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The paper considers the problem of finding the range of functional

) that are univalent in the system of the disk and the interior of the disk, using the method of internal variations. We establish that the range of this functional is bounded by the curve whose equation is written in terms of elliptic integrals, depending on the parameters of the functional I.

Introduction

In the geometric theory of univalent functions there are a number of papers and books devoted to the the problem of nonoverlapping domains. These problems were developed by M.A. Lavrentiev [START_REF] Lavrentiev | On the theory of conformal mappings. Trudy Matematicheskogo Instituta[END_REF] G.M. Goluzin [START_REF] Goluzin | Geometric Theory of Functions of a Complex Variable[END_REF], James A. Jenkins [START_REF] Jenkins | Univalent Functions and Conformal Mapping[END_REF], Z. Nehari [START_REF] Nehari | Some inequalities in the theory of functions[END_REF], N.A. Lebedev [START_REF] Lebedev | On the range of the restriction of a functional on nonoverlapping domains[END_REF], M. Shiffer [START_REF] Duren | Conformal mappings onto non-overlapping regions. Complex analysis[END_REF], R. Kühnau [START_REF] Kühnau | Über zwei Klassen schlichter konformer Abbildungen[END_REF] and others. Summary of results in this area contained in [START_REF] Bakhtin | Topological-algebraic structures and geometric methods in complex analysis[END_REF].

Let D and D * be nonoverlapping simply connected domains in the wplane such that 0 ∈ D and ∞ ∈ D * . Assume that f : E → D and F : E * → D * are holomorphic and meromorphic respectively univalent functions normalized by the conditions f (0) = 0 and F (∞) = ∞. Here E = {z ∈ C : |z| < 1} and E * = {ζ ∈ C : |ζ| > 1}. The family of all such pairs (f (z), F (ζ)) is called the class M. Some extremal problems on this class were studied in [START_REF] Lebedev | On the range of the restriction of a functional on nonoverlapping domains[END_REF][START_REF] Andreev | Some problems on nonoverlapping domains[END_REF][START_REF] Pchelintsev | On a problem of nonoverlapping domains[END_REF].

Let J : G → C, J = J(ω 1 , ω 2 , ω 3 , ω 4 ) is an analytic in some domain G ⊂ C 4 nonhomogeneous and nonconstant function.

Now we fix an arbitrary point z 0 ∈ E, ζ 0 ∈ E * and define on the class M a functional

I : M → C, I(f, F ) = J f (z 0 ), f (z 0 ), F (ζ 0 ), F (ζ 0 ) . (1.1)
This paper considers the problem of finding the range ∆ of the functional I on the class M. Since together with pair (f (z), F (ζ)) the class M contains the following pairs of functions (f (ze iϕ ), F (ζe iψ )) for any parameters ϕ, ψ ∈ R, then we reduce the initial problem to equivalent one for the functional

I = J f (r), f (r), F (ρ), F (ρ) , where r = |z 0 | ∈ (0, 1), ρ = |ζ 0 | ∈ (1, +∞)
. Further we will solve this problem.

Taking into account that the class M contains the pair of function (f (zt), F (ζt -1 )) for any t ∈ [0, 1] (see, [START_REF] Andreev | Some problems on nonoverlapping domains[END_REF]), we have that the range ∆ of the functional (1.1) is connected set. Note that if the class M complement the pair of functions (f (z), ∞), where f (z), f (0) = 0, is holomorphic univalent function in E, then ∆ will be closed set [START_REF] Ulina | On the range of some functional systems in classes of univalent functions[END_REF]. Hence, it suffices to find the boundary Γ of the set ∆.

A point I 0 ∈ Γ is called a nonsingular boundary point if there exists an exterior point I e for ∆ such that the distance between I e and I 0 is equal to the distance between I e and the set ∆, i.e.

|I 0 -I e | = inf I∈∆ |I -I e |.
(1.

2)

The set Γ 0 of nonsingular boundary points is dense in Γ [START_REF] Lebedev | The majorant domain for I = ln{z λ [f ′ (z)] 1-λ /[f (z)] λ } in the class S[END_REF]. Thus, the initial problem of finding the range ∆ of (1.1) is replaced by an equivalent extremal problem: find the minimum of the real-valued functional |I -I e | on M for all possible I e / ∈ ∆. The functions giving nonsingular boundary points of a functional are called the boundary functions of this functional; i.e., these are the functions at which the values of the functional are nonsingular boundary points.

In this paper to solve the problem we apply the Schiffer's method of internal variations [START_REF] Schiffer | Variation of the Green function and theory of the p-valued functions[END_REF] using pairs of varied functions from [START_REF] Lebedev | On the range of the restriction of a functional on nonoverlapping domains[END_REF].

Main results are given in the following Section 2. 

f ε (z) = f (z) + εP (z) + o(z, ε), F ε (ζ) = F (ζ) + εQ(ζ) + o(ζ, ε)
for ε positive and sufficiently small. In view of the functional (1.1) is Gâteaux differentiable, then we can it rewrite in the form

I * = I+ε ∂J(ω 0 ) ∂ω 1 P (r) + ∂J(ω 0 ) ∂ω 2 P (r) + ∂J(ω 0 ) ∂ω 3 Q(ρ) + ∂J(ω 0 ) ∂ω 4 Q(ρ) +o(ε),
where

I * = I(f ε (z), F ε (ζ)), ω 0 = f (r), f (r), F (ρ), F (ρ) ∈ G. Let (f (z), F (ζ) 
) be a boundary pair of functions of this functional giving the point I 0 . The equality (1.2) implies that

|I * -I e | ≥ |I 0 -I e |.
From here, hence that each boundary pair of functions satisfies the necessary condition Re[pP (r) + qQ(ρ)] ≥ 0, (

where

p = e -iα ∂J(ω 0 ) ∂ω 1 + e iα ∂J(ω 0 ) ∂ω 2 , q = e -iα ∂J(ω 0 ) ∂ω 3 + e iα ∂J(ω 0 ) ∂ω 4 ,
and α = arg(I -I e ). Proof. Suppose that D ∪ D * has at least one exterior point w 0 in wplane. Then by definition of the exterior point there exists neighborhood of the point w 0 consisting of exterior points. Using the varied function

f (z, ε) = f (z) + εA 0 f (z) f (z) -w 0 , F (ζ, ε) = F (ζ) + εA 0 F (ζ) F (ζ) -w 0 ;
where w 0 is an exterior point for D and D * simultaneously and A 0 is an arbitrary complex constant, as the comparison function in (2.1), rewrite it as

Re A 0 R(w 0 ) (f (r) -w 0 )(F (ρ) -w 0 ) ≥ 0, (2.2) 
where R(w 0 ) is a linear polynomial. The fraction in the condition (2.2) is equal to zero, otherwise in view of the arbitrariness of arg A 0 we can choose it so that the left side will be negative. Therefore R(w 0 ) = 0. It is possible only for a single point, while inequality (2.2) should be performed for any point from neighborhood of the w 0 . This contradiction proves the lemma. Further, to obtain differential equations for the boundary functions of the functional (1.1) we consider the following pairs of variational formulas from [START_REF] Lebedev | On the range of the restriction of a functional on nonoverlapping domains[END_REF]: 1)

f (z, ε) = f (z) + εA 0 f (z) f (z) -f (z 0 ) - f (z 0 ) z 0 f ′2 (z 0 ) zf ′ (z) z -z 0 + +εA 0 f (z 0 ) z 0 f ′2 (z 0 ) z 2 f ′ (z) 1 -z 0 z + o(z, ε), (2.3) 
F (ζ, ε) = F (ζ) + εA 0 F (ζ) F (ζ) -f (z 0 )
, where z 0 ∈ E, A 0 is an arbitrary complex constant; 2)

f (z, ε) = f (z) + εA 0 f (z) f (z) -F (ζ 0 ) , F (ζ, ε) = F (ζ) + εA 0 F (ζ) F (ζ) -F (ζ 0 ) - F (ζ 0 ) ζ 2 0 F ′2 (ζ 0 ) ζ 2 F ′ (ζ) ζ -ζ 0 + (2.4) +εA 0 F (ζ 0 ) ζ 2 0 F ′2 (ζ 0 ) ζF ′ (ζ) 1 -ζ 0 ζ + o(ζ, ε),
where ζ 0 ∈ E * , A 0 is an arbitrary complex constant.

Theorem 2.2. Every boundary pair of functions (f (z), F (ζ)) of the functional (1.1) satisfies in E and E * the system of functional-differential equations

(C 1 f (z) -C 2 )f ′ (z) f (z)(f (z) -f (r))(f (z) -F (ρ)) = A z(r -z)(1 -rz) , (2.5) 
(C 1 F (ζ) -C 2 )F ′ (ζ) F (ζ)(F (ζ) -f (r))(F (ζ) -F (ρ)) = B ζ(ρ -ρ)(1 -ρζ) , (2.6) 
where

C 1 = pf (r) + qF (ρ), C 2 = (p + q)f (r)F (ρ), A = (1 -r 2 )rpf ′ (r) > 0, B = (ρ 2 -1)ρF ′ (ρ) > 0.
Proof. If we choose the variational formula (2.3), then (2.1) takes the form

Re pA 0 f (r) f (r) -f (z 0 ) -pA 0 rf ′ (r) r -z 0 f (z 0 ) z 0 f ′2 (z 0 ) + + pA 0 r 2 f ′ (r) 1 -rz 0 f (z 0 ) z 0 f ′2 (z 0 ) + qA 0 F (ρ) F (ρ) -f (z 0 ) ≥ 0.
Replacing the last summand under the real part by its conjugate, we have

ReA 0 pf (r) f (r) -f (z 0 ) -p rf ′ (r) r -z 0 f (z 0 ) z 0 f ′2 (z 0 ) + + p r 2 f ′ (r) 1 -rz 0 f (z 0 ) z 0 f ′2 (z 0 ) + qF (ρ) F (ρ) -f (z 0 ) ≥ 0.
In this condition, the expression in parentheses is equal to zero; otherwise, under an appropriate choice of arg A 0 we would get that the left-hand side of the last inequality is negative. This leads to the equality

pf (r) f (r) -f (z 0 ) + qF (ρ) F (ρ) -f (z 0 ) = f (z 0 ) z 0 f ′2 (z 0 ) rpf ′ (r) r -z 0 -pf ′ (r) r 2 1 -rz 0 .
Since, in this relation, z 0 is an arbitrary point of E, replacing z 0 by z, and in view of pf ′ (r) < 0, we obtain a differential equation for the boundary function f (z). The calculations show that it has the form (2.5).

Ideologically, the deduction of (2.6), repeats that (2.5); for this we must apply (2.1) together with the variational formulas (2.4) and use inequality qF ′ (ρ) > 0. The theorem is proved.

From the analytic theory of differential equations [START_REF] Golubev | Lectures on the Analytic Theory of Differential Equations[END_REF], we conclude that the boundary functions f (z) and F (ζ) satisfying their equations are holomorphic not only in E and E * , but also on the unit circle |z| = |ζ| = 1. From here and in view that the union D ∪ D * do not contain exterior points, one has that the domains D and D * are bounded by some closed analytic Jordan curve.

Further, to find the equation of the boundary of the range ∆ of the functional (1.1) we integrate (2.5) and (2.6).

Extract the square root from both sides of (2.5) and integrate the result by z from 0 to r. Consider the left-hand side :

J = r 0 C 1 f (z) -C 2 f (z)(f (z) -f (r))(f (z) -F (ρ)) f ′ (z)dz.
Changing the integration variable t = f (z)/f (r), we have

J = a 1 0 t -b t(1 -t)(1 -ct)(t -b) dt,
where

a = C 1 f (r) F (ρ) , b = C 2 C 1 f (r) , c = f (r) F (ρ) .
Putting t = 1/x in J, we infer

J = a ∞ 1 dx x (x -1)(x -c)(1 -bx) -ab ∞ 1 dx (x -1)(x -c)(1 -bx) .
Performing the change of variables y = b(x -1)/(bx -1) in the integrals, after transformations one obtains

J = -2phΠ(n, k),
where

Π(n, k) = π/2 0 dt (1 + n sin 2 t) 1 -k 2 sin 2 t
is the complete elliptic integral of the third kind,

h = (f (r) -F (ρ))f 2 (r) C 2 , n = - 1 b , k = q p + q .
Here 1 -k 2 sin 2 t stands for the branch of the function assuming 1 at t → 0. Now integrate the right-hand side:

J = √ A r 0 dz z(r -z)(1 -rz) .
Changing the integration variable x = z/r, one has

J = 2 √ A K(r),
where

K(r) = π/2 0 dt 1 -r 2 sin 2 t
is the complete elliptic integral of the first kind. Thus, upon integration, (2.5) looks as

-phΠ(n, k) = √ A K(r). (2.7) 
Integrate (2.6) after extracting the square root with respect to ζ from ρ to ∞. First consider the left-hand side:

L = ∞ ρ C 1 F (ζ) -C 2 F (ζ)(F (ζ) -F (ρ))(F (ζ) -f (r)) F ′ (ζ) dζ.
Changing the integration variable t = F (ζ)/F (ρ), we have

L = a * ∞ 1 t -b * t(1 -t)(1 -c * t)(t -b * ) dt,
where

a * = C 1 F (ρ) f (r) , b * = C 2 C 1 F (ρ) , c * = F (ρ) f (r) .
Putting t = 1/x in L, we infer

L = a * 1 0 dx x (x -1)(x -c * )(1 -b * x) -a * b * 1 0 dx (x -1)(x -c * )(1 -b * x) .
Performing the change of variables u = b * (1 -x)/(b * -1) in the integrals, after calculation one comes to equality

L = 2 (lΠ(φ, m, k) -h 0 F(φ, k)) ,
where

F(φ, k) = φ 0 dt 1 -k 2 sin 2 t
is the incomplete elliptic integral of the first kind,

Π(φ, m, k) = φ 0 dt (1 + m sin 2 t) 1 -k 2 sin 2 t
is the incomplete elliptic integral of the third kind,

l = C 1 c * (p + q)(f (r) -F (ρ)) , φ = arcsin 1 k(1 -c * ) , m = k(c * -1) , h 0 = f (r) h .
On the right-hand side

L = √ B ∞ ρ dζ ζ(ρ -ζ)(1 -ρζ) ,
changing the integration variable τ = ρ/ζ, we have

L = 2 √ B ρ K 1 ρ .
Hence, integrating (2.6), we obtain

(lΠ(φ, m, k) -h 0 F(φ, k)) = √ B ρ K 1 ρ . (2.8) 
Now in the w-plane, take the point F (1) = f (-e iα ). Integrate the equalities that are obtained from the system (2.5)-(2.6) by extracting the square root the first over z from 0 to -1, and then over the arc |z| = 1 counterclockwise from -1 to -e iα , and the second, over ζ from 1 to ρ.

Write down the integrals on the left-hand side of (2.5):

f (-1) 0 C 1 w -C 2 w(w -F (ρ))(w -f (r)) dw, F (1) 
f (-1)

C 1 w -C 2 w(w -F (ρ))(w -f (r))
dw.

Proceed with the integral on the left-hand side of (2.6)

F (ρ) F (1) C 1 w -C 2 w(w -F (ρ))(w -f (r))
dw.

Summing up these integrals, we have

T = F (ρ) 0 C 1 w -C 2 w(w -F (ρ))(w -f (r))
dw.

Making the change of variables t = w/F (ρ), note that

T = a * 1 0 t -b * t(1 -t)(1 -c * t)(t -b * )
dt.

Putting t = 1/x, we find

T = a * ∞ 1 dx x (x -1)(x -c * )(1 -b * x) -a * b * ∞ 1 dx (x -1)(x -c * )(1 -b * x) .
Changing the integration variable y = b * (x -1)/(b * x -1) in the integrals and performing the corresponding transformations, we obtain

T = 2 iqh * Π(n * , k ′ ),
where

h * = (f (r) -F (ρ))F 2 (ρ) C 2 , k ′ = √ 1 -k 2 , n * = - 1 b * .
Integrate the right-hand sides of (2.5). First, integrate over z from 0 to -1

T 1 = - √ A 0 -1 dz z(r -z)(1 -rz) .
Performing the change of the integration variable x = (1 + z)/(1 -z) and applying a formula from [START_REF] Gradshtein | Tables of Integrals, Sums, Series and Product[END_REF], we obtain

T 1 = √ A i K √ 1 -r 2 .
Integrate the right-hand side over the arc β of the unit circle counterclockwise from -1 to -e iα : T 2 = √ A β dz z(r -z) (1 -rz) .

Substituting z = -e iϕ in T 2 , where 0 ≤ ϕ ≤ α, we infer

T 2 = √ A α 0 d(-e iϕ )
-e iϕ (r + e iϕ )(1 + re iϕ ) .

Performing the change of variable t = -e iϕ , we find

T 2 = - 2α π √ A K (r) .
Finally, integrate the right-hand side of (2.6) over ζ from 1 to ρ:

T 3 = √ B ρ 1 dζ ζ(ρ -ζ)(1 -ρζ) .
Changing the integration variable u = ρ/ζ, we have

T 3 = √ B ρ i K 1 - 1 ρ 2 .
Summing T 1 , T 2 and T 3 yields

√ A i K √ 1 -r 2 + √ B ρ i K 1 - 1 ρ 2 - 2α π √ A K (r) .
Thus, integrating the equalities (2.5) and (2.6), one has

qh * Π(n * , k ′ ) = √ A 2 K √ 1 -r 2 + + √ B 2ρ K 1 - 1 ρ 2 + α π i √ A K (r) .
Excluding the constants √ A and √ B from this equality by using (2.7) and (2.8), we obtain the following equation

- qh * ph Π(n * , k ′ ) Π(n, k) = 1 2 K( √ 1 -r 2 ) K(r) - - 1 2 lΠ(φ, m, k) -h 0 F(φ, k) phΠ(n, k) K 1 -1 ρ 2 K 1 ρ + α π i. (2.9)
Hence, we have proved:

2

  Differential equations for the boundary functions. The equation of the boundary of ∆ Write down the variational formulas for boundary functions f (z) and F (ζ) on the class M in the form

Lemma 2 . 1 .

 21 Let f (z), F (ζ) be boundary functions of functional (1.1). Then the union of domains D and D * has no exterior points in C w .
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Theorem 2.3. The range ∆ of the functional (1.1) on the class M is bounded by the curve defined by equation (2.9).