theorem, and keys to implement the methods. To conrm the validity of this algorithm we gave numerical results from randomly generated problems. Further studies can investigate the special case where the 1 -norm solves the 0 -norm problem, to nd an improved stopping condition. Thanks to several studies, for instance [START_REF] Donoho | Neighborly polytopes and sparse solutions of underdetermined linear equations[END_REF], we have criteria which can help us identify the cases where the solution we get by solving (P 1 ) is an optimal solution of (P 0 ). We wonder if there exists a better sucient condition than the one presented here in the case where x r ∈ S * ||.||1 ∩ S * r

n m # 0 ≥ #θ 1 # 1 ≤ # 0 #θ 1 <
We can also study a very similar problem which is the one of minimizing 0 -norm with noise, see for instance [START_REF] Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF] or [START_REF] Babaie-Zadeh | On the stable recovery of the sparsest overcomplete representations in presence of noise[END_REF], that is

(P 0,δ ) min ||x|| 0 s.t. Ax ≤ b + δ. ( 76 
)
As a rst step in this direction we run our heuristic schemes on some perturbed problems. We generate polyhedron in a similar way as in the previous section with noise in b = Ax init + ϑ, where ϑ follows N (0, σ 2 I n×n ). We build a signal to noise ratio (SNR) for several values of σ 2 from 0.5 to 0, 

SN R = 20 log( ||x * || 2 ||x * -x b || 2 ), (77) 

  i |), where for t ∈ R, s(t) = {0 if t = 0 ; 1 otherwise}.

  θ(y, r) is non-increasing function in r. Using convexity of θ(y, r) in r it follows ∂ ∂r θ(y, r)

  x = lim j→∞ {x rj } rj with x rj ∈ S * rj -sel =⇒ x ∈ S * ||.||1 and x = arg max y∈S * ||.|| 1 ||y|| lex .
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 33 Consider θ functions where θ ≥ θ 1 . Let x * ∈ S * ||.||0 , ||x * || 0 = k and



  {r k } k∈N , r 0 > 0 and lim k→+∞ r k = 0, nd x k : x k ∈ arg min x∈F n i=1 θ(x i , r k ).

Figure 1 :

 1 Figure 1: Evolution of the minimum non-zero component of x r in function of the parameter r ↓ 0.

Figure 2 :

 2 Figure 2: Performance of θ-algorithm in presence of noise, using function θ 1 (t, r) = t/(t + r). n = 500, m = 200. Mean of SNR for 100 random problems in function of σ 2 .

Table 1 :

 1 Numerical results with random F

logical behavior as more noises is present more informations are lost. Further work could compare these results with existing methods and shows theoretical study, which could help building an improved algorithm.

with x 0 a solution of the problem (P 1 ). We stop when

x k+1 ∈ F and (x k+1 -x k ) t ∇ x θ(x k , r k ) ≤ .

(

This algorithm generates a nite sequence with strictly decreasing objective function values.

Proof. We note that this algorithm did not necessarily provide a global optimum as it ends in a local solution, so we do not expect global solutions in our algorithm. Besides, the gradient of functions θ in the objective tends to be very large as θ r (t) ≈ O(1/r), so it can be numerically ecient to add a scaling parameter of order r.

Numerical Simulations

Thanks to the previous sections, we have keys for an algorithm. We now present some numerical results. These simulations have been done using MATLAB language, [47], with the linear programming solver GUROBI, [START_REF]Gurobi Optimization[END_REF].

The precision in our simulations is = 10 -8 . We generate various polyhedron

+ with m < n. In the same way as in [START_REF] Fung | Equivalence of minimal 0 and p norm solutions of linear equalities, inequalities and linear programs for suciently small p[END_REF] we choose n = (500, 750, 1000) and in each case m = (40%, 60%, 80%). For each pair (n,m), we choose randomly one hundred problems. We take a random matrix A of size m × n and a default sparse solution x init with 10% of non-zero components. We get b by computing the matrix-vector product b = Ax init . Finally, we compare the sparsity of the solution from Thetal0-algorithm using θ 1 (#θ 1 ), the default sparse solution (# 0 ) and the initial iterate (# 1 ). We get the initial iterate as a solution of problem (P 1 ). The item # indicates the number of non-zero components in a vector.

Results are sum up in Table 1. The rst two columns give the dimensions of the problems. Column 3 gives the number of problems, where the solution of Thetal0-algorithm has at least the same sparsity as the default sparse solution. In the same vein, Column 4 compares the sparsity of the solution in 1 -norm with the default sparse solution. Column 5 gives the number of problems where the solution by Thetal0-algorithm improves strictly the solution by 1 -norm.

These results validate our algorithm, as in the majority of the cases it manages to nd at least an equivalent solution to the default sparse solution. One may notice that in many cases the 1 -norm minimization solution solves the problem in 0 -norm, which is not surprising according to [START_REF] Donoho | Neighborly polytopes and sparse solutions of underdetermined linear equations[END_REF].

In Figure 1, we show the behavior of the minimum non-zero component of the current iterate along the iterations in r for one example. We can see the increasing behavior that is the general behavior expected in the Remark 4.3.