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Loop equations from differential systems

To any differential system dΨ = ΦΨ where Ψ belongs to a Lie group (a fiber of a principal bundle) and Φ is a Lie algebra g valued 1-form on a Riemann surface Σ, is associated an infinite sequence of "correlators" W n that are symmetric n-forms on Σ n . The goal of this article is to prove that these correlators always satisfy "loop equations", the same equations satisfied by correlation functions in random matrix models, or the same equations as Virasoro or W-algebra constraints in CFT.

Introduction

Given g a reductive Lie algebra and G = e g its connected Lie group (think of G = GL r (C) and g = M r (C)), we will consider the linear differential equation ∇Ψ = 0 satisfied by a flat section Ψ in a principal G-bundle over a complex curve Σ, equipped with a connection ∇. Locally this takes the form dΨ = ΦΨ where the "Higgs field" Φ is locally a g valued holomorphic 1-form. To the data of a flat section Ψ, and a choice of a faithful representation ρ of g, is associated [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF] an infinite tower of "correlators" called W n (definition recalled below). These correlators naturally appear in many contexts like Matrix Models, Conformal Field Theory (CFT) [START_REF] Chekhov | Seiberg-Witten equations and noncommutative spectral curves in Liouville theory[END_REF], some Painlevé equations [START_REF] Bergère | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF], or in Cohomological Field Theories [START_REF] Bertola | Simple Lie algebras and topological ODEs[END_REF].

In the context of matrix models, "loop equations" are an infinite set of algebraic relations satisfied by the W n s. They are usually obtained by integration by parts and are also called "Schwinger-Dyson" equations because they can also be derived from the invariance of an integral under changes of integration variable. The name "loop equations" for Schwinger-Dyson equations of matrix models was coined by A.Migdal in [START_REF]Loop Equations and 1/N Expansion[END_REF], as these played a huge role in the quantum gravity matrix model activities in the 1990s [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF], and it was realized that loop equations were formally Virasoro or W-algebra constraints [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF].

However, loop equations can be generalized beyond the context of matrix models, just as a set of algebraic relationships among the W n s.

In [START_REF] Bergère | Determinantal formulae and loop equations[END_REF], the authors derived loop equations in the case g = sl 2 (C) on the Riemann sphere. However, the proof in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF] involved an "insertion operator", that was hard to define rigorously in all cases, and involved analysis (infinitesimal deformations). It was unsatisfactory because loop equations are algebraic statements, that cry for an algebraic proof.

Then in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], the authors found a purely algebraic derivation of a subset of loop equations (those with n = 0 in the notations below), for g = sl r (C). In [START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF] it was realized that the natural language is to work with a Lie algebra, and the authors found a completely general algebraic proof of loop equations, although in [START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF] it was only restricted to Fuchsian systems on compact Riemann surfaces.

The purpose of this paper is to prove loop equations in an algebraic manner in a totally general case. Somehow this can serve as a lemma to be used in many applications.

A consequence of having loop equations, is that, if our differential system satisfies further nice properties (called "topological type", see section 5.1), then we automatically have "topological recursion" [START_REF] Eynard | Invariants of algebraic curves and topological recursion[END_REF].

To sum up, the goal of this article is to prove that correlators of local Hitchin systems always satisfy loop equations.

Lie algebra Hitchin pair on a Riemann surface

Let g be a reductive Lie algebra [START_REF] Bourbaki | Lie Groups and Lie Algebras -Chapters[END_REF] (think of g = gl r (C) = M r (C) the algebra of complex r × r matrices). Let ρ be a faithful representation of g into the vector space of complex r × r matrices M r (C), and define the invariant form of g by (2-1)

Being invariant means < [a, b], c >=< a, [b, c] > and < gag -1 , gbg -1 >=< a.b >. On a reductive Lie algebra, there is no unique invariant form, our definition thus depends on a choice of a faithful representation ρ. If we would suppose g to be semi-simple, then the invariant form would not depend on ρ apart from a trivial multiplication by a non-zero constant. In other words, it would be the Killing form. However our general setting does not require semi-simplicity and therefore we do not assume it.

Let Σ be a Riemann surface. Σ may not be compact, it may have punctures, boundaries, high genus, etc. It does not matter since the loop equations proved in this article are local. Typically Σ may be an open disc of C.

Let E be a (possibly twisted 1 ) "prime form" on Σ × Σ, i.e. a (-1/2, -1/2) form that behaves on the diagonal like

E(x, x ′ ) ∼ x -x ′ √ dxdx ′ + O((x -x ′ ) 2 ), (2-2) 
in any choice of local coordinates, and has no other zeros on Σ × Σ. In particular, we do not require anti-symmetry, i.e. possibly E(x ′ , x) = -E(x, x ′ ). We also allow singularities away from the diagonal. (see [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] for a definition of prime forms on compact curves). On the Riemann sphere or C, one can just choose

E(x, x ′ ) = x -x ′ √ dxdx ′ . (2-3)
Let (P, Φ) be a Hitchin pair [START_REF] Hitchin | Stable bundles and integrable systems[END_REF], where P is a principal G-bundle over Σ, and ∇ = d -Φ a connection, where Φ, called the Higgs field, is a g-valued holomorphic 1-form on Σ (up to redefining Σ by removing the singularities of Φ, without loss of generality). Let Ψ be a locally flat section, i.e. satisfying ∇Ψ = 0, written locally as a differential system dΨ = ΦΨ.

(2-4)

Ψ is actually defined on a universal cover Σ of Σ. Any two flat sections are related by a right multiplication:

Ψ(x) = Ψ(x)C , C ∈ G independent of x, (2-5) 
where the choice of C corresponds to a choice of initial condition at a point used to define the universal cover.

Correlators

To this connection ∇ = d -Φ, a flat section Ψ, and a faithful representation ρ, we shall associate a tower of "correlators" W n . They are used for example in matrix models [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF], in CFT [START_REF] Chekhov | Seiberg-Witten equations and noncommutative spectral curves in Liouville theory[END_REF][START_REF] Eynard | Lax matrix solution of c=1 conformal field theory[END_REF][START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF] or in cohomological field theories in [START_REF] Bertola | Simple Lie algebras and topological ODEs[END_REF]. Their definition, first introduced in [1, 2, 12] is recalled below.

We denote P 0 the trivialized g-bundle with constant fiber Σ × g → Σ, with trivial connection d, i.e. whose flat sections are constant sections.

P P 0 = pr * P = Σ × g p ↓ π ւ ↓ π 0 Σ ←- pr Σ (3-1)
We denote pr the projection Σ → Σ, and π = π * 0 pr the projection P 0 → Σ. Throughout the rest of the paper, X = x.E will denote a point in the total space of P 0 , in other words x ∈ Σ and E ∈ g, and x = π(X) = pr(x) ∈ Σ.

Besides, we denote Adj P the adjoint bundle of P, whose g fiber over x ∈ Σ, is

g x = T 1 Gx G
x the tangent space of the G x fiber of P at x (with the same transition functions as P), and equipped with the adjoint connection d -Adj Φ .

Definition 3.1 We introduce the bundle morphism M : P 0 → Adj P defined by

M(x.E) := Adj Ψ(x) (E) = Ψ(x)EΨ(x) -1 . (3-2)
It sends flat sections of P 0 (i.e. constant E) into flat sections of the connection d-Adj Φ on the adjoint bundle. In other words we have locally, at constant E:

dM(X) = [Φ(π(X)), M(X)]. (3-3) 
In case Σ is not simply connected, its fundamental group is non-trivial. A nice property of the bundle map M is that it descends to the quotient by a fundamental group action. Indeed let π 1 (Σ) → Σ be the family of fundamental groups over Σ (the fundamental groupoid). After going around a loop γ ∈ π 1 (Σ, pr(x)), Ψ picks a monodromy Ψ(x + γ) = Ψ(x)S γ , and thus M(x +γ.E) = M(x. Adj Sγ (E)) = M(x.S γ ES -1 γ ). Consequently we introduce:

Definition 3.2 Let Σ = P 0 /π 1 (Σ) (3-4)
where the fiberwise quotient is relative to the π 1 (Σ) action defined by γ.(x.E) = (x + γ). Adj S -1 γ (E) for every γ ∈ π 1 (Σ, pr(x)), i.e. we identify x.E ≡ (x + γ). Adj S -1 γ (E) in P 0 .

We see that M can be pushed to the quotient, and using the same name M for the pushforward to Σ, we have M ∈ Bun Σ ( Σ, Adj P ), which means that M maps Σ into Adj P. We also denote π the projection from Σ to the base curve Σ:

Σ M ֒→ Adj P π ց ↓ Σ (3-5)
Remark that changing the choice of flat section Ψ → ΨC or changing the choice of universal cover and fundamental group (both depend on a choice of a base point on Σ), amounts to an isomorphism P 0 → Adj C P 0 obtained by conjugation of each fiber by a constant group element C. Modulo such isomorphisms, Σ and the correlators W n to be defined below, will depend only on a connection d -Φ, but not on a choice of local flat section Ψ.

Definition 3.3 (Connected Correlators)

Let ρ be a faithful representation of g, extended to the universal enveloping algebra U of g [START_REF] Bourbaki | Lie Groups and Lie Algebras -Chapters[END_REF].

Let X = [x.E], and

X i = [x i .E i ] be some points of Σ (i.e. equivalence classes of Σ × g modulo the π 1 (Σ) action), with projections x i = π(X i ) all distinct on Σ, we define: Ŵ1 (X) =< M(X), Φ(π(X))) >= Tr ρ (M(X)Φ(π(X))) , (3-6) Ŵ2 (X 1 , X 2 ) = - < M(X 1 ), M(X 2 ) > E(x 1 , x 2 )E(x 2 , x 1 ) = - Tr ρ M(X 1 )M(X 2 ) E(x 1 , x 2 )E(x 2 , x 1 ) , (3-7) 
and for n ≥ 3,

Ŵn (X 1 , . . . , X n ) = σ∈S 1-cycle n (-1) σ Tr ρ M(X 1 )M(X σ(1) )M(X σ 2 (1) ) . . . M(X σ n-1 (1) ) E(x 1 , x σ(1) )E(x σ(1) , x σ 2 (1) ) . . . E(x σ n-1 (1) , x 1 ) (3-8)
where the sum is over all permutations that have exactly one cycle (in particular with signature (-1) σ = (-1) n-1 ).

We recall that we have chosen < a, b >= Tr ρ ab, and we define Tr ρ a 1 a 2 . . .

a n := Tr ρ(a 1 ) . . . ρ(a n ) = Tr ρ(a 1 ⊗ a 2 ⊗ • • • ⊗ a n ) in U.
Ŵ1 is a 1-form on Σ, and Ŵn is a symmetric n-form on Σn (see [START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF]). Then let us define the full correlators (so far we have defined the "connected" correlators): Definition 3.4 (Correlators) We define the correlators by:

W n (X 1 , . . . , X n ) = µ⊢{X 1 ,...,Xn} ℓ(µ) i=1 Ŵ|µ i | (µ i ) (3-9)
where we sum over all partitions of the set {X 1 , . . . , X n } of n points. For example

W 1 (X 1 ) = Ŵ1 (X 1 ), (3-10) W 2 (X 1 , X 2 ) = Ŵ1 (X 1 ) Ŵ1 (X 2 ) + Ŵ2 (X 1 , X 2 ) (3-11) W 3 (X 1 , X 2 , X 3 ) = Ŵ1 (X 1 ) Ŵ1 (X 2 ) Ŵ1 (X 3 ) + Ŵ1 (X 1 ) Ŵ2 (X 2 , X 3 ) + Ŵ1 (X 2 ) Ŵ2 (X 1 , X 3 ) + Ŵ1 (X 3 ) Ŵ2 (X 1 , X 2 ) + Ŵ3 (X 1 , X 2 , X 3 ) (3-12)
and so on...

CFT notation

Very often we shall denote correlators as in the physics CFT notations with some Sugawara [START_REF] Sugawara | A field theory of currents[END_REF] bosonic g-currents2 J(X i ):

W n (X 1 , . . . , X n ) = J(X 1 ) . . . J(X n ) V Φ (3-13)
where V Φ is a CFT operator depending on our choice of Higgs field, typically, if Φ is Fuchsian (only simple poles), then V Φ is a product of vertex operators at the poles

p i of Φ with charges α i = Res p i Φ, as V Φ = p i =poles V α i (p i ).
It is explained in [START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF] why these are indeed Sugawara conformal blocks correlators: they satisfy OPEs and Ward identities of a g Kac-Moody CFT at central charge c = rank g. The relationship between CFT and differential systems is also observed for example in [START_REF] Dorey | Differential equations and integrable models: the SU(3) case[END_REF][START_REF] Manabe | Quantum curves and conformal field theory[END_REF].

Determinantal formulas

Let us define the kernel:

K(x 1 , x2 ) = Ψ(x 1 ) -1 Ψ(x 2 ) E(x 1 , x 2 ) (3-14)
where

x i = pr(x i ), the parallel transport kernel of the connection d -Φ (indeed E(π(x 1 ), π(x 2 ))Ψ(x 1 )K(x 1 , x2 ) = Ψ(x 2 )
). Let us define its "normal ordered" version denoted (borrowed from CFT notations) by dots : K :, obtained by subtracting the pole when points are coinciding on the base

: K(x 1 , x2 ) :=    Ψ(x 1 ) -1 Ψ(x 2 ) E(x 1 ,x 2 ) if x 1 = x 2 Ψ(x 1 ) -1 Φ(x 1 )Ψ(x 1 ) if x 1 = x 2 (3-15) K(x 1 , x2 ) is a locally (1/2, 1/2) form on Σ × Σ, taking values in G x 1 × G x 2 (
the Lie group fibers over the points x1 and x2 of the principal bundle P), and with a simple pole at x 1 = x 2 . Its regularization at x 1 = x 2 is a g-valued 1-form. We have Theorem 3.1 If pr(x 1 ), . . . , pr(x n ) are all distinct:

W n (x 1 .E 1 , . . . , xn .E n ) = Tr σ∈Sn (-1) σ i ρ(E i )ρ(: K(x i , xσ(i) ) :) (3-16)
which, by abuse of notation, we may denote as a determinant, whence the name "determinantal formula":

W n (x 1 .E 1 , . . . , xn .E n ) = Tr ρ : det E i K(x i , xj ) : (3-17)
here the determinant means the sum over permutations of products of Es and Ks taking values in U, of which we finally take the trace in representation ρ.

4 Loop equations

Casimirs

Let e 1 , . . . , e dim g be an arbitrary basis of g. Since the invariant pairing < a, b >= Tr ρ(a)ρ(b) is the restriction to g of the non-degenerate canonical pairing in M r (C), and since we assume ρ faithful, then <, > is not degenerate on g, and therefore there exists a unique dual basis e 1 , . . . , e dim g of g such that ∀ i, j ∈ 1, g : < e i , e j >= δ i,j .

(4-1)

The enveloping algebra U of g is defined as

Definition 4.1 U = ∞ ⊕ k=0 g ⊗k / < a ⊗ b -b ⊗ a -[a, b] > (4-2)
The Casimirs are elements of the center Z(U), they can be obtained as follows.

Let ρ be a faithful representation of 

g into M r (C). Let v = dim g i=1 v i e i ∈ g. The char- acteristic polynomial of ρ(v) is a symmetric polynomial of the coordinates v 1 , . . . , v dim g , that can be written det ρ (y -v) := det(yId r -ρ(v)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k )v i 1 . . . v i k
C k = 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k )e i 1 ⊗ • • • ⊗ e i k ∈ U (4-4)
are in the center of U. In fact the C k s generate Z(U), but in general they are not algebraically independent.

For example in a semi-simple Lie algebra the second Casimir is 

C 2 = - 1 2 dim g i=1 e i ⊗ e i . ( 4 
. Let v = dim h i=1 v i e i ∈ h. The characteristic polynomial of ρ(v) is a symmetric polynomial of the coordinates v 1 , . . . , v dim h , that we write det ρ (y -v) = det(yId r -ρ(v)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim h Ck (i 1 , . . . , i k )v i 1 . . . v i k (4-6)
Then the Casimirs are:

C k = 1≤i 1 ,...,i k ≤dim h Ck (i 1 , . . . , i k )e i 1 ⊗ • • • ⊗ e i k ∈ U (4-7)
For example in a semi-simple Lie algebra

C 2 = - 1 2 dim h i=1 e i ⊗ e i . (4-8)
This is a classical theorem in Lie algebras. In some sense it says that to compute the characteristic polynomial, we may choose a basis where v is diagonal.

W generators and Casimirs

Definition 4.2 Given X 1 , . . . , X n points of Σ with distinct projections on Σ, and x ∈ Σ, with x = pr(x) distinct from the π(X i ), we define:

W k;n (C k (x), X 1 , . . . , X n ) := 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) : W k+n (x.e i 1 , . . . , x.e i k , X 1 , . . . , X n ) :
(4-9) It can be defined also using only the basis of a Cartan subalgebra h

W k;n (C k (x); X 1 , . . . , X n ) = 1≤i 1 ,...,i k ≤dim h
Ck (i 1 , . . . , i k ) : W k+n (x.e i 1 , . . . , x.e i k , X 1 , . . . , X n ) :

(4-10) with the normal ordering defined in eq. [START_REF] Bertola | Simple Lie algebras and topological ODEs[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | Abstract loop equations, topological recursion, and applications[END_REF][START_REF] Bourbaki | Lie Groups and Lie Algebras -Chapters[END_REF][START_REF] Tauvel | Lie Algebras and Algebraic Groups[END_REF][START_REF] Chekhov | Seiberg-Witten equations and noncommutative spectral curves in Liouville theory[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Dorey | Differential equations and integrable models: the SU(3) case[END_REF][START_REF] Dumitrescu | Quantization of spectral curves for meromorphic Higgs bundles through topological recursion[END_REF][START_REF] Eynard | Counting surfaces[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological recursion[END_REF][START_REF] Eynard | Lax matrix solution of c=1 conformal field theory[END_REF][START_REF] Eynard | From the quantum geometry of Hitchin systems to conformal blocks of W algebras[END_REF][START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF][START_REF] Hitchin | Stable bundles and integrable systems[END_REF].

It may seem that this definition depends on x ∈ Σ rather than x ∈ Σ, and also that it depends on a choice of basis of g (or of h), but we shall prove below (loop equations) that it does not depend on a choice of a preimage x ∈ pr -1 (x) of x, and is independent of the chosen basis of g (resp. h).

As a Sugawara CFT notation we shall write it:

W k;n (C k (x); X 1 , . . . , X n ) = W k (x)J(X 1 ) . . . J(X n )V Φ (4-11)
where W k (x) is called the k th W-algebra generator. In particular for k = 2 we denote W 2 (x) = T (x) usually called the stress-energy tensor (up to a normalization).

Loop equations

We now reach the main theorem of this article. This theorem can be interpreted as the Virasoro (or W-algebra) constraints in a g-Kac-Moody CFT of central charge c = rank g.

Theorem 4.3 (Loop equations) For any n ≥ 0, and X 1 , . . . , X n points of Σ with distinct projections x i = π(X i ), and x ∈ Σ also with distinct projection x = pr(x) , we have

r k=0 (-1) k y r-k W k;n (C k (x); X 1 , . . . , X n ) = [ǫ 1 . . . ǫ n ] det ρ (y -(Φ(x) + M ǫ (x; X 1 , . . . , X n ))) (4-12)
where y is a formal variable (a 1-form on Σ, the equality taking place in the determinant of the adjoint bundle), [ǫ 1 . . . ǫ n ] is the notation indicating that we keep only the ǫ 1 . . . ǫ n coefficient of the Taylor expansion at ǫ i → 0. Finally we have introduced the following symbol (that only makes sense in the representation ρ)

M ǫ (x; X 1 , . . . , X n ) = n i=1 ǫ i M(X i ) E(x, x i )E(x i , x) + 1≤i =j≤n ǫ i ǫ j M(X i )M(X j ) E(x, x i )E(x i , x j )E(x j , x) + n k=3 1≤i 1 =••• =i k ≤n ǫ i 1 . . . ǫ i k M(X i 1 ) . . . M(X i k ) E(x, x i 1 )E(x i 1 , x i 2 ) . . . E(x i k , x) (4-13)
The right hand side of (4-12) is clearly an analytic function of x ∈ Σ (rather than x ∈ Σ) and is clearly independent of the chosen basis of g, which justifies the definition of the left hand side.

Proof:

Let us first consider the case n = 0, already done in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF]. By definition we have

r k=0 (-1) k y r-k W k;0 (C k (x)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) : W k (x.e i 1 , . . . , x.e i k ) : = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) σ∈S k (-1) σ Tr ρ k j=1
e σ(j) : K(x, x) : but here, since all points have the same x = pr(x), we have :

K(x, x) := Ψ(x) -1 Φ(x)Ψ(x), i.e. r k=0 (-1) k y r-k W k;0 (C k (x)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) σ∈S k (-1) σ Tr ρ k j=1 e σ(j) Ψ(x) -1 Φ(x)Ψ(x) (4-14)
Using the cyclic property of the trace

r k=0 (-1) k y r-k W k;0 (C k (x)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k g C k (i 1 , . . . , i k ) σ∈S k (-1) σ Tr ρ k j=1 Ψ(x)e σ(j) Ψ(x) -1 Φ(x) (4-15)
Now, since the Casimirs are independent of which basis is chosen, change the basis e j → Ψ(x)e j Ψ(x) -1 , and thus r k=0

(-1) k y r-k W k;0 (C k (x)) = r k=0 (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) σ∈S k (-1) σ Tr ρ k j=1 e σ(j) Φ(x) = det ρ (y -Φ(x))) (4-16)
The case n ≥ 1 is similar. For any k

W k;n (C k (x); X 1 , . . . , X n ) = 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) : W k+n (x.e i 1 , . . . , x.e i k , X 1 , . . . , X n ) : = 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) σ∈S k+n (-1) σ Tr ρ n+k j=1 [ Ẽσ(j) : K(x σ(j) , xσ(j+1) ) :] (4-17)
where now we sum over permutations of k + n variables with for all 1 ≤ j ≤ n, X j = [x j .E j ] are representents of X j , while for all n + 1 ≤ n + j ≤ n + k : xn+j =

x and E n+j = e j . If we define:

Kε (x, x; X 1 , . . . , X n ) = : K(x, x) + n i=1 ε i K(x, xi )E i K(x i , x) + n i =j=1 ε i ε j K(x, xi )E i K(x i , xj )E j K(x j , x) + n k=3 n i 1 =••• =i k =1 ε i 1 . . . ε i k K(x, xi 1 )E i 1 K(x i 1 , xi 2 ) . . . E i k K(x i k , x) : = Ψ(x) -1 Φ(x) + n i=1 ε i M(X i ) E(x, x i )E(x i , x) + n k=2 n i 1 =••• =i k =1 ε i 1 . . . ε i k M(X i 1 ) . . . M(X i k ) E(x, x i 1 ) . . . E(x i k , x) Ψ(x) = Ψ(x) -1 (Φ(x) + M ε (x; X 1 , . . . , X n ))Ψ(x) (4-18)
The coefficient of ǫ

1 . . . ǫ n in σ∈S k (-1) σ Tr ρ k j=1 e σ(j) Kε (x, x; X 1 , . . . , X n ) (4-19)
is a sum of products, where in each product each M(X i ) appears exactly once, in all possible orders, and with products of M([x, e i k ]) in between, thus it exactly produces the sum over permutations of k + n variables. Therefore

r k=0 (-1) k y r-k W k;n (C k (x); X 1 , . . . , X n ) = [ε 1 . . . ε n ] k (-1) k y r-k 1≤i 1 ,...,i k ≤dim g C k (i 1 , . . . , i k ) σ∈S k (-1) σ Tr ρ k j=1 e σ(j) Ψ(x) -1 (Φ(x) + M ε )Ψ(x) .
Using the same trick as in the case n = 0 we can change the basis e j → Ψ(x)e j Ψ(x) -1 and we find:

r k=0 (-1) k y r-k W k;n (C k (x), X 1 , . . . , X n ) = [ε 1 . . . ε n ]det ρ (y -(Φ(x) + M ε (x; X 1 , . . . , X n ))). (4-20) 
The right hand side depends only on x = pr(x) as announced, and is independent of a choice of basis of g. This concludes the proof.

Example

Let us choose g = gl r (C). It is not semi-simple, it differs from sl r (C) (which is semisimple) by an Abelian C, which shall factor out. A Cartan subalgebra h is the set r × r diagonal matrices. Let us choose the following basis of h:

e i = e i = diag(0, . . . , 0, i ↓ 1, 0, . . . , 0) (4-21) 
the matrix whose only non-vanishing entry is at position i.

Chose Σ = C = Σ to be the Riemann sphere, and the prime form as in (2-3). Let us define

W i 1 ,...,in (x 1 , . . . , x n ) := W n ([x 1 .e i 1 ], . . . , [x n .e in ]) (4-22) 
viewed as a multivalued function of x 1 , . . . , x n on an r : 1 cover of Σ, with the index i k indicating that x k is in the i th k branch. We have the "linear loop equation" (coefficient of y r-1 , i.e. the Trace, the Casimir C 1 ):

r i 1 =1 W i 1 ,...,in (x 1 , . . . , x n ) = δ n,1 Tr Φ(x 1 ) + δ n,2 δ i 1 ,i 2 dx 1 dx 2 (x 1 -x 2 ) 2 (4-23) 
which is a holomorphic 1-form of x ∈ Σ. Similarly, we have the "quadratic loop equation" (coefficient of y r-2 ), i.e. the stress energy tensor:

i 1 <i 2 W i 1 ,i 2 (x, x) = 1 2 (Tr Φ(x)) 2 -Tr Φ(x) 2 (4-24)
which is a holomorphic quadratic differential on Σ. The stress-energy tensor times a current J(x 3 .e i 3 ) gives

i 1 <i 2 W i 1 ,i 2 ,i 3 (x, x, x 3 ) = (Tr Φ(x) Tr M([x 3 .e i 3 ]) -Tr Φ(x)M([x 3 .e i 3 ])) dxdx 3 (x -x 3 )(x 3 -x) , (4-25 
) and so on... We thus recover the same loop equations as in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], i.e. the standard loop equations in Matrix Models.

Asymptotic expansion and topological recursion

A consequence of loop equations, is that it implies -under good assumptions called "topological type property" -the topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological recursion[END_REF].

i.e. belongs to an algebraic plane curve S immersed in the total space of the cotangent bundle T * Σ. The immersion may or may not be an embedding, thus allowing nodal points for S.

The characteristic polynomial P (x, y) is called the spectral curve associated to the differential system. It defines a Riemann surface S with a projection to the base x : S → Σ, with some ramification points.

We define T (x) a primitive of T ′ (x) on the universal cover of Σ:

T (x) = x o T ′ (x ′ ) (5-11)
with o an arbitrary base point. Changing o or changing the integration path from o to x is just a shift of T (x) by a constant, and will have no effect on what follows.

Definition 5.2 Ψ(x, ) is said to be a formal WKB solution of dΨ = ΦΨ, if and only if there exists a formal series of

Ψ(x, ) = Id + ∞ k=1 k Ψ(k) (x), (5-12) 
that satisfies to all powers of

d Ψ = (V -1 ΦV -V -1 dV ) Ψ -ΨT ′ , (5-13) 
i.e. such that Ψ(x, ) ∼ V (x) Ψ(x, )e

1 T (x) [START_REF] Borot | Abstract loop equations, topological recursion, and applications[END_REF][START_REF] Bourbaki | Lie Groups and Lie Algebras -Chapters[END_REF][START_REF] Tauvel | Lie Algebras and Algebraic Groups[END_REF][START_REF] Chekhov | Seiberg-Witten equations and noncommutative spectral curves in Liouville theory[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Dorey | Differential equations and integrable models: the SU(3) case[END_REF][START_REF] Dumitrescu | Quantization of spectral curves for meromorphic Higgs bundles through topological recursion[END_REF][START_REF] Eynard | Counting surfaces[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological recursion[END_REF][START_REF] Eynard | Lax matrix solution of c=1 conformal field theory[END_REF] is annihilated to all orders in , by ∇ = d -Φ(x, ).

A formal WKB flat section Ψ(x, ) always exists, as can easily be seen by solving the equation d Ψ = (V -1 ΦV -V -1 dV ) Ψ -ΨT ′ recursively in powers of . By doing so, we find Ψ(k+1) (x) as an integral, and thus is not in general meromorphic on S since it may have monodromies. A sufficient condition (but not necessary) is that S is simply connected, i.e. if Φ (0) (x) is meromorphic, we may require that the spectral curve S is a genus 0 curve.

From now on, let us consider a formal WKB solution Ψ(x, ) = V (x) Ψ(x, ) e 1 T (x) .

Then, if we choose E ∈ h, we have

M(x.E) = k≥0 k M (k) (x.E) (5-15)
where

M (k) (x.E) = V (x) k l=0 Ψ(l) (x)E Ψ(k-l) (x) -1 V (x) -1 .
In particular

M (0) (x.E) = V (x)EV (x) -1 .
(5-16)

and thus if all E i are in h, Ŵn has a formal expansion:

Ŵn (x 1 .E 1 , . . . , x n .E n ) = δ n,1 < T ′ (x 1 ), E 1 > + ∞ k=0 k Ŵ (k) n (x 1 .E 1 , . . . , x n .E n ). (5-17)
Thus WKB solutions satisfy condition 1.

Pole structure and condition 2

Generic WKB solutions obtained by recursively solving d Ψ = (V -1 ΦV -V -1 dV ) Ψ-ΨT ′ in powers of , typically yield poles for the coefficients Ψ(k) (x) whenever two eigenvalues of Φ (0) (x) coincide, i.e. at the ramification points, but also at the nodal points. Condition 2 thus requires that poles at nodal points should cancel. This is a nontrivial condition, and many choices of Φ(x, ) do not satisfy it.

In [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] it was realized that a sufficient condition for condition 2, is that Φ(x, ) is a Lax matrix, member of a time dependent family Φ(x, , t) that satisfies a Lax equation

∂ ∂t Φ(x, , t) = [Φ(x, , t), R(x, , t)] + ∂ ∂x R(x, , t) (5-18) with R(x, , t) = ∞ k=0 k R (k) (x, t) a formal series, whose spectral curve det(z -R (0) (x, t)) = 0,
is a smooth embedding (no nodal point) in T * Σ (notice that [R (0) (x, t), Φ (0) (x, t)] = 0, so that the two spectral curves have the same complex structure and same ramification points). Under this assumption, the Ψ(k) (x) can be found by recursively solving the ODE ∂ ∂t Ψ = R(x, , t)Ψ, and it is then easy to see that there can be poles only at the branchpoints of the spectral curve of R (0) , i.e. only at the ramification points of S, not at nodal points.

Parity condition 3

A sufficient condition for the parity condition was found in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF]: Proposition 5.1 (Proposition 3.3 of [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF]) If there exists an invertible matrix J, independent of x, such that:

J -1 Φ(x, ) t J = Φ(x, -) (5-19)
then the correlation functions W n satisfy:

∀ n ≥ 1 : Ŵn ([x 1 .E 1 ], . . . , [x n .E n ], -) = (-1) n Ŵn ([x 1 .E 1 ], . . . , [x n .E n ], ) (5-20)
We do not know whether this condition is also a necessary one. We have not found any counter-example of a WKB+Lax system with parity property, not having a J matrix.

Leading order condition 4

Condition 4 is often the most difficult to obtain. It is obvious that Ŵ1 is always O( -1 ) and Ŵ2 is of order O( 0 ) so that these cases are trivial. Moreover, from their definition all other Ŵn s are at most of order O( 0 ). If the parity is satisfied, then Ŵ3 must also be of order O( ) and thus is not a problem. But that Ŵ4 is of order O( 2 ) rather than O( 0 ) requires many non-trivial cancellations and the situation worsens when n increases.

In [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], was introduced axiomatically the notion of an "insertion operator" mapping Ŵn → Ŵn+1 and being of order . We could prove the existence of such an insertion operator in very few cases like the (p, 2) minimal models in [START_REF] Eynard | Counting surfaces[END_REF], and this was always non-trivial. There is an incomplete proof for general (p, q) minimal models in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] and Painlevé 5 in [START_REF] Bergère | The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion[END_REF], where only a subset of the requirements of an insertion operator were verified in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], it seems that the missing verifications could be done as in [START_REF] Eynard | Counting surfaces[END_REF] in order to complete the proof, but this has not been done so far.

In [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] a new method was found, for rank 2 systems, proving condition 4 for WKB-Lax systems, not relying on an insertion operator, but only relying on loop equations. The generalization of this method to higher dimensional representations is still missing.

Let us also mention results obtained from the opposite end: assuming only topological recursion, we get loop equations and Topological Type property, and the goal is to prove that we get a differential system. In other words, starting from topological recursion, one builds correlators Ŵg,n , then define formal series Ŵn = ∞ g=0 2g-2+n Ŵg,n , and prove (in certain cases), that these lead to a formal differential equation dΨ = ΦΨ, called the "quantum curve". This method initiated in [START_REF] Bergère | Determinantal formulae and loop equations[END_REF] for the case of the Airy function and was successfully applied to other cases in [START_REF] Dumitrescu | Quantization of spectral curves for meromorphic Higgs bundles through topological recursion[END_REF][START_REF] Mulase | Spectral curves and the Schroedinger equations for the Eynard-Orantin recursion[END_REF][START_REF] Norbury | Quantum curves and topological recursion[END_REF].

Topological recursion

It is proved in [START_REF] Borot | Abstract loop equations, topological recursion, and applications[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological recursion[END_REF], that if a family of Ŵn s satisfy the Topological Type property and satisfy loop equations, then they satisfy the topological recursion. The challenge for a given Φ(x, ), is thus to prove the Topological Type property. The Topological Type property has already been proven for a variety of systems: the six Painlevé systems in [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF], and the (p, 2) minimal models in [START_REF] Eynard | Counting surfaces[END_REF], plus incomplete proofs for (p, q) minimal models in [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF].

We plan in a forthcoming article to prove it for all integrable systems whose spectral curve is a compact curve of genus zero, and satisfying a Lax equation.

Conclusion

We have generalized the derivation of loop equations of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF][START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF], in a much more algebraic way. In particular our method does not use any "insertion operator". Another advantage of this new derivation is that it extends to all reductive Lie algebras, all Riemann surfaces and all choices of prime forms thus making it a general tool to be used in many different applications.

  < a, b >= Tr ρ(a)ρ(b) def =: Tr ρ ab.

(4- 3 )

 3 Then we have the classical result ([7]): Theorem 4.1 The Casimirs

  -5) Theorem 4.[START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] The same Casimirs can be obtained with a basis of a Cartan subalgebra only. Let h a Cartan subalgebra of g, with an arbitrary basis e 1 , . . . , e dim h and e 1 , . . . , e dim h its dual basis < e i , e j >= δ i,j

The prime form initially defined by Fay in[START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] is not defined on Σ, only on the universal cover: it has monodromies. Fay also defined twisted prime forms, that have no monodromies, but that may have essential singularities and poles. Here, we may restrict our Riemann surface to a sub-domain that excludes those singularities.

Often in the literature, the currents are written in a basis e 1 , . . . , e dim g of g, as vectors J(x) = (J 1 (x), . . . , J dim g (x)), with J k (x) = J(x.e k ).
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We introduce a "small" parameter , and consider a 1-parameter family of Higgs fields 1 Φ(x, ) for = 0. Thus, the family of differential equations for flat sections is locally dΨ(x, ) = Φ(x, ) Ψ(x, ).

(5-1)

The purpose is to study asymptotically the → 0 limit.

Topological Type (TT) property

Following the work of [START_REF] Bergère | Determinantal formulae and loop equations[END_REF] and [START_REF] Bergère | Rational differential systems, loop equations, and application to the q th reductions of KP[END_REF] we define the following topological type property:

Definition 5.1 (Topological Type Property) The connection ∇ = d-Φ is said to be of "topological type" if and only if all the following conditions are met:

1. Asymptotic expansion: There exists some simply connected open domain of Σ (which allows to identify Σ = Σ, and Σ = P 0 = Σ × g) and an Abelian subalgebra h of g, in which the connected correlators Ŵn (X 1 , . . . , X n )s with each

such that each

) is, at fixed E i ∈ h, an algebraic symmetric n-form of x 1 , . . . , x n . In other words, there must exist a (possibly nodal) Riemann surface S independent of k and n, which is a ramified cover of Σ, such that the pullbacks, at fixed

) to S n are meromorphic symmetric n-forms.

Pole only at branchpoints: For

) pulled back to S, may only have poles at the ramification points of S → Σ. In particular they cannot have singularities at nodal points of S, or at the punctures, i.e. the pullbacks of singularities of Φ. Moreover

) may only have a double pole along the diagonal of S × S of the form

but no other singularities.

3. Parity: Under the involution → -:

(5-3)

4. Leading order: For all n ≥ 1, the leading order of the series expansion in of the correlation function Ŵn is at least of order n-2 . In other words:

(5-4)

If the system has the topological property, we denote

and we have

Ŵg,n (x 1 .E 1 , . . . , x n .E n ).

(5-6)

All those properties are non-trivial, and there exists plenty of examples of Φ(x, ) for which they are not satisfied. Fortunately, there are also plenty of very interesting examples for which these conditions are satisfied. Let us recall certain sufficient conditions under which these conditions may be satisfied.

WKB expansion and condition 1

Condition 1 can sometimes be obtained from asymptotic analysis, like it is done in large random matrices (where it is usually hard to prove).

Another method is to require condition 1 as formal series. For example condition 1 is always satisfied by formal WKB expansions. Indeed, let introduce a "small" parameter , and consider the Higgs fields 1 Φ(x, ), as a formal series of

(5-7)

The formal family of differential equations for flat sections is locally dΨ(x, ) = Φ(x, ) Ψ(x, ).

(5-8)

Let us choose once and for all a fixed Cartan subalgebra h ⊂ g (think of h as the set of diagonal matrices of g = gl r (C)).

The commutant of Φ (0) (x) is generically a Cartan subalgebra, isomorphic to h, which means that Φ (0) (x) can be "diagonalized" as

(5-9) with T ′ (x) a h-valued 1-form, and V (x) ∈ G x a group element. V (x) and T ′ (x) are defined up to a Weyl group action (permuting the eigenvalues) and invariant torus (V (x) may be right-multiplied by an element of e h ).

In particular T ′ (x) satisfies the algebraic equation P (x, T ′ (x)) = 0 with P (x, y) = det ρ (y -Φ (0) (x)), [START_REF] Borot | Abstract loop equations, topological recursion, and applications[END_REF][START_REF] Bourbaki | Lie Groups and Lie Algebras -Chapters[END_REF][START_REF] Tauvel | Lie Algebras and Algebraic Groups[END_REF][START_REF] Chekhov | Seiberg-Witten equations and noncommutative spectral curves in Liouville theory[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Dorey | Differential equations and integrable models: the SU(3) case[END_REF]