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Genetic Algorithms for Condition-Based Maintenance Optimization under uncertainty

This paper proposes and compares different techniques for maintenance optimization based on

Genetic Algorithms (GA), when the parameters of the maintenance model are affected by uncertainty and the fitness values are represented by Cumulative Distribution Functions (CDFs). The main issues addressed to tackle this problem are the development of a method to rank the uncertain fitness values, and the definition of a novel Pareto dominance concept. The GA-based methods are applied to a practical case study concerning the setting of a condition-based maintenance policy on the degrading nozzles of a gas turbine operated in an energy production plant.

Introduction

Multi-state degradation modelling has recently received considerable attention in the domain of reliability and maintenance engineering [START_REF] Baraldi | A modeling framework for maintenance optimization of electrical components based on fuzzy logic and effective age[END_REF], [START_REF] Baraldi | A pratical analysis of the degradation of a nuclear component with field data[END_REF], [START_REF] Lisnianski | Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers[END_REF], [START_REF] Moghaddass | A parameter estimation method for a multi-state deteriorating system with incomplete information[END_REF], [START_REF] Moghaddass | Multi-state degradation analysis for a condition monitored device with unobservable states[END_REF], as it pragmatically allows setting advanced maintenance paradigms such as Condition-Based Maintenance (CBM) and Predictive Maintenance [START_REF] Zio | A snapshot on maintenance modeling and applications[END_REF], [START_REF] Zio | Evaluating maintenance policies by quantitative modeling and analysis[END_REF]. In practice, the parameters governing the stochastic transitions among the states of these models are first estimated, based on the available data; then, the degradation model is embedded into the maintenance model to estimate the performance indicators of interest (e.g., unavailability [START_REF] Lins | Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation[END_REF], [START_REF] Moura | A Multi-Objective Genetic Algorithm for Determining Efficient Risk-Based Inspection Programs[END_REF], profitability [START_REF] Alsyouf | The role of maintenance in improving companies' productivity and profitability[END_REF], quality in production [START_REF] Ben-Daya | Maintenance and quality: the missing link[END_REF], total costs, risk [START_REF] Furtado | Multi-objective optimization of risk and cost for risk-based inspection plans[END_REF], etc.): this model is at the basis of the optimization algorithm that identifies the set of optimal maintenance settings among which the decision maker selects the preferred solution (e.g., [START_REF] Kolowrocki | Reliability and Safety of Complex Technical Systems and Processes: Modeling -Identification -Prediction -Optimization[END_REF], [START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF]).

On the other side, the correct processing of the uncertainty in the maintenance models is emerging to be a crucial issue for the proper decision on the preferred maintenance solution to apply in practice without 'surprises'. This importance is witnessed by the large amount of literature produced on this topic (e.g., [START_REF] Baraldi | Uncertainty treatment in expert information systems for maintenance policy assessment[END_REF], [START_REF] Baraldi | Dempster-Shafer theory of evidence to handle maintenance models tainted with imprecision[END_REF], [START_REF] Baraldi | Uncertainty analysis in degradation modeling for maintenance policy assessment[END_REF], [START_REF] Baraldi | Maintenance policy performance assessment in presence of imprecision based on Dempster-Shafer Theory of Evidence[END_REF], [START_REF] Giorgio | An ageand state-dependent Markov model for degradation processes[END_REF], [START_REF] Moghaddass | A parameter estimation method for a multi-state deteriorating system with incomplete information[END_REF], [START_REF] Moghaddass | Multi-state degradation analysis for a condition monitored device with unobservable states[END_REF]). In other words, the maintenance models have to take into account the uncertainties affecting their parameters, which usually come from limited evidence available in the field. Such epistemic uncertainty (i.e., due to insufficient knowledge) needs to be propagated together with the aleatory uncertainty (i.e., due to the inherent stochastic nature of the degradation and failure phenomena), through the maintenance model, onto the considered (maintenance) performance indicators.

Several theoretical frameworks and computational methods have been developed to incorporate imprecise parameters into Markov or semi-Markov multi-state degradation models, when the imprecision is represented by interval probabilities [START_REF] De Cooman | Imprecise Markov Chains And Their Limit Behaviour[END_REF], [START_REF] Kozine | Interval-valued finite Markov chains[END_REF], [START_REF] Rocco | Effects of the transition rate uncertainty on the steady state probabilities of Markov models using interval arithmetic[END_REF], [START_REF] Škulj | Discrete time Markov chains with interval probabilities[END_REF], fuzzy stets [START_REF] Ge | Reliability Evaluation of Equipment and Substations with Fuzzy Markov Processes[END_REF], possibility distributions [START_REF] Baraldi | Uncertainty treatment in expert information systems for maintenance policy assessment[END_REF], [START_REF] Baraldi | Uncertainty analysis in degradation modeling for maintenance policy assessment[END_REF] and probability assignments [START_REF] Baraldi | Dempster-Shafer theory of evidence to handle maintenance models tainted with imprecision[END_REF], [START_REF] Baraldi | Maintenance policy performance assessment in presence of imprecision based on Dempster-Shafer Theory of Evidence[END_REF]. However, the problem (undoubtedly difficult [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF]) of how to optimize maintenance in the setting where the epistemic and aleatory uncertainties in the embedded degradation model lead to uncertain objective functions (e.g., unavailability, cost, etc.), has not received the necessary attention. In fact, as pointed out in [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF] and in [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF], few approaches have been propounded in the literature to effectively tackle such multiobjective optimization problems in the presence of uncertain objective functions. These works consider different frameworks for uncertainty representation: probability distributions in [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF], [START_REF] Hughes | Evolutionary Multi-objective Ranking with Uncertainty and Noise[END_REF], [START_REF] Martorell | A tolerance interval based approach to address uncertainty for RAMS+C optimization[END_REF], [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF], [START_REF] Sanchez | Addressing imperfect maintenance modelling uncertainty in unavailability and cost based optimization[END_REF], [START_REF] Villanueva | Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy[END_REF] fuzzy sets in [START_REF] Li | A fuzzy genetic algorithm for driver scheduling[END_REF] and [START_REF] Trebi-Ollennu | Multiobjective fuzzy genetic algorithm optimisation approach to nonlinear control system design[END_REF], and plausibility and belief functions in [START_REF] Compare | Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems[END_REF], [START_REF] Limbourg | Multi-objective Optimization of Problems with Epistemic Uncertainty[END_REF].

In this context, the Authors have proposed methodologies in the framework of Possibility Theory (PT, [START_REF] Baraldi | Uncertainty treatment in expert information systems for maintenance policy assessment[END_REF], [START_REF] Baraldi | Uncertainty analysis in degradation modeling for maintenance policy assessment[END_REF]) and Dempster-Shafer Theory of Evidence (DSTE, [START_REF] Baraldi | Dempster-Shafer theory of evidence to handle maintenance models tainted with imprecision[END_REF], [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF]) to represent and propagate the uncertainty in multi-state degradation maintenance models, and also to optimize the CBM policy based on the model outputs, which are pairs of plausibility and belief functions. Now, the aim of the present work is to propose an extension of Multi-Objective Genetic Algorithms (MOGA [START_REF] Compare | Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems[END_REF], [START_REF] Konak | Multi-objective optimization using genetic algorithms: A tutorial[END_REF], [START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF], [START_REF] Marseguerra | Basics of Genetic Algorithms Optimization for RAMS Applications[END_REF], [START_REF] Mitchell | An Introduction to Genetic Algorithms[END_REF]) to tackle the maintenance optimization issue when the epistemic uncertainty in the degradation model is represented in the probability theory framework. Namely, the parameters of the stochastic model of the degradation mechanisms are supposed to be Maximum Likelihood (ML)estimated and the uncertainties in these estimations are represented by probability distributions [START_REF] Baraldi | Modelling the effects of maintenance on the degradation of a water-feeding turbo-pump of a nuclear power plant[END_REF], [START_REF] Wichern | Applied Multivariate statistical analysis[END_REF], [START_REF] Papoulis | Probability, Random Variables and Stochastic Processes[END_REF]. A double-loop Monte-Carlo approach [START_REF] Zio | The Monte Carlo Simulation Method for System Reliability and Risk Analysis[END_REF] is used to propagate the uncertainties from the model parameters onto the considered performance indicators (i.e., the objective functions of the optimization, which represent fitness values of the solutions), which turn out to be probability distributions.

The development of a technique to rank the uncertain fitness values and the generalization of the Pareto dominance concept are the two fundamental issues to address in order to extend the application of MOGA to the case of uncertain objective functions, being the evolutionary schemes wellestablished frameworks in which these innovations have to be embedded. In this work, we propose the pairwise ranking technique propounded in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] and [START_REF] Compare | Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems[END_REF], and a Pareto dominance concept based on the ranks of the solutions. These concepts are combined with the NSGA-II elitist technique ( [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF]), which relies on the Pareto dominance to effectively divide the evolving populations into non-dominated fronts of different ranks, thus allowing for a significant reduction in the computational times.

Finally, the results provided by this technique are compared to those of the CVaR approach [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF], [START_REF] Sarykalin | Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization[END_REF], which condenses the uncertainties in the objective functions into crisp values, representative of the associated risk. The comparison of these techniques and of their performances constitutes an additional original contribution of the paper.

The remainder of the paper is organized as follows. Section 2 describes the ranking criterion and the Pareto dominance definition; Section 3 takes a glance at the GA advancements considered in this work (named extended NSGA-II, hybrid NSGA-II and CVaR measure). A practical case study is introduced in Section 4, which concerns the optimization of a CBM policy on the nozzle system of gas turbines. The results of the application of the proposed methodologies to the case study are shown and discussed in Section 5. Concluding remarks are given in Section 6.

Sorting Method

In the uncertainty setting considered in this work, finding the optimal set that minimizes the objective functions (e.g., unavailability and cost) requires developing a method to establish a relation order among two probability distributions. To this aim, we consider the algorithm proposed in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF], which is briefly recalled in this Section.

Let us consider two generic random variables 𝐴 and 𝐵. To establish which is the largest, we consider the random variable ∆ 𝐴𝐵 = 𝐴 -𝐵 . Then, the probability that 𝐴 is larger than 𝐵 , referred to as "exceedance measure", is given by 𝑟 𝐴𝐵 = 1 -𝐹 ∆ AB (0), where 𝐹 ∆ AB is the Cumulative Distribution Function (CDF) of ∆ 𝐴𝐵 .

The relationship between 𝐴 and 𝐵 is obtained by comparing 𝑟 𝐴𝐵 to a threshold range [𝑇 𝑙 , 1 -𝑇 𝑙 ], symmetric around 0.5, and considering the following criteria:

• If 𝑟 𝐴𝐵 ≥ 1 -𝑇 𝑙 , then 𝐴 is larger than 𝐵. • If 𝑟 𝐴𝐵 ≤ 𝑇 𝑙 , then 𝐵 is larger than 𝐴. • If 𝑇 𝑙 ≤ 𝑟 𝐴𝐵 ≤ 1 -𝑇 𝑙 , then 𝐴 is equal to 𝐵.
In practice, 𝐵 is the largest among the two if the decision-maker judges the probability of 𝐵 being larger than 𝐴 'large' enough (e.g., 0.7). A different point of view may be that 𝐴 and 𝐵 are similar as long as 𝑟 𝐴𝐵 belongs to [𝑇 𝑙 , 1 -𝑇 𝑙 ]. This way, the exceedance measure becomes a similarity measure. This method is similar to that proposed in [START_REF] Fan | A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations[END_REF], which also relies on the pairwise comparisons of the probability distributions. However, the solution proposed to solve multi-criteria decision problems is completely different from that proposed in this work.

For example, Figure 1 shows the Probability Density Functions (PDFs) of two variables 𝐴 and 𝐵, (left) and the corresponding CDFs (center). The results of the application of the sorting algorithm are shown in Figure 1 (right): the CDF of ∆ 𝐴𝐵 indicates that the exceedance measure 𝑟 𝐴𝐵 = 𝑃(𝐴 > 𝐵) = 1 -𝐹 𝐴𝐵 (0) = 0.8; this allows concluding that 𝐴 > 𝐵.

Figure 1 also highlights the drawback of the procedures to sort the probability distributions, which rely on points summarizing the distributions (e.g., the approach proposed in [START_REF] Coit | System optimization with component reliability estimation uncertainty: A multi-criteria approach[END_REF]). Namely, the expected value of 𝐴, (i.e, the middle point of the distribution) 𝐸[𝐴], is larger than that of B, 𝐸[𝐵]. On the other hand, the 90 th percentile of 𝐴 is smaller than the 90 th percentile of 𝐵. This entails that if one were to perform the ranking based on the 90 th percentile values the conclusion would be that B is larger than A, contrarily to what would be happen if the ranking were based on the expected values.

Figure 1 allows us also underlining the difference between the proposed ranking method and the classical definition of stochastic ordering (the so called 'usual' stochastic order, e.g., [START_REF] Lehmann | Ordered families of distributions[END_REF], [START_REF] Shaked | Stochastic Orders and their Applications[END_REF]): 𝐵 is smaller than 𝐴 if 𝐹 A (x) ≤ 𝐹 B (x), ∀x ∈ ℝ. Namely, the CDFs plotted in Figure 1 (center) intersect, and the condition for having one curve dominating the other is not fulfilled. Thus, 𝐴 and 𝐵 need to be considered as 'equal', although 𝑃(𝐴 > 𝐵) = 0.8. On the contrary, Figure 2 shows the situation where 𝐴 ≈ 𝑁(𝜇 = 2.1, 𝜎 = 1) is larger than 𝐵 ≈ 𝑁(𝜇 = 2, 𝜎 = 1) in the usual stochastic order, although the probability that 𝐴 > 𝐵 is very poor (𝐴 -𝐵 ≈ 𝑁(𝜇 = 0.1, 𝜎 = √2 2 ), and 𝑃(𝐴 > 𝐵) = 0.53).

The same considerations hold when the third degree stochastic dominance is applied [START_REF] Whitmore | Third-degree stochastic dominance[END_REF]: one can establish an order relation between 𝐴 and 𝐵 even if the evidence that 𝐴 is larger than 𝐵 is very small. From these considerations, it seems fair to say that the ranking methodology proposed in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] is more capable of capturing the information contained in the CDFs.

Figure 1: two PDFs and CDFs comparison

Finally notice that a ranking technique has been proposed in [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF] in support to GA, which establishes the order relation based on the comparison of the solutions with an ideal, pre-fixed Dirac delta distribution. It is worth noticing that when the reference Dirac delta is positioned at zero, then the method proposed in [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF] reduces to sorting the distributions based on their mean values. Then, also in this case the CDF sorting is based on points summarizing the CDFs, thus losing the information they encode.

Figure 2: two PDFs and CDFs comparison

The authors in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] also pointed out that there may be cases in which the pairwise comparisons of three generic random variables A, B and C lead to A>B and B>C, but C>A. This is a 'contradictory' ranking, as the transitive property does not hold. However, it has been proven in [START_REF] Baraldi | Component Ranking by Birnbaum Importance in Presence of Epistemic Uncertainty in Failure Event Probabilities[END_REF] that by setting 𝑇 𝑙 smaller than 1/3, such contradictory ranking is avoided and, at most, it can happen that A>B, B>C, and C=A. In this case, the three uncertain variables are considered equivalent.

Notice that the loss of the transitive property for similarity measures is a well-known issue, whose raising dates back to the 50's of the last century [START_REF] Menger | Probabilistic Theory of Relations[END_REF]: Poincaré emphasized that in the observable physical continuum, "equal" means "indistinguishable," and A = B and B = C do not imply A = C (i.e., physical equality is a non-transitive relation). These considerations have been formally modelled in a number of works (e.g., [START_REF] Luce | Semi-orders and a Theory of Utility Discrimination[END_REF], [START_REF] Greco | Rough Sets theory for multicriteria decision analysis[END_REF]). Nonetheless, the problem of the 'contradictory' ranking did not emerge in the works of the literature that propose extensions of GA to treat noisy fitness values (e.g., [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF], [START_REF] Hughes | Evolutionary Multi-objective Ranking with Uncertainty and Noise[END_REF]).

Pareto Dominance

When sorting of elements concerns multiple attributes, the concept of Pareto dominance is introduced.

Assume that there are 𝑄 objectives 𝛩 A solution is said to be Pareto optimal if it is not dominated by any other solution in the solution space. This means that a Pareto optimal solution cannot be improved with respect to any objective without worsening at least one other objective. The set of all feasible non-dominated solutions is referred to as the Pareto optimal set; the objective function values corresponding to a given Pareto optimal set form the Pareto front in the objective space.

When the exceedance-based sorting method described above is used to establish if 𝛩 𝑠 𝑞 ≤ 𝛩 𝑗 𝑞 , for any 𝑞 = 1, … , 𝑄, the given definition of Pareto dominance needs to be modified [START_REF] Compare | Genetic algorithms in the framework of Dempster-Shafer Theory of Evidence for maintenance optimization problems[END_REF]. To prove this, for the sake of simplicity we can refer to the case of Q= To overcome this issue, the sorting algorithm shown in [START_REF] Baraldi | Component Ranking by Birnbaum Importance in Presence of Epistemic Uncertainty in Failure Event Probabilities[END_REF] is first applied to every objective 𝑞 = 1, … , 𝑄. This algorithm exploits the ranking criterion described above and assigns the same ranking position to all the solutions that are equivalent with respect to objective q. For example, if we have 𝐻 = 4 solutions and the second and third solutions are equivalent with respect to objective q, then the final ranking is 1, 2, 2, 4.

Then, the following definition of Pareto dominance is introduced to identify the Pareto front:

𝑋 𝑠 ≻ 𝑋 𝑗 if 𝜌 𝑠 𝑞 ≤ 𝜌 𝑗 𝑞 for all 𝑞 = 1, … , 𝑄 and 𝜌 𝑠 𝑞 < 𝜌 𝑗 𝑞 for at least one 𝑞 = 1, … , 𝑄.
where 𝜌 𝑠 𝑞 and 𝜌 𝑗 𝑞 are the ranking positions of the solutions 𝑋 𝑠 and 𝑋 𝑗 with reference to objective q, respectively.

Finally, notice that the approach proposed in [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF] to implement the NSGA-II algorithm also relies on the ranking positions of the solutions in a population. However, the definition of the rank in [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF] is different from that given in this work. Rather, it resembles the ranking method proposed in [START_REF] Modarres | Risk Analysis in Engineering: Probabilistic Techniques, Tools and Trends[END_REF],

which applies the Monte Carlo sampling method to estimate, for every solution X h , the probabilities of occupying the H positions in the ranking. The final ranking of the solution X h is the average value of its ranking positions.

Multi Objective Genetic Algorithm (MOGA) for Optimization

GA is the most commonly known evolutionary algorithm for optimization, which uses techniques inspired by natural evolution to allow a population of solutions (also called, individuals), candidates to solve the (multiobjective) optimization problem, to evolve, i.e., move toward the best solution.

The evolution usually starts from a population of randomly generated individuals, which change at each iteration, called a generation. In each generation, the fitness (the values of the objective functions) of every individual in the population is evaluated, and the most fitting individuals (those with largest or smallest objective functions values, depending on whether the aim is maximization or minimization, respectively) are selected. Each individual is modified by mating and a new, more evolved, generation of candidate solutions is formed.

Commonly, the algorithm terminates when either a pre-set maximum number of generations has been produced, or a satisfactory fitness level has been reached in the population.

In this Section, the general procedure of the MOGA developed in our work is given as follows [START_REF] Konak | Multi-objective optimization using genetic algorithms: A tutorial[END_REF], [START_REF] Marseguerra | Basics of Genetic Algorithms Optimization for RAMS Applications[END_REF] (see Figure 3):

Step 1. (Initialization)

Set 𝑡 = 1. Randomly generate H solutions to form the first population 𝑋 𝑡=1 = {𝑋 1 , … , 𝑋 𝐻 }.

In the specific case of the maintenance optimization problem, a solution is generally a vector of decision variables such as the time interval between two successive inspections, the type of maintenance action to be performed, etc.

Step 2. (Fitness Evaluation)

Evaluate the fitnesses of the solutions in 𝑋 𝑡 for every objective 𝛩 1 , … , 𝛩 𝑄 , and assign the corresponding rank value by applying the sorting algorithm shown in [START_REF] Baraldi | Component Ranking by Birnbaum Importance in Presence of Epistemic Uncertainty in Failure Event Probabilities[END_REF]. In the uncertainty setting considered in this work, performing this step requires running the double loop Monte Carlo (MC) approach for propagating the uncertainty related to every solution 𝑋 ℎ ∈ 𝑋 𝑡 , ℎ = 1, … , 𝐻. That is, the following procedure is implemented:  The algorithm proposed in [START_REF] Baraldi | Component Ranking by Birnbaum Importance in Presence of Epistemic Uncertainty in Failure Event Probabilities[END_REF] is applied to get the rank position 𝜌 ℎ 𝑞 of the solution 𝑋 ℎ ∈ 𝑋 𝑡 , with respect to the objective q, ∀ ℎ = 1, … , 𝐻, ∀ 𝑞 = 1, … , 𝑄. Finally, the definition of Pareto dominance given in Section 2 is used to identify the set 𝑃 𝑡 of non-dominated solutions in the population 𝑋 𝑡 .

 An external
Step 3. (Breeding).

Generate an offspring population 𝑊 𝑡 = {𝑊 1 , … , 𝑊 𝐻 } as follows:

I. Selection

Choose two solutions 𝑋 𝑠 and 𝑋 𝑙 from 𝑋 𝑡 . This choice is usually based on the ranking values, and heavily influences the performance of the GA, which is typically evaluated in terms of effectiveness and efficiency. In this work, we apply the dominance depth criteria characterizing the NSGA-II [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF], which is one of the most efficient evolutionary algorithms to solve multi-objective optimization problems [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF]. The main characteristic of NSGA-II is the Fast Non Dominated Sorting (FNDS) function, used for the selection phase, which allows grouping a population into different non-domination levels. That is, all non-dominated individuals in the current population are identified. These solutions are assigned the rank 1.

Then, they are virtually removed from the population and the next set of non-dominated individuals are identified and assigned rank 2. This process continues until every solution in the population has been ranked. The selection procedure is then based on this ranking: individuals are randomly selected from the same rank class (Figure 3). The rationale of this choice is that every individual belonging to the same rank class can be considered equivalent to any other of the class, i.e., it has the same probability of the others to be selected as a parent and survive the replacement.

II. Crossover

Using a crossover operator, generate offsprings and add them to 𝑊 𝑡 .

III. Mutation

Mutate each solution {𝑊 1 , … , 𝑊 𝐻 } with a predefined mutation rate. This means that the genomes of the individuals are randomly changed, to favour the genetic diversity.

IV. Fitness assignment

For every solution 𝑊 ℎ in 𝑊 𝑡 = {𝑊 1 , … , 𝑊 𝐻 } , estimate the values of the objective functions 𝛩 1 , … , 𝛩 𝑄 and the rankings of the solutions with respect to the objectives, by applying to 𝑊 𝑡 the procedure described at Step 2.

V. Replacement

An archive of vectors is introduced, which contains the non-dominated solutions and the corresponding fitness values. This archive represents the current Pareto optimal set, which is dynamically updated at the end of each generation. That is, the solutions in 𝑃 𝑡 unite those already stored in the archive 𝐴 𝑡 , where 𝐴 1 = ∅. This means that 𝐴 𝑡+1 = 𝐴 𝑡 ∪ 𝑃 𝑡 . Then, the solutions in 𝐴 𝑡+1 are again sorted with respect to every objective to get the dominance relationships. The following archival rules are implemented:

• The dominated members are removed from 𝐴 𝑡+1 ;

• otherwise:

▪ if the archive is not full, 𝐴 𝑡+1 is stored as it is, and it will be used at the next iteration.

▪ if the archive is full, the solutions most similar to solutions already existing in the archive are removed from 𝐴 𝑡+1 . In this respect, an appropriate concept of distance is that of the Euclidean distance based on the values of the fitness of the chromosomes normalized to the respective mean values in the archive.

Step

(Stopping criterion)

If the stopping criterion is satisfied, terminate the search and return to the current population, else, set 𝑡 = 𝑡 + 1 and go back to Step 3. In this respect, notice that there are many stopping criteria (e.g., [START_REF] Marseguerra | Basics of Genetic Algorithms Optimization for RAMS Applications[END_REF]). In this work, the algorithm terminates when the number of simulation reaches a pre-fixed threshold.

Notice that along with convergence to the Pareto-optimal set, it is also desired that an evolutionary algorithm maintains a good spread of solutions in the obtained set of solutions. In NSGA-II, this is achieved through the crowding-distance computation [START_REF] Deb | A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[END_REF], which guides the selection process at the various stages of the algorithm toward a uniformly spread-out Pareto optimal front. The crowdingdistance computation requires sorting the population according to each objective function value in ascending order of magnitude. This is done by applying the sorting algorithm summarized in Section 2.

A final consideration concerns the loss of the transitive property introduced by the sorting methods that rely on similarity measures: the problem of the 'contradictory' ranking did not emerge in the works of the literature that propose extensions of GA to treat noisy fitness values (e.g., [START_REF] Eskandari | Handling uncertainty in evolutionary multiobjective optimization: SPGA[END_REF], [START_REF] Hughes | Evolutionary Multi-objective Ranking with Uncertainty and Noise[END_REF]).

This situation is due to the fact that assigning different ranking positions to solutions with equal fitness values does not significantly affect the effectiveness of the Single Objective GA search of the optimal solution; rather, the GA efficiency (i.e., speed of convergence) may be weakened. For example, assume that the fit-fit approach is considered in the reproduction phase [START_REF] Marseguerra | Basics of Genetic Algorithms Optimization for RAMS Applications[END_REF], and that there are n solutions with equal fitness values. When we sort them in the corresponding ranking positions i, i+1,…, i+n-1, each solution occupies a rank, which depends on the sorting algorithm, or even on the particular run of the algorithm (e.g., the Quicksort algorithm may randomly choose the pivot element [START_REF] Knuth | The Art of Computer Programming, Volume 3: Sorting and Searching[END_REF]). Now, the fit-fit algorithm selects and mates members of these n solutions. This is a locally hybrid reproduction approach, which is between the fit-fit and random selection approaches, in the sense that, for those n positions, and at most the two neighborhoods in positions i-1 and i+n, there is a random facet behavior entering the selection of the parents. This may be even beneficial for GA, as it combines the speed of the fit-fit technique with the capability of preserving genetic diversity, typical of the random selection method (see [START_REF] Marseguerra | Basics of Genetic Algorithms Optimization for RAMS Applications[END_REF] for references). However, the systematic study to assess the impact that such local-hybridization of the selection algorithm has on efficiency and effectiveness is outside the scope of this work.

Hybrid NSGA-II and CVaR measure

In this work, the NSGA-II paradigm is also combined with the 𝐶𝑉𝑎𝑅 𝛼 method [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF]. 𝐶𝑉𝑎𝑅 𝛼 is a coherent measure of the risk associated to an uncertain function of interest, which has been broadly used in financial portfolio optimization to either reduce or minimize the probability of incurring in large losses [START_REF] Melnikov | Dynamic hedging of conditional value-at-risk[END_REF].

The definition of the 𝐶𝑉𝑎𝑅 𝛼 risk measure is derived from that of value at risk ( 𝑉𝑎𝑅 𝛼 ). Namely, let 𝑋 be a random variable representing the uncertain losses in a given time horizon, and let its CDF be 𝐹 𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥) ; then, 𝑉𝑎𝑅 𝛼 (𝑋) is the α-percentile of the random variable 𝑋 . That is, 𝑉𝑎𝑅 𝛼 (𝑋) represents the smallest value of losses such that the probability of having losses exceeding 𝑉𝑎𝑅 𝛼 (𝑋) is smaller than 1 -𝛼 (Figure 4).

𝑉𝑎𝑅 𝛼 is commonly used in many engineering areas involving uncertainties, such as military, nuclear, material, aerospace, finance, etc. [START_REF] Sarykalin | Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization[END_REF]. In the case addressed in this work, the losses concern the unavailability and cost. That is, 𝑉𝑎𝑟 𝛼 1 and 𝑉𝑎𝑟 𝛼 2 are the α-percentile of the unavailability and costs, respectively, associated to the CBM policy in a given time horizon 𝑇. These values have a clear interpretation by the maintenance decision maker: the probability of having losses in availability larger than 𝑉𝑎𝑟 𝛼 1 is smaller than 1 -𝛼; the same holds for money losses.

Figure 3: Flow Diagram of NSGA-II algorithm

The 𝐶𝑉𝑎𝑅 𝛼 [START_REF] Sarykalin | Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization[END_REF] of 𝑋 with confidence level 𝛼 𝜖 (0,1) is the mean of the generalized α-tail distribution:

𝐶𝑉𝑎𝑅 𝛼 (𝑋) = ∫ 𝑥 +∞ -∞ 𝑑𝐹 𝑋 𝛼 (𝑥)
where

𝐹 𝑋 𝛼 (𝑥) = { 0 𝑤ℎ𝑒𝑛 𝑥 < 𝑉𝑎𝑅 𝛼 (𝑋) 𝐹 𝑋 (𝑥) -𝛼 1 -𝛼 𝑤ℎ𝑒𝑛 𝑥 ≥ 𝑉𝑎𝑅 𝛼 (𝑋)
In turn, we consider the 1 -𝛼 -tail CDF, which represents the risk beyond the 𝑉𝑎𝑅 𝛼 . Then, 𝐶𝑉𝑎𝑅 𝛼 represents the mean value of this tail. Figure 4 shows the representation of both 𝑉𝑎𝑅 𝛼 and 𝐶𝑉𝑎𝑅 𝛼 risk measures.

Also, 𝐶𝑉𝑎𝑅 𝛼 has a clear engineering interpretation. For example, 𝐶𝑉𝑎𝑟 𝛼 1 (𝑈) ≤ 𝑈 -ensures that the average of (1-α) % highest losses in availability does not exceed 𝑈 -.

From these definitions, it comes out that the 𝑉𝑎𝑅 𝛼 and 𝐶𝑉𝑎𝑅 𝛼 risk measures have different meanings and, then, mathematical properties. The problem of the choice between 𝑉𝑎𝑅 𝛼 and 𝐶𝑉𝑎𝑅 𝛼 has received increasing attention, especially in financial risk management [START_REF] Sarykalin | Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization[END_REF]. Anyway, in our case we consider the 𝐶𝑉𝑎𝑅 𝛼 risk measure, because it is more conservative than 𝑉𝑎𝑅 𝛼 , which is particularly important when safety is a concern in the application. In particular, following [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF], we modify the definition of the objective functions and take a convex combination of the average values of the objectives and their 𝐶𝑉𝑎𝑅 𝛼 . That is, we introduce two new objective functions:

-𝛩 1 = 𝛽 × 𝐸[𝛩 1 ] + (1 -𝛽) × 𝐶𝑉𝑎𝑟 𝛼 1 (1) 
-𝛩 2 = 𝛽 × 𝐸[𝛩 2 ] + (1 -𝛽) × 𝐶𝑉𝑎𝑟 𝛼 2 (2) 
This allows considering different scenarios; that is:

-In case we set β = 0, then we conservatively aim at minimizing the risk of having large unavailability and costs.

-In case of β = 1, the objectives we want to minimize are the mean cost and mean unavailability of the nozzle system.

-In case of β = 0.5, the objective functions are an equal compromise between the corresponding two values above. To conclude this Section, it is worthy stressing that also the CVar Method summarizes the information bring by a CDF in a point, as other works of the literature (e.g., [START_REF] Petrone | A probabilistic nondominated sorting ga for optimization under uncertainty[END_REF]). Nonetheless, the CVar point has a clear engineering interpretation, which directly relates to the final decisions.

Case Study

In this paper, we consider a real practical case study concerning the maintenance optimization of a gas turbine nozzle system affected by different degradation mechanisms. The degradation of the nozzles is modelled as a four-state degradation model, in which the transitions can occur from one degradation state to the next degraded state only, and the stochastic transition times between the states obey Weibull distributions.

Recall that the scope of the case study is to investigate the potential of the proposed techniques in optimizing the condition Based Maintenance (CBM) policy applied to the nozzle system, while giving due account to the uncertainty in the parameter estimates. For this, we consider a case study derived from a real industrial application faced by the authors, but with arbitrarily chosen values of the maintenance model parameters.

The data available to estimate the parameters of the stochastic model are the outcomes of opportunistic, non-periodic, visual inspections of the turbine nozzles. That is, upon inspection, the maintenance experts disassemble the turbine and check the nozzles health states to qualitatively classify them into 'Good', 'Light', 'Medium' and 'Heavy' (Figure 5). In particular, every nozzle system is made up of 𝑁 = 22 nozzles. we assume that such epistemic uncertainty in the parameter values is represented by normal distributions centered on the parameter ML estimates and with a given standard deviations. The general methodology to estimate these quantities can be found in [START_REF] Compare | Semi-Markov model for erosion-corrosion degradation mechanism in gas turbine nozzle[END_REF]. In particular, to test the potential of the proposed GA advancements in treating uncertain fitnesses, we consider two numerical settings, with different amount of uncertainty affecting the estimates (Table 1). Namely, for every parameter in Table 1, the first column reports the MLE, whereas two different values of the standard deviations of the corresponding ML estimators are reported in the rows of the second column.

𝜶
The CBM approach applied to the nozzle system under study is based on the continuous monitoring of the turbine efficiency by processing the information provided by sensors which trace physical variables such as pressure, temperature, etc. When the efficiency value drops below a given threshold TE, then the nozzle system is replaced. Replacement makes the system unavailable for 𝑈 𝑅 = 2 days.

The cost of the consequent business interruption is given by the product of the duration of the unavailability period times the annual income I, which is defined as the income corresponding to one year of turbine continuous, full capacity operation. In this paper 𝐼 = 20𝑀 € . Thus, the total cost CR associated to a replacement action upon the achievement of TE is the sum of the business interruption cost due to system unavailability and the cost 𝐶 𝑆 = 3𝑀 € of replacing the nozzle system.

The nozzle system is also periodically inspected, with period Π. Every inspection is performed by one maintenance operator, who takes 𝑇 𝑖𝑛𝑠𝑝 = 8 days for carrying out the machine disassembling and re-assembling operations necessary to check the health state of the nozzles. Obviously, larger values of Π steer the policy towards a full exploitation of the components and avoid ineffective machine Mediu m Heavy Good stops. On the contrary, smaller values of Π allow the machine operation in better health conditions with larger efficiency values. For this reason, Π is an influential decision variable to optimize the maintenance policy.

The duration 𝑡(𝑆 𝛾 ) of the preventive maintenance action performed on component γ depends on the degradation state 𝑆 𝛾 in which it is found (Table 2). More precisely, fixing nozzles in degradation state 𝑆 2 requires one operator working for 0.5 day; 1 day is needed for a maintenance operator to repair nozzles in degradation state 𝑆 3 . Finally, if a nozzle is heavily degraded (i.e., in degradation state 𝑆 4 ), then a maintenance operator takes 3 days to repair it.

Notice that a simplifying assumption is made in this study: independently on the degradation state where the nozzles are found (light, medium, heavy), these are always repaired upon inspection (i.e., not replaced), and their conditions after maintenance are always considered as good as new (AGAN).

𝒕(𝑺 𝜸 )[𝒅𝒂𝒚𝒔]

𝑺 𝜸 = 𝑺 𝟐 0.5

𝑺 𝜸 = 𝑺 𝟑 1 𝑺 𝜸 = 𝑺 𝟒 3

Table 2: values of the duration of the maintenance actions

From this, it appears that the preventive maintenance time 𝑇 𝑀 required for repairing all the N nozzles is given by:

𝑇 𝑀 = 𝑇 𝑖𝑛𝑠𝑝 + ∑ 𝑡(𝑆 𝛾 ) 𝑁 𝛾=1
Obviously, the system is unavailable during inspections and repairs. This causes a business interruption, whose cost is given by the part of the annual income I that the maintenance actions prevent from being gained. Thus, reducing the amount of time spent in repairing the nozzle system has a beneficial effect on the maintenance costs. In this respect, a larger number of maintenance operators 𝑵 𝒎𝒐 can be involved in repairing actions.

The effect on the time reduction is given by:

𝑻 𝑴 = 𝑻 𝒊𝒏𝒔𝒑 + ∑ 𝒕(𝑺 𝜸 ) 𝑵 𝜸=𝟏 𝑵 𝒎𝒐
On the other side, reducing maintenance time has its own cost, as maintenance operators must be paid for their work. We assume that their daily cost is

𝐶 𝑂 = 2000 € man .
Then, 𝑁 𝑚𝑜 is another decision variable that enters the optimization of the CBM policy.

Generally speaking, nozzle degradation entails loss in turbine efficiency, whose magnitude depends on the degradation state. In this work, we assume that when the generic nozzle γ enters degradation state 𝑆 2 , it causes a loss 𝑙 𝐸 (𝑆 𝛾 = 𝑆 2 ) = 0.2% in turbine efficiency. An additional drop of 0.3% is associated to each component in degradation state 𝑆 3 (i.e., 𝑙 𝐸 (𝑆 𝛾 = 𝑆 3 ) = 0.3%), whereas each nozzle in state 𝑆 4 brings about a further, large loss of 0.5% (i.e., 𝑙 𝐸 (𝑆 𝛾 = 𝑆 4 ) = 0.5%).

𝒍 𝑬 (𝑺 𝜸 ) 𝑺 𝜸 = 𝑺 𝟐 0.2% 𝑺 𝜸 = 𝑺 𝟑 0.3% 𝑺 𝜸 = 𝑺 𝟒 0.5% Thus, the loss LE in turbine efficiency in a cycle (i.e., the time between two maintenance actions) is

given by:

𝐿 𝐸 = ∑ ∑ 𝑙 𝐸 (𝑆 𝛾 = 𝑆 𝑘+1 )(𝑇 𝑠𝑡𝑜𝑝 -𝑇 𝑘+1 𝛾 ) 3 𝑘=1 𝑁 𝛾=1
where 𝑇 𝑠𝑡𝑜𝑝 is the end of the cycle (i.e., the inspection time at the end of the interval Π or the time in which the turbine efficiency reaches the threshold 𝑇 𝐸 , whichever comes first), 𝑇 𝑘 𝛾 is the stochastic transition time 𝑇 𝑘 of component γ, from state 𝑆 𝑘 to state 𝑆 𝑘+1 Notice that the simplified scheme considered in this work entails that the worst condition (i.e., the N=22 nozzles are all in degradation state 𝑆 4 ) determines a total loss in turbine efficiency of at most 22*(0.2+0.3+0.5) % = 22%.

Turbine inefficiency entails a cost, which is due to the production loss with respect to the full capacity production conditions. This is given by the part of the annual income that inefficiency prevents from being gained. That is, 𝐼 𝐶 = 𝐿 𝐸 • 𝐼 is the inefficiency cost in a cycle.

To sum up, the maintenance model described allows estimating the values of cost and unavailability corresponding to a triplet of decision variables 𝑇 𝐸 , 𝑁 𝑚𝑜 and Π.

As mentioned before, a double Monte Carlo algorithm has been implemented to propagate the uncertainty from the degradation model parameters to the maintenance performance indicators, where the internal Monte Carlo loop simulates the life process of the turbine nozzles over a fixed time horizon (i.e., the aleatory uncertainty), whereas the external loop is used to sample the parameters of the degradation model (i.e., epistemic uncertainty).

Finally, for clarity, all the parameters and variables of the case study, with relevant explanations, values and formulas, are summarized in Table 4. 

Symbol

Results

In this Section, the extended NSGA-II algorithm proposed in Section 3 is applied to optimize the CBM policy described in Section 4. That is, we are looking for the set of combinations of the three variables Π, 𝑇 𝐸 and 𝑁 𝑚𝑜 that minimizes the cost and system unavailability over a time horizon of 10 years. Table 5 summarizes the characteristics of the search space in which the optimal solution is sought, where the number of bits indicates the number of points in which the search intervals are divided (2 𝑛_𝑏𝑖𝑡𝑠 ).

Decision Variable Search Space Number of bits Π [inspection period, years]

[ First, the extended NSGA-II algorithm has been run in case of small uncertainty in the degradation model parameters, in the setting summarized in Table 6. The results relative to a run of 10 generations are summarized in Appedix A, which reports the values of the decision variables corresponding to the optimal Pareto set. The solutions in Appendix A are all characterized by large values of the numbers of operators 𝑁 𝑚𝑜 performing the maintenance actions. This means that setting such decision variable to smaller values entails a significant worsening in the maintenance policy performance, due to large system unavailability.

Genetic algorithm parameters

Moreover, the solutions found by the algorithm can be grouped into two different classes:

1) The first class, rows 1-4, sets the preventive inspection at five years (i.e., half time horizon) and uses the threshold to monitor the efficiency of the plant. This setting consistently reduces the costs, but entails larger unavailability values (bottom-right part in Figure 6).

2) The second group (remaining rows) relies on the efficiency threshold 𝑇 𝐸 to stop the turbine, only. In fact, Π is fixed to almost 10 years, which entails that the turbine is never inspected.

Contrarily to the first solutions, this consistently reduces the unavailability, but leads to larger costs.

In Figure 6, the Optimal Pareto Front is reported: horizontal and vertical lines represent the range between the fifth and ninety-fifth percentiles of the CDFs of unavailability and cost, respectively, whereas the line crosses identify the means of the two distributions. In the second uncertainty setting, i.e., with larger standard deviations (Table 1), the algorithm provides the results reported in Appendix B.

Comparing these solutions with those in Appendix A, it emerges that larger uncertainty values increase the cardinality of the Pareto Optimal Set. This is an expected result; roughly speaking, larger uncertainties lead to more 'lengthened' CDFs (e.g., larger ranges between the fifth and ninety-fifth percentiles of cost and unavailability), and thus increase the number of non-dominated solutions. This result also highlights the added value of considering optimization algorithms that give full account to uncertainty. That is, these algorithms give the possibility of considering among the Pareto optimal set, solutions that would have been otherwise discarded. Finally, a comment seems in order about the choice of stopping the optimization algorithm at G=10 generations. In this case study, such choice is justified by the fact that the solutions found by the extended NSGA-II algorithm belong to the two classes described above, which are the same provided by the CVaR method. This makes us confident that even if the results do not belong to the actual optimal Pareto set, they are not far from it.

More generally, setting the value of G or adopting a different stopping criterion remains a critical issue, especially in the light of the findings of [START_REF] Villanueva | Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy[END_REF], where the authors showed that to reduce the computational times, investing on a large number of generations (i.e., "evolution" [START_REF] Villanueva | Genetic algorithm-based optimization of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies for harmonizing evolution and accuracy[END_REF]) is to be preferred to performing a large number of Monte Carlo runs (i.e., "accuracy"). This issue has not been answered by this work, and will be tackled in future research works. A possibility is to adapt the hyper-volume stopping criterion [START_REF] Li | A Memetic Evolutionary Multi-Objective Optimization Method for Environmental Power Unit Commitment[END_REF] to the case of uncertain fitness values (i.e., stop the evolution when the shape of the Pareto front remains constant) or perform a cluster analysis on the Pareto front [START_REF] Zio | A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems[END_REF], or analyse the influence of increasing G on the search to derive a novel stopping criterion.

Hybrid NSGA-II and CVaR measure

In this Section, the 𝐶𝑉𝑎𝑅 𝛼 risk measure is introduced in the objective functions of the NSGA-II algorithm. Specifically, we use Equations ( 1) and ( 2) as objective functions with three different values of the parameter β: 0, 0.5, 1, and percentile α=0.7. Also in this case, we first consider the numerical setting in which the parameters are affected by a small amount of uncertainty. The setting of the remaining parameters of the NSGA-II are reported in Table 6.

Appendix C lists the solutions of the Pareto optimal set and the corresponding objective function values, whereas Figure 8 shows the Pareto optimal fronts for the different values of β. From Figure 8, it emerges that the larger the value of β the smaller the costs. This is due to the fact that smaller values of β drive the multi objective optimization to focusing on the expected values of the objectives, whereas larger values of β put emphasis on the level of risk ( 𝐶𝑉𝑎𝑅 𝛼 ) associated to the solutions. This result cannot be appreciated on the unavailability objective function, as its variability is very small.

On the other side, whichever the value of β is, the solutions provided by the CVaR measure are always belonging to the same two groups identified by the NSGA-II algorithm. This result also holds when we have an increase in the values of the variance of the estimators of the degradation model parameters, as it can be easily seen from Appendix D and Figure 9, which show the Pareto optimal set and the corresponding Pareto optimal front. However, although the investigated algorithms give similar solutions, there are significant differences between them: the NSGA-II proposed in this work gives full account to the uncertainty in the objective functions, as it handles directly the CDFs describing such uncertainty. On the contrary, the CVaR technique summarizes the CDFs in single points, i.e., the average values of the risky parts of these distributions, with consequent loss of information. On the other side, this simplification allows for a significant improvement in the interpretability of the results of the algorithm: the maintenance decision maker knows that the optimal solutions provided by the algorithm correspond to a given risk level of having poorer unavailability and cost performances, which is also set by himself/herself. In this respect, different algorithms can be applied to help the decision maker in making the final choice when the hybrid NSGA-II and CVaR approach is adopted [START_REF] Zio | Optimal power system generation scheduling by multiobjective genetic algorithms with preferences[END_REF], which cannot be easily applied when using the extended NSGA-II, as they rely on the geometrical properties of the Pareto front. The development of methods to apply the concept of geometrical distance to the Pareto fronts depicted in Figure 7 will be the focus of future research work.

Moreover, the fact that the solutions obtained for β = 0 (i.e. pure 𝐶𝑉𝑎𝑅 𝛼 ) and β = 1 (i.e. , average fitness values) are similar to each other may lead to conclude that there is no added value in considering the uncertainty in the fitnesses. However, this conclusion is generally wrong; in fact, there are optimization problem in which the Pareto optimal sets are different in correspondence of different values of β values [START_REF] Mena | A Risk-Based Simulation and Multi-Objective Optimization Framework for the Integration of Distributed Renewable Generation and Storage[END_REF]. In this respect, notice also that the comparison of Figure 8 and Yet, to compare the extended NSGA-II method with the hybrid NSGA-II and CVaR approaches, we also consider their computational times (Table 6), relevant to 10 generations of 80 individuals. From Table 7, it emerges that using the CVaR to summarize the uncertainty in the fitnesses allows for smaller computational times, as we have to look at a single value rather than to the entire distribution.

Notice also that the computational times are very large because we need applying the computational burdensome double-loop Monte Carlo procedure for every individual at any generation, and also the time-consuming ranking procedure proposed in Section 2. These methods have been applied to a practical case study, providing similar results. Nonetheless, there are significant differences between these approaches: the NSGA-II gives full account to the uncertainty in the objective functions, as it handles the CDFs describing such uncertainty; on the contrary, the CVaR technique summarizes the CDFs in single points, i.e., the average values of the risky parts of these distributions. On one side, the simplification introduced by the CVaR algorithm leads to a loss of information. On the other side, this allows for a significant simplification of the algorithm and provides the maintenance decision maker with more easily understandable results, as he/she knows that the optimal solutions provided by the algorithm correspond to a given risk level, also set by the decision maker.

Additional findings of the work are:

 The Pareto optimal set depends on the uncertainty in the model parameters. That is, the larger the uncertainty the more swollen the Pareto front.

 The computational times of the hybrid NSGA-II and CVaR method are considerably better than those of the extended NSGA-II.

Future research works will focus on investigating the effects of the number of generations G on the results of the search, and devising different stopping criteria.
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Appendix



  loop samples the values of the parameters of the multistate model from a normal distribution centred in the MLE values, with the estimated covariance matrix [25] [48]. For every set of sampled parameters, an internal MC loop propagates the aleatory uncertainty into the maintenance model, and estimates the values of all the objectives 𝛩 1 , … , 𝛩 𝑄 . These values are collected to infer the CDFs of the fitnesses at Step 3.  At the end of the double loop procedure, all the collected estimations are used to infer the empirical CDFs of the objective functions 𝛩 1 , … , 𝛩 𝑄 .

Figure 4 :

 4 Figure 4: difference between VaR and CVaR

Figure 5 :

 5 Figure 5: Scheme of the degradation mechanism These data are used to estimate the parameters 𝛼 𝑘 , 𝛽 𝑘 of the Weibull distribution of the transition 𝑇 𝑘 from state 𝑆 𝑘 to state 𝑆 𝑘+1 , 𝑘 = 1, … ,3, together with the corresponding uncertainties. For simplicity,

Figure 6 :

 6 Figure 6: NSGA-II Optimal Pareto Front: horizontal and vertical lines are the 5-th and 95th percentiles of the unavailability and cost distributions.

Figure 7

 7 Figure 7 reports the Pareto front corresponding to the Pareto set in Appendix B, with the 90%confidence intervals. Notice that, the bands describing the uncertainty in the costs are larger in correspondence of smaller values of unavailability. This is due to the larger variability of the repair costs when the turbine is periodically inspected, owing to the variability of the degradation state in which the nozzles can be found. On the contrary, when the turbine is stopped based on 𝑇 𝐸 , the health conditions of the nozzles are similar to each other in the different stochastic simulations.

Figure 7 :

 7 Figure 7: NSGA-II Optimal Pareto Front, in case of larger epistemic uncertainty.

Figure 8 :

 8 Figure 8: Pareto Optimal Front relative to β = 0, 0.5 and 1, in case of smaller epistemic uncertainty.

Figure 9

 9 Figure 9 highlights a change in the shape of the Pareto front: the front appears to be more swollen in case of larger values of the variance of the ML estimators. This is due to the fact that larger uncertainty in the model parameters moves the CVaR values of the solutions toward larger values.

Figure 9 :Table 7 :

 97 Figure 9: Pareto front relative to β = 0, 0.5 and 1, in case of larger epistemic uncertainty.

  If 𝑋 𝑠 dominates 𝑋 𝑗 , then this is indicated by 𝑋 𝑠 ≻ 𝑋 𝑗 .

	1 , … , 𝛩 𝑄 to be minimized; then, a feasible solution, say 𝑋 𝑠 , is
	dominated by another feasible solution, say 𝑋 𝑗 , if for all 𝑞 = 1, … , 𝑄 the corresponding values of the
	objectives, 𝛩 𝑠 𝑞 and 𝛩 𝑗 𝑞 , are such that [27], [38]:
	1. 𝛩 𝑠 𝑞 ≤ 𝛩 𝑗 𝑞 , ∀ 𝑞 = 1, … , 𝑄, and
	2. 𝛩 𝑠 𝑞 < 𝛩 𝑗 𝑞 at least for one 𝑞 = 1, … , 𝑄.

  𝑋 𝑠 , 𝑋 𝑗 and 𝑋 𝑔 are of the same rank with respect to the second objective): this means that 𝛩 𝑠 1 is equivalent to 𝛩 𝑗 1 , with respect to objective 1, and thus 𝑋 𝑠 does not dominate 𝑋 𝑗 .

	2. On one side, one may have that the exceedance
	measure 𝑟 𝑠𝑗 1 = 𝑃(𝛩 𝑠 1 > 𝛩 𝑗 1 ) ≥ 1 -𝑇 𝑙 and 𝑇 𝑙 ≤ 𝑟 𝑠𝑗 2 = 𝑃(𝛩 𝑠 2 > 𝛩 𝑗 2 ) ≤ 1 -𝑇 𝑙 , which leads to
	conclude that 𝑋 𝑠 ≻ 𝑋 𝑗 ; on the other side, one may have also that 𝑟 𝑠𝑗 1 ≥ 1 -𝑇 𝑙 , 𝑟 𝑗𝑔 1 ≥ 1 -𝑇 𝑙 and
	1 -𝑇 𝑙 ≥ 𝑟 𝑠𝑔 1 ≥ 𝑇 𝑙 (i.e.,

Table 1 : values of the Weibull parameters for the transitions between helth states.

 1 

		𝟏	𝜷 𝟏		𝜶 𝟐		𝜷 𝟐		𝜶 𝟑		𝜷 𝟑	
	Value	Σ	Value	σ	Value	σ	Value	σ	Value	σ	Value	σ
	1.38	0.014 0.084	0.71	0.007 12.73 0.053	0.016 0.097	0.16	0.029 0.045	6.18	0.014 0.65 0.083	0.017 0.047

Table 3 : values of the loss of efficiency

 3 

Table 4 : Case study parameters and variables
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		Description	Value
	𝑪 𝑶 𝑪 𝑺 𝑪 𝑹	Maintenance operator daily cost Cost for replacing the nozzle system system Total Cost for replacing the nozzle	2000 € 3000000 € 𝐶 𝑆 + 𝑈 𝑅 • 𝐼
	𝑰 𝑪 I	Inefficiency cost in a cycle Annual Income	𝐿 𝐸 • 𝐼 20000000 €
	Π	Inspection Interval	Decision variable
	𝒍 𝑬 (𝑺 𝜸 = 𝑺 𝒌 )	component γ enters degradation state Loss in turbine efficiency when	See Table 3
	𝑳 𝑬	𝑆 𝑘 Loss in turbine efficiency in a cycle	3 𝐿 𝐸 = ∑ ∑ 𝑙 𝐸 (𝑆 𝛾 = 𝑆 𝑖 )(𝑇 𝑠𝑡𝑜𝑝 -𝑇 𝑖 𝑁 𝛾 ) 𝑖=1 𝛾=1
	𝑵	system Number of similar components in the	22	
	𝑵 𝒎𝒐	involved in repairing actions Number of maintenance operators	Decision variable
	𝒑	Number of preventive maintenance interventions	Random variable, which depends on the simulated Turbine hystory
	𝑹	Number of replacements during 𝑇 𝐻	Random variable, which depends on the simulated Turbine hystory
	𝑺 𝒌 𝑺 𝜸	k -th degradation state of component γ Variable indicating the degradation state	𝑘 = 1, … ,4 𝛾 = 1, … ,3
	𝒕(𝑺 𝜸 = 𝑺 𝒌 )	in state 𝑆 𝑘 Time to repair nozzle γ when it is found	See Table 2
	𝑻 𝑬	Efficiency Threshold	Decision Variable
	𝑻 𝑯	Time Horizon	10 years
	𝑻 𝒊𝒏𝒔𝒑	Duration of inspections	8 days
	𝜸 𝑻 𝒌	Stochastic transition time 𝑇 𝑘 from 𝑆 𝑘 to 𝑆 𝑘+1 experienced by component γ		
		Time instants at which the cycle ends	Either the inspection time at the end of
	𝑻 𝒔𝒕𝒐𝒑		the interval II or the time in which the turbine efficiency reaches the threshold
			TE, whichever comes first
	𝑻 𝑴	Duration of preventive maintenance actions	𝑇 𝑀 = 𝑇 𝑖𝑛𝑠𝑝 +	∑ 𝑁 𝛾=1 𝑁 𝑚𝑜 𝑡(𝑆 𝛾 )
	𝑼 𝑹	replacement task System Unavailability owing to the	2 days
	𝑼	System Unavailability (objective function)	𝑈 = 𝐸 [ 𝑝 • 𝑇 𝐸 + 𝑅 • 𝑈 𝑅 𝑇 𝐻	]

Table 5 : Genetic algorithm search space
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Table 6 : NSGA-II search setting
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. NSGA-II & CVaR, in case of smaller epistemic uncertainty.

  

		Π 9.8437 9.6875 5.0000 9.8437 9.9219 5.0000 9.8437 9.9219 5.0000 5.2344 9.9218 9.8437 9.8437 9.9219	12.5000 14.6875 12.8125 12.5000 13.1250 13.1250 13.4375 13.7500 13.4375 14.3750	𝑻 𝑬 16 22 15.6250 18 21 17.8125 22 19 19.0625 17.5000 18 20 18 21		0.004185 0.00493 0.004189 0.00394 0.004215 0.00418 0.004419 0.004547 0.004506 0.00469	5.17130e6 1.79697e6 𝑵 𝒎𝒐 4.23272e6 4.95016e6 22 3.59780e6 3.42029e6 22 3.09173e6 22 2.70590e6 22 3.06899e6 2.00797e6
		5.3125 9.9218	14.0625	17.5000 17		0.004757	22 2.40321e6
		5.3125 5.0000	16.5625	18.7500 22		0.005063	22 1.12333e6
		9.8438 5.0000 9.8438 9.4531 9.8438 9.4531 9.9219 9.6093 9.6875	19.3750 13.4375 14.6875 13.7500 13.4375	13.7500 22 14.6875 21 15.0000 22 12.5000 20 17		0.005063 0.004708 0.005052 0.004720 0.004626	1.12324e6 22 2.94671e6 22 1.78782e6 22 2.57789e6 22 2.97766e6
	β = 1	9.9219 9.6875	14.6875	12.8125 20		0.005001	21 1.81776e6
		9.9219 9.8437	13.1250	12.8125 22		0.004151	22 3.40217e6
		9.9219 9.8437 9.9219 9.9218 9.9219 9.9218 9.9218	14.0625 12.5000 12.8125 12.8125	13.1250 17 13.1250 22 13.4375 21 22		0.004754 0.003921 0.004005 0.003976	2.32436e6 21 4.86657e6 22 4.03651e6 22 4.07308e6
		9.9219 9.9218	14.6875	13.7500 21		0.004816	21 1.82957e6
		9.9219		13.7500			22
		9.9219		14.0625			22
		9.9219		14.3750			21
		9.9219		14.3750			22
	Value of β	Π 5.0000 9.9219 9.9219 Π 9.9219 5.1563 5.0781 5.0000 9.9219 5.2344 5.0000 5.2344 9.9219	𝑻 𝑬 16.2500 17.1875 16.2500 18.1250 13.4375	𝑻 𝑬 15.6250 14.6875 15.0000 15.3125 22 22 17.8125 15.3125 22 19.0625 22 19	𝑵 𝒎𝒐	𝒇 𝟏 0.00514 0.00514 0.00471 0.00515 0.00448	𝑵 𝒎𝒐 22 22 1.16926e6 𝒇 𝟐 18 1.17448e6 22 22 2.91378e6 22 1.15717e6 22 3.36976e6
	β = 0 CValue of β	5.0781 9.7656 9.7656 9,8438 9.9219 9.9219 9.9219 Π 9.9219 9.8438 5.0000 9.9219 9,9219 5.0781 9.9219 5.1562 9.8438	13.7500 12.8125 13.4375 𝑻 𝑬 12.8125 19.0625 13.7500 17.5000 13.7500 15.9375 14.3750	19.0625 14.3750 14.6875 13.4375 17 16 22 22 14.0625 22 17 12.5000 21 18 21 22	𝑵 𝒎𝒐	0.00471 0.00431 0.00437 𝒇 𝟏 0.00410 0.005119 0.00472 0.005158 0.00467 0.005165 0.00484	22 21 21 2.91378e6 4.63619e6 3.39289e6 𝒇 𝟐 4.70493e6 21 1.15725e6 2.91378e6 21 2.96845e6 1.15566e6 20 1.15336e6 2.26309e6
		9.9219 9.4531 5.1563	12.8125 14.6875	12.8125 19 22		0.004606 0. 00511	19 4.42799e6 1.17841e6
		9.9219 9.6093 5.2344	12.1875 19.0625	12.8125 22 22		0.004228 0.00511	20 6.82013e6 1.14263e6
	β = 0 β = 0.5	9.9219 9.9219 9.6875 9.5313 9.6875 9.6875 9.9219 9.7656 9.7656 9.9219 9.7656 9.7656 9.8437 9.7656	14.3750 14.6875 14.6875 14.6875 12.8125 13.1250 12.8125 13.4375 12.1875 13.7500	13.1250 13.1250 22 22 22 20 13.4375 15 20 14.3750 19 20 20 22		0.004906 0.05085 0.005011 0. 00505 0.004442 0.00436 0.004278 0.00451 0.004121 0. 00457	18 2.18279e6 1.89593e6 1.92226e6 1.92952e6 19 4.46420e6 3.69015e6 21 4.48690e6 3.15427e6 16 6.89112e6 2.74118e6
		9.9219 9.8437 9.8438	14.0625 13.1250	14.0625 20 22		0.004750 0.00424	20 2.47483e6 3.69549e6
		9.9219 9.9218 9.8438 5.0000 9.9219	14.3750 14.3750 15.9375 12.8125	19.1250 19 19 22 22		0.004865 0. 00488 0.005091 0.00404	2.22316e6 2.16130e6 19 1.13765e6 4.41210e6
		9.5312 9.9219	14.0625 14.0625	22 21		0.004875 0. 00462	2.36447e6 2.43571e6
	β = 0.5	9.6875 5.0781	14.0625 19.3750	19 22		0.004861 0.00506	2.37491e6 1.12285e6
	B. Pareto Optimal set of NSGA-II with high uncertainty 9.6875 14.0625 20 β = 1 9.6094 13.7500 22	0.004816 0.00465	2.39103e6 2.57382e6
		9.7656 9.6875	14.6875 13.1250	22 19		0.004925 0.00441	1.85614e6 3.41215e6

A. Pareto Optimal set of NSGA II D. NSGA-II & CVaR results, in case of larger epistemic uncertainty