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A Smoothing Method for Sparse Optimization

over Polyhedral Sets

M. Haddou∗ T. Migot†

Abstract

In this paper, we investigate a class of heuristics schemes to solve the

NP-hard problem of minimizing `0-norm over a polyhedral set. A well-

known approximation is to consider the convex problem of minimizing

`1-norm. We are interested in �nding improved results in cases where the

problem in `1-norm does not provide an optimal solution to the `0-norm
problem. We consider a relaxation technique using a family of smooth con-

cave functions depending on a parameter. Some other relaxations have

already been tried in the literature and the aim of this paper is to provide

a more general context. We use an homotopy algorithm, starting from a

solution to the problem in `1-norm and ending in a solution of the problem

in `0-norm. We show convergence results, a kind of monotonicity of the

solutions as well as error estimates leading to an exact penalization theo-

rem. We also provide keys for implementing the algorithm and numerical

simulations.

Mathematics Subject Classi�cation. 90-08 and 65K05
Keywords : smoothing functions ; sparse optimization ; concave minimization
; l0-norm

Introduction

Consider a compact polyhedron F de�ned by linear inequalities,
F = {x ∈ Rn| Ax ≤ b} ∩ Rn+ for some b ∈ Rm and A ∈ Rm×n, which we suppose
non-empty and not reduced to a singleton. One should note that the hypothesis
of considering polyhedron in the non-negative orthant is not restrictive, it is
only assumed to simplify the presentation and to avoid the absolute value in
the de�nition of the problem. We are interested in �nding the sparsest point
over this polyhedron, which is equivalent to minimize the `0-norm

∀x ∈ Rn, ‖x‖0 =

n∑
i=1

s(|xi|), where for t ∈ R, s(t) = {0 if t = 0 ; 1 otherwise} .

(1)
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Note that the `0-norm is not a norm as it does not have the homogeneity prop-
erty. We will study in this document the following

(P0) min
x∈F
‖x‖0 , (2)

which is an NP-hard problem as shown in [17]. This problem has several ap-
plications and received a considerable interest recently. Some of the possible
applications are signal and image modelling [3], machine learning [14] and com-
pressed sensing [5],[6] and [7].

The problem (P0) being di�cult to solve a more simple approach is often
used, which consists in solving the convex problem in `1-norm. The `1-norm is
denoted by

∀x ∈ Rn, ||x||1 =

n∑
i=1

|xi| (3)

and then we de�ned the convex problem by

(P1) min
x∈F
||x||1 . (4)

It can be seen as a convexi�cation of (P0), because |x| is the convex envelope of
s(x) for x ∈ [−1, 1]. This approach has been extensively studied, for instance in
[5], and has the bene�ts that it can be reformulated as a linear program. Also
several criteria have been found which guarantee that solving (P1) will also solve
(P0) under various assumptions, see [6] for some examples. A more sophisticated
version of this convex formulation could be to consider a reweighted-`1 problem,
[22]. For more details about applications in image and signal modelling as well
as a review on related questions see reviews in [3] or [20].

Also formulation (4) does not solve all the time the initial problem. Consider
for instance the following example in two dimension.

Example 0.1. Given a matrix A ∈ Rn×n and a vector b ∈ Rn such that

A =

(
−0.1 −1
−10 −1

)
and b =

(
−1
−10

)
. (5)

Geometrical observation allows to conclude that the solution of problem (4) is
( 10

11 ,
10
11 )T , while solution of problem (2) are of the form (0, 10 + ε)T and (10 +

ε, 0)T with ε ≥ 0.

Nonconvex optimization has been one of the main approach to tackle this
problem. For instance in a related formulations of the problem [8] proposed
a reformulation as a mathematical program with complementarity constraint.
One can �nd thresholding algorithm in [21]. Moreover we can also use DC
decomposition of the `0-norm, see [12]. We are interested here in nonconvex
methods to improve the solution we get by solving (P1) in the general case
where this approach does not solve the initial problem. In this aim several
concave relaxation of ||.||0 have been tried in the literature. In [9, 4], they
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consider a concave minimization problem approximating the `0-norm with the
`p-norm for 0 < p ≤ 1. In [18], they study a selection of concave minimization
problem using concave functions such that (t + r)p with r > 0 and 0 < p < 1,
−(t + r)−p with r > 0 and 1 < p, log(t + r) with 0 < r << 1 or 1 − e−rt with
r > 0 and p ∈ N. Finally, in [16] is presented a more general family including the
gaussian family and proposes an homotopy method starting from the `2-norm
solutions.

The purpose of this paper is to provide a theoretical context of relaxation
methods with concave minimization problems in a more general way, that is
using a general family of concave reformulation functions. We propose an ho-
motopy method starting from a solution of the convex problem (4) and con-
verging to a solution of the problem (2). We provide a complete analysis of this
algorithm with convergence results and a study on error estimate leading to an
exact penalty theorem. We run our algorithm on random examples showing the
interest of this approach.

This document is organised as follows. Sect. 1 presents a general formulation
of the relaxation methods using concave functions. Sect. 2 presents convergence
and kind of monotonicity results leading to an homotopy method. Sect. 3
contains error estimates and an exact penalization theorem. Finally in Sect. 4
we give the algorithm with several remarks concerning its implementation and
in Sect. 5 we present numerical results.

1 A smoothing method

We consider a family of smooth function in order to reformulate the `0-norm.
This family has already been used in the di�erent context of complementarity
[11] and image restoration [2]. These functions are non-decreasing continuous
smooth concave functions such that

θ : R→]−∞, 1[ with θ(t) < 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1 . (6)

One way to build θ functions is to consider non-increasing probability density
functions f : R+ → R+ and then take the corresponding cumulative distribution
function

∀t ≥ 0, θ(t) =

∫ t

0

f(x)dx and ∀t < 0, θ(t) < 0 . (7)

By de�nition of f we can verify that

lim
t→+∞

θ(t) =

∫ +∞

0

f(x)dx = 1 and θ(0) =

∫ 0

0

f(x)dx = 0 . (8)

The non-increasing hypothesis on f gives the concavity of θ.
Examples of this family are θ1(t) = t/(t+ 1) if t ≥ 0 and θ1(t) = t if t < 0,

θ2(t) = 1− e−t with t ∈ R.
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Then using a scaling technique similar to the perspective functions in convex
analysis we de�ne θ(t, r) := θ

(
t
r

)
for r > 0 and we get

θ(0, r) = 0 ∀r > 0 and lim
r→0

θ(t, r) = 1 ∀t > 0 . (9)

For the previous examples of this family and t ≥ 0 we have θ1(t, r) = t/(t+ r),
θ2(t, r) = 1− e−t/r. The function θ1(t, r) will be extensively used in this paper.

Throughout this paper we will consider the concave optimization problem
for r > 0

(Pr) min
x∈F

n∑
i=1

θ(xi, r) . (10)

2 Convergence

In this section, we will show the link between problems (P0), (P1) and (Pr). We
denote S∗||.||0 the set of solutions of (P0), S∗||.||1 the set of solutions of (P1) and

S∗r the set of solutions of (Pr). Theorem 2.1 gives convergence of (Pr) to (P0)
for r decreasing to 0.

Theorem 2.1 (Convergence to `0-norm). Every limit point of any sequence
{xr}r, such that xr ∈ S∗r and r ↓ 0, is an optimal solution of (P0).

Proof. Given x̄ the limit of the sequence {xr}r, up to a subsequence, and x∗ ∈
S∗||.||0 . Since F is a closed set one has x̄ ∈ F . Furthermore we have for any r in
the corresponding subsequence

n∑
i=1

θ(x̄i, r) ≤
n∑
i=1

θ(x∗i , r) . (11)

Moreover the de�nition of θ(., r) functions, for r > 0 and t ∈ Rn give

n∑
i=1

lim
r↓0

θ(ti, r) = ||t||0 . (12)

Replacing into (11) we get
||x̄||0 ≤ ||x∗||0 , (13)

and thanks to the de�nition of x̄

||x̄||0 = ||x∗||0 . (14)

We now give another convergence result from [9], which adds that the con-
vergence appears in a �nite number of iteration.

Proposition 2.1. Given a non-empty polyhedron F ⊂ Rn+. Then there exists a
r̄ such that for all r ≤ r̄ a vertex of F is an optimal solution of (P0) and (Pr≤r̄).
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Proof. (Pr) is a problem of minimizing a concave function over a polyhedron F.
We can use Corollary 32.3.4 of [19], since there is no half-line in F such that
θ(., r) is unbounded below, so the in�mum over F is attained and it is attained
at one of the extremal point of F .
Given that there is a �nite number of extremal point, for a given extremal
point x′ we can �nd an in�nite non-increasing sequence R = (r0, r1, r2, ...) with
∀j rj ≥ 0 where x′ is solution of (PR). Moreover the objective function of (Pr)
is non-increasing and bounded below by the in�mum of `0-norm, so

n∑
i=1

θ(x′i, rj) = min
x∈F

n∑
i=1

θ(xi, rj) ≤ inf
x∈F
||x||0. (15)

Going through the limit in R for j →∞ and as the concave function is contin-
uous and x′ ∈ F , we have the results.

The next theorem shows for r su�ciently large that solutions of (Pr) are the
same than solutions of (P1).

Theorem 2.2 (Convergence to `1-norm). Every limit point of any sequence
{xr}r, such that xr ∈ S∗r for r ↑ ∞, is an optimal solution of (P1).

Proof. As r > 0, we can use a scaling technique for S
∗(2)
r = argmin

x∈F

∑n
i=1 rθ(xi, r)

min
x∈F

n∑
i=1

θ(xi, r) ⇐⇒ min
x∈F

n∑
i=1

rθ(xi, r) (16)

S∗r = S∗(2)
r . (17)

Given xr ∈ S∗(2)
r and x̄ ∈ S∗||.||1 . We use the �rst order Taylor's theorem for θ(t)

in 0,

θ(t) = tθ′(0) + g(t), where lim
t→0

g(t)

t
= 0. (18)

Functions θ are concave, so we have θ′(0) > 0. By de�nition of x̄ and using (18)
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we have
n∑
i=1

rθ(xri , r) ≤
n∑
i=1

rθ(x̄i, r) (19)

n∑
i=1

xri θ
′(0) + rg(

xri
r

) ≤
n∑
i=1

xri θ
′(0) + rg(

x̄i
r

) (20)

n∑
i=1

xri −
n∑
i=1

x̄i ≤
r

θ′(0)

n∑
i=1

g(
x̄i
r

)− r

θ′(0)

n∑
i=1

g(
xri
r

) (21)

≤ 1

θ′(0)

∣∣∣∣∣
n∑
i=1

g( x̄i

r )
x̄i

r

x̄i

∣∣∣∣∣+
1

θ′(0)

∣∣∣∣∣
n∑
i=1

g(
xr
i

r )
xr
i

r

xri

∣∣∣∣∣ (22)

≤ 1

θ′(0)

(
n∑
i=1

∣∣∣∣g( x̄i

r )
x̄i

r

∣∣∣∣
)(

n∑
i=1

x̄i

)
(23)

+
1

θ′(0)

(
n∑
i=1

∣∣∣∣∣g(
xr
i

r )
xr
i

r

∣∣∣∣∣
)(

n∑
i=1

xri

)
(24)

n∑
i=1

xri ≤

(
n∑
i=1

x̄i

)
1 + 1

θ′(0)

(∑n
i=1

∣∣∣ g( x̄i
r )

x̄i
r

∣∣∣)
1− 1

θ′(0)

(∑n
i=1

∣∣∣∣ g( xr
i
r )

xr
i
r

∣∣∣∣) . (25)

We have

lim
r→+∞

x̄

r
= 0, (26)

and now
n∑
i=1

θ(xri , r) ≤
n∑
i=1

θ(x̄i, r) (27)

lim
r→+∞

n∑
i=1

θ(xri , r) ≤ lim
r→+∞

n∑
i=1

θ(x̄i, r) (28)

≤ 0 (29)

lim
r→+∞

n∑
i=1

θ(xri , r) = 0. (30)

As for r > 0 : θ(xi, r) ∈ [0, 1[ and θ−1(0, r) = 0, we have

lim
r→+∞

xri
r

= 0 ∀i . (31)

Using (26) and (31) it becomes

lim
r→+∞

x̄i
r

= 0 =⇒ lim
r→+∞

g( x̄i

r )
x̄i

r

= 0 (32)

lim
r→+∞

xri
r

= 0 =⇒ lim
r→+∞

g(
xr
i

r )
xr
i

r

= 0, (33)
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and then going to the limit

lim
r→+∞

n∑
i=1

xri ≤
n∑
i=1

x̄i. (34)

So, with (34) and by de�nition of x̄ we have the equality and then the result.

The next theorem gives a monotonicity result, which enlightens the relation
between the three problems (P0), (P1) and (Pr). By monotonicity, we mean that
for a given feasible point we want a relation of monotony in r for the objective
function of (P1), (Pr) and (P0). As the components of the `0-norm and the θr(t)
are in [0, 1[ it is necessary to put the components of `1-norm in a similar box,
which explains the change of variable in the theorem.

Remark 2.1. In the following theorem we use the hypothesis that θ functions
are convex in r. This is not so restrictive as we think several functions verify
it. If we take the three examples of θ functions given in the introduction, θ1 and
θlog := log(1 + x)/ log(1 + x+ r) are convex in r but not θ2.

Theorem 2.3 (Monotonicity of solutions). Given x ∈ F , let y = x/(||x||∞+ ε)
where ε > 0, so y ∈ [0, 1[n. Set a function Ψ(t, r) : [0, 1[→ [0, 1[ as

Ψ(t, r) =
θ(t, r)

θ(1, r)
, (35)

where θ(t, r) is the smooth function described in the introduction, which we will
consider here as convex in r. For r and r̄ such that 0 < r̄ < r < +∞, then
one has

||y||1 ≤
n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄) ≤ ||y||0 . (36)

Proof. Since functions θ are concave and θ(0) = 0 one has subadditivity of this
functions, then

θ(yi, r) ≥ yi θ(1, r) . (37)

Therefore
n∑
i=1

Ψ(yi, r)− ||y||1 =

n∑
i=1

(
θ(yi, r)

θ(1, r)
− yi) (38)

≥ 0, (39)

which leads to the �rst inequality

||y||1 ≤
n∑
i=1

Ψ(yi, r) . (40)

We continue with the second inequality showing that Ψ(y, r) functions are non-
increasing in r, i.e

n∑
i=1

Ψ(yi, r) ≤
n∑
i=1

Ψ(yi, r̄). (41)
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The functions Ψ(y, r) is non-increasing in r if its derivative with respect to r

∂

∂r
Ψ(y, r) =

( ∂∂r θ(y, r))θ(1, r)− ( ∂∂r θ(1, r))θ(y, r)

θ(1, r)2
(42)

is negative. Since θ(y, r) is an non-decreasing function in y we have

θ(y, r)

θ(1, r)
< 1 (43)

and
∂

∂r
θ(y, r) = − 1

r2

∂

∂y
θ(y, r) < 0 . (44)

So θ(y, r) is non-increasing function in r. Using convexity of θ(y, r) in r it
follows

∂
∂r θ(y, r)
∂
∂r θ(1, r)

=
∂
∂r θ(1, r/y)
∂
∂r θ(1, r)

> 1 . (45)

Then in (42) the derivative with respect to r is negative and we have (41).
Finally, since θ(y, r) is non-decreasing in y and y ∈ [0, 1[n one has

||y||0 −
n∑
i=1

Ψ(yi, r̄) =

n∑
i=1;yi 6=0

1− θ(yi, r̄)

θ(1, r̄)
≥ 0 , (46)

which gives the last inequality and complete the theorem.

Remark 2.2. Both choice of scaling parameter in Theorem 2.2 and Theorem
2.3 are linked. In the former, we set that limr→+∞ r

∑n
i=1 θ(xi, r) =

∑n
i=1 xi,

so evaluating in one dimension and x = 1 we have limr→+∞ rθ(1, r) = 1 and
then we see that r and 1/θ(1, r) have the same behaviour for r su�ciently large.

All this results lead us to the general behaviour of the method. First, we
start from one solution of (P1) then by decreasing parameter r the solution of
(Pr) becomes closer to a solution of (P0).

Another approach would be to de�ne a new problem which selects one solu-
tion of the possibly many optimal solution of (P0). We consider the following
problem which is a selective version of (Pr)

(Pr−sel) min
x∈F

n∑
i=1

θ(xi, r) +

n∑
i=1

r
i

2n+1xi . (47)

We will use a lexicographic norm and we note

||y||lex < ||x||lex ⇐⇒ ∃i ∈ {1, ..., n}, yi < xi and ∀ 1 ≤ j < i, yj = xj . (48)

In the next theorem we want to choose the solution of (P0) which has the
smallest lexicographic norm. From the previous equation it is clear that this
optimal solution is unique.
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Theorem 2.4 (Convergence of the selective concave problem). We use func-
tions θ such that θ ≥ θ1. Given {xr}r the sequence of solutions of (Pr−sel) for
r ∈ R = {r0, r1, ...} with R a non-increasing sequence such that rj > 0 and
x̄ the limit point of this sequence. Then, x̄ is the unique solution of S∗||.||0 such

that ∀y ∈ S∗||.||0 , ||x̄||lex ≤ ||y||lex.

Proof. Given x∗ an optimal solution of (P0) such that ∀y ∈ S∗||.||0 , ||x
∗||lex ≤

||y||lex and x̄ the limit of a sequence of {xr}r solution of (Pr−sel). So, there
exists a r̄ such that for every r < r̄ we have x̄ solution of (Pr−sel) and

n∑
i=1

θ(x̄i, r) +

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

θ(x∗i , r) +

n∑
i=1

r
i

2n+1x∗i . (49)

In the same way as in Theorem 2.1, going to the limit for r ↓ 0 we have

||x̄||0 ≤ ||x∗||0 , (50)

which is an equality by de�nition of x∗ and prove the �rst part of the theorem.
Now we need to verify the selection of the solution. Using that θ(x, r) ≤ 1 in
(49) one has

n∑
i=1

(θ(x̄i, r)− 1) + k +

n∑
i=1

r
i

2n+1 x̄i ≤ k +

n∑
i=1

r
i

2n+1x∗i (51)

n∑
i=1

(θ(x̄i, r)− 1) +

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i . (52)

Consider θ ≥ θ1, r su�ciently small (min{i|xi 6=0} x̄i ≥
√
r) and using that

||x̄||0 = k we have

−k r

r +
√
r

+

n∑
i=1

r
i

2n+1 x̄i ≤
n∑
i=1

r
i

2n+1x∗i . (53)

Diving by r
1

2n+1 , we get

−k r

r
1

2n+1 (r +
√
r)

+ x1 +

n∑
i=2

r
i

2n+1 x̄i ≤ x∗1 +

n∑
i=2

r
i

2n+1x∗i . (54)

Therefore, going to the limit for r ↓ 0 one has

x̄1 ≤ x∗1 (55)

which is an equality by hypothesis on x∗ being the smallest ||.||lex solution of
(P0). So, as x̄1 = x∗1 in (53) one has

−k r

r +
√
r

+

n∑
i=2

r
i

2n+1 x̄i ≤
n∑
i=2

r
i

2n+1x∗i . (56)
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By induction we get x̄i = x∗i , ∀i ∈ {1, ..., n} and so x̄ = x∗, because we have

∀j ∈ {1, ..., n}, lim
r→0

r

r
j

2n+1 (r +
√
r)

= 0 . (57)

Finally we have the results as x̄ is the optimal solution which has the smallest
lexicographic norm.

Remark 2.3. If we try to get an equivalent result as in Theorem 2.2 for this
selection problem, it is clear that for r su�ciently large we will solve the `1-norm
problem but with a reversed lexicographical order than the one we are looking for,
i.e for a non-decreasing sequence of rj

x̄ = lim
j→∞
{xrj}rj with xrj ∈ S∗rj−sel =⇒ x̄ ∈ S∗||.||1 and x̄ = arg max

y∈S∗||.||1
||y||lex.

(58)
This will de�nitely prevent us of any kind of monotonicity result such as Theo-
rem 2.3. So, unless S∗||.||0 admits only one solution, the initial point as a solution

of (P1) has no chance of being a good initial point. This argument and the fact
that this problem looks numerically not advisable lead us not to follow the study
of this selective problem.

3 Error estimate

In this section we focus on what happen when r becomes small. We denote
card(I) the number of elements in a set I. Note that the following results are
given for functions θ ≥ θ1 with θ1(t, r) = t/(t+ r) for t, r ∈ R+.

Lemma 3.1. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be
the optimal value of problem (P0) and I(x, r) = {i|xi ≥ kr}. Then one has

xr ∈ arg min
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k . (59)

Proof. We use a proof by contradiction. Consider that card(I(xr, r)) ≥ k + 1
and we have xr ∈ arg minx∈F

∑n
i=1 θ(xi, r), then

n∑
i=1

θ(xri , r) ≥ (k + 1)θ(kr, r) ≥ (k + 1)θ1(kr, r) = (k + 1)
kr

kr + r
= k , (60)

which is a contradiction with the de�nition of xr.

This lemma gives us a theoretical stopping criterion for the decrease of r,
as for r < r̄ = minxr

i 6=0 x
r
i /k, x

r becomes an optimal solution. In the following
lemma we look at the consequences in the evaluation of θ.
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Lemma 3.2. Consider θ functions where θ ≥ θ1. Let N 3 k = ||x∗||0 < n be
the optimal value of problem (P0) and

r̄ = min
xr
i 6=0

xri /k .

Then one has

r ≤ r̄ ⇐⇒ θ(min
xr
i 6=0

xri , r) ≥
k

k + 1
. (61)

Proof. By using the expression of θ1 we have

θ1(min
xr
i 6=0

xri , r) =
minxr

i 6=0 x
r
i

minxr
i 6=0 xri + r

≥ k

k + 1
(62)

⇐⇒ min
xr
i 6=0

xri (k + 1) ≥ k(min
xr
i 6=0

xri + r) (63)

⇐⇒ min
xr
i 6=0

xri ≥ kr (64)

⇐⇒ r̄ =
minxr

i 6=0 x
r
i

k
≥ r , (65)

and so the results.

Both previous lemma lead us to the following theorem, which is an exact
penalization result for our method.

Theorem 3.1 (Exact Penalization Theorem). Consider θ functions where θ ≥
θ1. Let N 3 k = ||x∗||0 < n be the optimal value of problem (P0) and xr ∈ S∗r .
Then one has

θ(min
xr
i 6=0

xri , r) ≥
k

k + 1
=⇒ xr ∈ S∗||.||0 . (66)

Proof. By Lemma 3.2 and with r̄ = minxr
i 6=0 x

r
i /k one has

θ(min
xr
i 6=0

xri , r) ≥
k

k + 1
⇐⇒ r ≤ r̄ . (67)

Then by Lemma 3.1 and using xr ∈ S∗r we have

xr ∈ argmin
x∈F

n∑
i=1

θ(xi, r)⇒ card(I(xr, r)) ≤ k . (68)

Finally, using r ≤ r̄ and that k is the optimal value of problem in `0-norm we
have the result.

We use in the previous result the minimum non-zero component of xr, which
is logical as we expect that for r su�ciently small the sequence of {minxr

i 6=0 x
r
i }r

should be increasing. The following lemma gives us a clue on this behaviour.
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Lemma 3.3. Consider θ functions where θ ≥ θ1. Let x∗ ∈ S∗||.||0 , ||x
∗||0 = k

and

r∗ =
1

k
min
x∗i 6=0

x∗i .

Then one has
∀r ≤ r∗, xr ∈ S∗r =⇒ min

xr
i 6=0

xri ≤ min
x∗i 6=0

x∗i . (69)

Proof. Suppose that min
xi 6=0

xi > min
x∗i 6=0

x∗i . Since x
r ∈ S∗r we have

n∑
i=1

θ(xr, r) ≥
n∑
i=1

θ(xr, r∗) (70)

> (k + 1)θ(min
x∗i 6=0

x∗i , r
∗) (71)

> (k + 1)
kr∗

kr∗ + r∗
(72)

= k , (73)

which is in contradiction with the de�nition of xr.

4 Algorithm

The previous results allow us to build a generic algorithm

[Thetal0]

{r
k}k∈N, r0 > 0 and lim

k→+∞
rk = 0

�nd xk : xk ∈ arg min
x∈F

∑n
i=1 θ(xi, r

k)
. (74)

Now, several questions remain to be answered such as initialization, choice of the
sequence {rk} and the method used to solve the concave minimization problems.
In Sect. 3 we have shown an exact penalization result, which will help us building
a stopping criterion. We make a few remarks about these questions. Note that
interesting related remarks can be found in [16].

Remark 4.1 (On the behaviour of θ functions). These concave functions are
acting as step function for r su�ciently small. That is one has the following
behaviour

θ(t, r) '

{
1 if t >> r

0 if t << r
, (75)

which gives us a strategy to update r. Let xk be our current iterate and rk the
corresponding parameter. We divide our iterate into two sets, those with indices
in I = {i | xki ≥ rk} and the others with indices in Ī = {i | xki < rk}. We can see
I as the set of indices of the "non-zero" components and Ī as the set of indices
of the "zero" components of xk. So we will choose rk+1 around maxi∈Ī x

k
i to

ask whether or not it belongs to zeros and we repeat this operation until r is

12



su�ciently small to consider Ī the set of e�ective zeros. Also this is a general
behaviour, to be sure to have decrease of r one should add a �xed parameter of
minimum decrease.

Remark 4.2 (Initialization). It is the main purpose of our method to start with
the solution x0 of the problem (P1), which is a convex problem. So, we need to
�nd the r0 related to x0. A natural, but non-trivial, way of doing this would be
to �nd the parameter which minimizes the following problem

min
r>0
||

N∑
i=1

θ(x0
i , r)− ||x0||1 ||22 . (76)

A simpler idea is to be inspired from last remark and put r0 as a value which is
just beyond the top value of x0

i .

Remark 4.3 (Stopping criterion). It has been shown, in Sect. 3, an exact
penalization theorem using the quantity k/(k+1), which depends on the solution
we are looking for. Numerically, we can make more iterations but being sure to
satisfy this criterion using the fact that ||x0||0 ≥ k, which gives us the following
criterion

θ(min
xr
i 6=0

xri , r) ≥
||x0||0
||x0||0 + 1

≥ k

k + 1
. (77)

Remark 4.4 (Algorithm for concave minimization). In the same way as in
[9] and [18] we will use a successive linearization algorithm (SLA) algorithm to
solve the concave minimization problem at each iteration in r. This algorithm
is a �nitely timestep Franck & Wolf algorithm, [13].

Proposition 4.1 (SLA algorithm for concave minimization). Given ε su�-
ciently small and rk. We know xk and we �nd xk+1 as a solution of the linear
problem

min
x∈F

xt∇xθ(xk, rk) , (78)

with x0 a solution of the problem (P1). We stop when

xk+1 ∈ F and (xk+1 − xk)t∇xθ(xk, rk) ≤ ε . (79)

This algorithm generates a �nite sequence with strictly decreasing objective func-
tion values.

Proof. see [[13], Theorem 4.2].

We note that this algorithm didn't provide necessarily a global optimum as
it ends in a local solution, so we don't expect global solutions in our algorithm.
Also when considering the objective function of this linear program the gradient
of functions θ tends to be very large as θ′r(t) ≈ O(1/r), so it can be numerically
e�cient to add a scaling parameter of order r.
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5 Numerical Simulations

Thanks to the previous sections we have keys for an algorithm. We will show
now some numerical results. These simulations have been done using MATLAB
language, [15], with the linear programming solver GUROBI, [10].

The precision in our simulations is ε = 10−8. We generate various polyhedron
F = {x ∈ Rn| b ∈ Rm, Ax ≤ b} ∩ Rn+ with m < n. In the same way as in [9]
we choose n = (500, 750, 1000) and in each case m = (40%, 60%, 80%). For
each pair (n,m) we choose randomly one hundred problems. We take a random
matrix A of size m×n and a default sparse solution xinit with 10% of non-zero
components. We get b by calculating the matrix-vector product b = Axinit. In
the end, we will compare the sparsity of the solution from Thetal0-algorithm
using θ1 (#θ1), the default sparse solution (#`0) and the initial iterate (#`1).
We get the initial iterate as a solution of problem (P1). The item # indicates
the number of non-zero components in a vector.

Table 1: Numerical results with random F =
{
x ∈ Rn+| b ∈ Rm, Ax ≤ b

}
, di-

mensions of the problem are �rst 2 columns. Compare a default sparse solution
with 10% of non-zero components, #l0, the initial iterate solution of (P1), #l1,
and the solution by θ-algorithm with function θ1, #θ1. The item # indicates
the number of non-zeros.

n m #`0 ≥ #θ1 #`1 ≤ #`0 #θ1 < #`1

1000 800 100 100 0
1000 600 100 98 2
1000 400 50 1 99
750 600 100 100 0
750 450 100 98 2
750 300 54 0 100
500 400 100 100 0
500 300 100 94 6
500 200 63 0 100

Results are sum up in Table 1. The �rst two columns give the dimensions
of the problems, Column 3 gives the number of problems where the solution
of θ algorithm has at least the same sparsity as the default sparse solution.
Column 4 in the same vein compare the sparsity of the solution in `1-norm with
the default sparse solution. Column 5 gives the number of problems where the
solution by θ-algorithm improves strictly the solution by `1-norm.

This results validate our algorithm, as in the majority of the cases it manages
to �nd at least an equivalent solution to the default sparse solution. One may
notice that in many cases the `1-norm minimization solution solves the problem
in `0-norm, which is not surprising according to [6].

In Figure 1, we show the behaviour of the minimum non-zero component of
the current iterate along the iterations in r for one example. We can see the
increasing behaviour that is the general behaviour expected in the Remark 4.3.
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Figure 1: Evolution of the minimum non-zero component of xr in function of
the parameter r ↓ 0.

6 Conclusion and Outlook

We proposed a class of heuristics schemes to solve the NP-hard problem of min-
imizing the `0-norm. Our methods require to �nd a sequence of solution from
concave minimization problem, which we solved with a successive linearization
algorithm. This methods have the bene�t that they can only improve the solu-
tion we get by solving the `1-norm problem. We gave convergence results, an
exact penalization theorem and keys to implement the methods. To con�rm the
validity of this algorithm we gave numerical results from randomly generated
problems.

Further studies can investigate the special case where the `1-norm solves the
`0-norm problem, to �nd an improved stopping condition. Thanks to several
studies, for instance [6], we have criteria which can help us identifying the cases
where the solution we get by solving (P1) is an optimal solution of (P0). We
can wonder if there exists a better su�cient condition than the one presented
here in the case where xr ∈ S∗||.||1 ∩ S

∗
r

We can also study a very similar problem which is the one of minimizing
`0-norm with noise, see for instance [7] or [1], that is

(P0,δ) min ||x||0 s.t. Ax ≤ b+ δ. (80)

As a �rst step in this direction we run our heuristic schemes on some perturbed
problems. We generate polyhedron in a similar way as in the previous section
with noise in b = Axinit + ϑ, where ϑ follows N (0, σ2In×n). We build a signal
to noise ratio (SNR) for several values of σ2 from 0.5 to 0,

SNR = 20 log(
||x∗||2

||x∗ − xb||2
) , (81)

where x∗ and xb are generated by our algorithm, the former comes from the
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problem without noise and the later from the perturbed problem. We choose
dimensions n = 500 and m = 200. Then for one hundred randomly selected
problems we compute the mean of the SNR. Results in Figure 2 show very

Figure 2: Performance of θ-algorithm in presence of noise, using function
θ1(t, r) = t/(t+ r). n = 500, m = 200. Mean of SNR for 100 random problems
in function of σ2.

logical behaviour as more noise is present more informations are lost. Further
work could compare these results with existing methods and shows theoretical
study, which could help building an improved algorithm.
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