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Abstract15

Recordings of the Earth’s surface oscillation as a function of time (seismo-
grams) can be sonified by compressing time so that most of the signal’s
frequency spectrum falls in the audible range. The pattern-recognition ca-
pabilities of the human auditory system can then be applied to the auditory
analysis of seismic data. In this experiment, we sonify a set of seismograms
associated with a magnitude-5.6 Oklahoma earthquake recorded at 17 broad-
band stations within a radius of ⇠300km from the epicenter, and a group
of volunteers listen to our sonified seismic data set via headphones. Most
of the subjects have never heard a sonified seismogram before. Given the
lack of studies on this subject, we prefer to make no preliminary hypotheses
on the categorization criteria employed by the listeners: we follow the “free
categorization” approach, asking listeners to simply group sounds that they
perceive as “similar.” We find that listeners tend to group together sonified
seismograms sharing one or more underlying physical parameters, includ-
ing source-receiver distance, source-receiver azimuth, and, possibly, crustal
structure between source and receiver and/or at the receiver. This suggests
that, if trained to do so, human listeners can recognize subtle features in
sonified seismic signals. It remains to be determined whether auditory anal-
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ysis can complement or lead to improvements upon the standard visual and
computational approaches in specific tasks of geophysical interest.

Keywords: seismology, sonification, categorization, perception,
psychoacoustics, acoustics, geology, wave, auditory

1. Introduction

Seismologist Hugo Benio↵ first implemented a technique to accelerate
seismograms to the range of audible frequency, compiling a set of sonified20

seismograms that was commercially released in 1953 in the form of an LP
album [1]. It was then suggested that earthquakes could be discriminated
from man-made explosions by simply listening to the associated sonified time
series, exploiting the high resolving power of the human auditory system
[2, 3]. This proposed approach was never put into practice: with the ad-25

vent of digital seismology in the 1970s, automated software could accurately
estimate hypocenter locations and source mechanisms by processing large
seismic databases [4, 5].

In principle, auditory analysis could contribute to current research top-
ics in seismology. For instance, while most classic seismology applications30

only involve seismic records spanning not more than a few hours after an
event, reconstructing the impulse response of the Earth’s crust from ambi-
ent signal by two-receiver interferometry [6, 7] requires the analysis of very
long continuous records, from several days to an entire year depending on
frequency range and source distribution; the time-acceleration, of a factor35

⇠103, inherent to seismogram audification makes it possible to “play” such
records in a reasonable amount of time, so that open questions on the na-
ture of the observed seismic background signal could then be addressed by
listening experiments. Research on the nature of earthquake rupture could
also benefit from auditory display; the results of the Source Inversion Valida-40

tion initiative [8] show that the dynamic and kinematic inversion of seismic
observations [9] does not lead to robust models of earthquake rupture: it
is currently very hard, if possible at all, to robustly map a seismic rupture
(the displacement along an earthquake fault) on the basis of recorded seis-
mograms alone. It would be worthwhile to explore whether auditory analysis45

can help discriminating signals originating from di↵erent types of earthquake
rupture.

Over the years, a small community of researchers has continued to sonify
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seismic data for a number of (often educational or artistic) applications
[10, 11, 12, 13, 14]. However, even though interest around sonification seems50

now to be growing in seismology [15, 16, 17, 18, 19, 20] as well as other
disciplines [21, 22], the capability of the human auditory system [23, 24, 25]
to recognize patterns in seismic sound has not been studied quantitatively.
No study so far has dealt with the discrimination of sonified seismic signals
by human listeners, or, more generally, with our strategies (if any) of hear-55

ing, listening to, recognize, organize, or process such signals. The unique
experiment of [2] explored the human ability to distinguish sonified records
of explosions vs. seismic events: a relatively simple, and very specific task.

In the experiment presented here, we proposed the listeners to categorize
freely a set of sonified seismic data. As explained in Sec. 3, no information60

on the nature of such data (other than the fact that they were recordings of
earthquakes) was provided, and the only criterion for grouping the data was
their perceived “similarity.” Since all signals were generated by the same
seismic event, we expected listeners to discriminate based on source-receiver
distance, source-receiver azimuth and/or crustal structure between the source65

and the receiver. In the free-categorization approach, however, no specific
hypothesis is tested directly, and it is a priori possible for a listener to group
data according to a valid criterion not anticipated by the researchers.

Individual audio signals used in this study are produced by simple time-
compression of seismic signals, and are administered to listeners monophoni-70

cally (the same signal is played through the two channels of the headphones,
in phase) one at a time. This deliberately simple study is a first step towards
the auditory analysis of spatialized seismic data; preliminary experiments in
the spatialization of seismic sounds are described by [20].

2. Seismic signals75

2.1. Brief geology and seismology overview

Our newly compiled database of sonified seismograms is based on records
of a recent sequence of 40 Oklahoma earthquakes of magnitude ranging be-
tween 3 and 5, recorded by 17 stations at local epicentral distances (Fig. 1).
All data were collected in the framework of the USArray experiment [26]80

and were recorded by broadband seismic sensors. In order to achieve the
best possible signal quality, we limited ourselves to the largest event (mag-
nitude 5.6, November 6, 2011) in the sequence [27]. Throughout this study,
only vertical-component records are used. The 17 stations contributing to
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Figure 1: Topography of the study area. The CMT focal mechanism [4, 5] of the November
6, 2011, magnitude-5.6 event is plotted at the CMT epicenter location (compressional
quadrants are shaded), suggesting a strike-slip fault with roughly SW-NE or SE-NW strike.
Red triangles denote available seismic stations, whose names are specified. Di↵erent colors
represent di↵erent elevations of the Earth’s surface with respect to sea level. The dashed
white line denotes the boundaries of our area of study.

our database are a subset of the dense network used to precisely determine85

the events hypocenters [27]; they are located at latitudes 34�N to 37�N and
longitudes 94�W to 97�W. The earthquakes are demonstrably caused by in-
jection of large volumes of wastewater from “hydrofracturing” [27, 28], for
long-term storage, in formations that contained oil that was previously ex-
tracted. The high fluid pressures trigger earthquakes, particularly when the90

fluid accumulates on old, inactive faults, reactivating them (Fig. 2). These
events have been selected for the large quantity and high quality of available
data recorded locally at diverse azimuths and distances, for the reliability
of hypocenter locations, and, after a preliminary auditory analysis, for the
perceived quality of sonified signals.95

The character of observed waveforms propagating through the region of
interest is related to the properties of the underlying crust [29, 30]. These
are best summarized by surface-wave phase velocities at di↵erent periods,
each sampling a di↵erent depth range as illustrated e.g. by [31]. The most100
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Figure 2: A qualitative representation of the sedimentary rocks of Oklahoma, where earth-
quakes have been triggered by wastewater injection. Seismic energy is reflected o↵ the
sediment/basement interface and the “Moho.” The sedimentary layers can have large ve-
locity contrasts and add to the coda and complexity and character of the seismic wave
and thus the sound.

recent and most complete surface-wave velocity model of North-America is
that of [32]. We show in Fig. 3 a few examples of surface-wave phase-velocity
perturbations according to [32]. The phase velocities of shorter-period waves
in Fig. 3 are most sensitive to the thickness and elastic properties of young
sedimentary rocks, forming a shallow layer that overlies the older, crystalline105

“basement”; 30-40s Love and Rayleigh waves are strongly a↵ected by vari-
ations in the depth to the Mohorovicic Discontinuity (also “Moho”), the
interface between the crust and mantle, which has a high contrast in seismic
wave speeds (on the order of 20%) at about 30-40 km depth in the area of
study.110

At most periods, both Love- and Rayleigh-wave velocities are highest
in the north-eastern portion of the study area, and generally higher north of
the 35�N parallel. A linear low-velocity anomaly can be distinguished to the
south of and/or along the 35�N parallel, trending WSW-ENE. The south-
east corner of the study area is, again, relatively fast at most periods.115

The topography (Fig. 1) is relatively flat; some topographic highs to the
south west are correlated with low long-period velocity of Rayleigh waves,
and thus (probably) thicker-than-average crust. On the contrary, north of the
35�N parallel the topography is relatively high (>500m) and so are crustal
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Figure 3: Rayleigh-wave (left) and Love-wave (right) phase-velocity variations (with re-
spect to the regional average) according to [32], at periods of (top to bottom) 5, 12 and
35s. The region is the same as that depicted in Fig. 1.
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velocities.120

The study of [33] shows that the pattern of surface geology (age of sed-
imentary rocks) is correlated with that of topography, with older (Missis-
sippian) outcrops found throughout the areas of higher topography in the
eastern part of the study area, Pennsylvanian rocks along the 35�N paral-
lel and 96�W meridian, and Permian further west, where topography again125

grows.

2.2. Sonification of seismic signals

All seismograms were sonified by changing their sampling frequency, from
40 Hz to 6000 Hz. The resulting signals (converted to wav files) are accord-
ingly played 6000

40 = 150 times faster than their actual speed, and so translated130

to the audible frequency range. These sounds are somewhat reminiscent of
gunshots, with a short release of impulsive, non-harmonic sound. Much of
the signal that is usually analyzed by seismologists falls within the “attack”
and in the first part of the “coda” (or “resonance”). The audio signals (im-
pulse and coda) presented to the subjects have a 2s-duration, corresponding135

to seismic signals of duration 300s. The 300s-long seismic signals to be soni-
fied start 10s (about 7ms in audio scale) before the first important peak (the
P wave) on the seismogram. Fig. 4 shows two sonified signals, with both
audio and seismic wave scales. Fig. 4a shows the recording of the selected
magnitude-5.6 event, by a station (V35A) which is close to the event loca-140

tion. The P- and S-wave arrivals do not have time to separate as they cover
the short distance from source to receiver [29, 30], and, when sonified, the
recording is characterized by a single “detonation.” Fig. 4b is the recording
of the same event, by a station (W38A) which is far from the event location.
The P- and S-wave arrivals are now well separated, and two distinct apparent145

“detonations” might be typically recognized in the sonified recording.
The dynamic range of seismic signals is greater than the dynamic range of

audio signals, so the sonified signals have to be normalized. Each sonified sig-
nal was normalized with respect to its maximal value. This way, even though
signal attenuates quickly as spherical seismic waves propagate away from the150

source, signals recorded at relatively large distances from the epicenter can
still be heard and analyzed. This means, however, that the lower signal-to-
noise ratio of lower-amplitude signals results in artificially large background
noise; in other words, while the maximum amplitude (loudest peak) of the
sonified signal is constant throughout our sonified database, signal-to-noise155

ratio systematically grows with decreasing source-receiver distance. Nearby
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Figure 4: Recording of the magnitude 5.6 Oklahoma event, made at (a) station V35A
(short propagation distance), and (b) station W38A (long propagation distance). Notice
that the same onset time is used for all seismic records, which explains the slight delay
between P-wave arrivals in (a) and (b).

events are not “louder”, but have a better signal-to-noise ratio than far-away
events. This is a delicate issue that will be the subject of further study.

3. Experimental protocol

This section describes the experimental protocol used to test the sensi-160

tivity of the human auditory system to sonified seismic signals. First a short
overview of the theoretical background (the categorization and the natu-
ral categories theory) from which the experimental method derives is given
(Sec. 3.1). The experimental method is described in Sec. 3.2.

3.1. Theoretical background165

Classic psychophysical methods are based on an underlying physical the-
ory and are only valid as far as controlled physical parameters (e.g., the
magnitude of an earthquake, and amplitude of the corresponding signal) can
be assumed to be linked to measurable psychological parameters (e.g., per-
ceived “loudness”.) This is not necessarily the case in this study: because170

our experiment is the first of its kind, we have no a priori knowledge of
human responses to sonified seismic signal to rely on; we do not know what
the relevant psychological parameters for the sonified seismic signals are, and
have no elements on which to base assumptions.
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The “free sorting” or “free categorization” method is more appropriate to175

the present scenario, as it requires little or no prior knowledge of the relation-
ship between physical and psychological parameters. Free categorization task
is now a classic method for instance in sensory analysis [34, 35] or acoustics
[36, 37, 38, 34, 39, 40]. The method is based on the theory of categorization,
which is comprehensively described in the field of cognition and cognitive180

psychology in [41, 42]: the human cognition process is described with the
concept of natural categories, as opposed to formal categories, defined as
follows.

Two objects (or stimuli) are placed in the same formal category if and
only if they both fulfill a set of properties. Two objects do not belong to the185

same formal category if they di↵er in one property. This approach implies
the assumption that the subject must have an analytical approach making
him analyze each stimulus as a sum of independent properties. But, while
the physical description of sound objects is classically based on a list of inde-
pendent physical parameters, the corresponding perceptual parameters may190

be dependent/linked: for example, sound intensity and frequency are inde-
pendent physical properties, but the perceived sound intensity changes with
frequency [23, 25].

On the other hand, two objects can be put into the same natural cat-
egory if they share some features, and separated into di↵erent categories if195

they di↵er in some other respects: this aspect of the theory of natural cate-
gories can take into account the diversity of objects within a group, and the
relationship between attributes, which are not assumed to be independent,
and can be unknown a priori.

3.2. Free categorization method200

We apply the free categorization method, consistent with the theory of
categorization outlined in Sec. 3.1. The recordings by 17 stations of the array
described in Sec. 2.1 are sonified as described in Sec. 2.2: 17 sound samples
are then to be listened to and categorized by the subjects. In the following,
we take the psychoacoustical perspective and we use the word “stimulus” for205

“sound sample”. Two examples of such stimuli, corresponding to stations
V35A (near the epicenter) and W38A (far from the epicenter), are shown in
Fig. 4.

Of the K=24 subjects who took part in the experiment, none reported to
have prior expertise in the listening of sonified seismic signals. All subjects210
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Figure 5: (a) Drawing of the experimental setup, and (b) example of subject during the
listening test.

nevertheless had backgrounds in earth sciences, acoustics or sound engineer-
ing, so have an a priori expertise in either listening or seismology.

3.2.1. Experimental setup
An external soundcard RME Fireface UCX connected to a computer

was used for playing the sounds. Sennheiser HD380 Pro headphones were215

plugged to the output of the soundcard as illustrated in Fig. 5. For this
preliminary study, involving only monophonic signals and no spatialization,
listening through headphones is preferable to loudspeakers: the setup is sim-
pler, and room e↵ects are eliminated. The subjects could set and change the
sound level in the headphones at any time during the test.220

All tests were conducted on the same computer, where subjects used
Pascal Gaillard’s software TCL-LabX [43] to complete the proposed free cat-
egorization exercise. The TCL-LabX graphic interface displays the 17 stimuli
as 17 small square icons, numbered randomly. A stimulus can be played back
by double clicking on the corresponding icon, and a click-and-drag operation225

allows the subject to move each icon within the entire interface area. A
screenshot of the interface is shown in Fig. 6.

3.2.2. Task and instructions
The subject is asked to sort the 17 stimuli into groups (the words “group”

and “category” are used as synonyms throughout this study) that include230

stimuli perceived as similar by the subject. We report below a English trans-
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Figure 6: Screenshot of the computer interface during the test. Each of the 17 square icons
represents a sound stimulus. The subject first moves (click-and-drag operation) the icons
within the interface area (this figure) and second gives each icon a color corresponding to
the group to which it belongs (see Fig. 7a for the second stage).

lation1 of the instructions:

Please sort the sound samples presented to you. You can group
the samples which seem similar to you, and put in di↵erent groups
those which seem di↵erent to you. You may form as many groups235

as you wish.

These instructions leave the subject quite free in selecting the similarity
criteria, the number of groups to be formed, etc. The subject is allowed to
group all stimuli into one group if no significant di↵erence is perceived, and
can form only groups that contain a single stimulus (“singleton” groups), if240

all stimuli are perceived as individuals sharing no particular similarity. Yet,
all stimuli must belong to a group, and no stimulus can belong to two di↵er-
ent groups. The subject is not asked to use a specific strategy in the spatial
arrangement of the groups on the interface plane. In particular, the subject
does not have to put far one from another groups that are perceived as more245

dissimilar: the position of groups and icons is not taken into account in the
analysis phase, only the stimulus-group association matters.

1The original French instructions are: Nous vous demandons de procéder à un tri
des extraits sonores qui vous sont présentés. Pourriez-vous regrouper les extraits qui se
ressemblent et placer dans des groupes di↵érents ceux qui vous semblent di↵érents ? Vous
faites autant de groupes que vous le souhaitez.
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No other information about the nature of the data (other than that they
were originated from seismograms) were provided. Prior knowledge of the
origin of the sound samples potentially would have induced expectations and250

listening strategies, reducing the “freedom” that was given to subjects. How-
ever, no subject reported the use of his/her knowledge of seismology, and no
one knew what particular earthquakes were used.

24 subjects (16 males, 8 females) took part in the experiment. The mean
duration of the test was 15.5 minutes (standard deviation: 9.5 minutes, max-255

imal duration: 44.7 minutes, minimal duration: 6.5 minutes). A single stim-
ulus was played 9.5 (mean value) times in average (standard deviation: 2.1):
the most often played stimulus is the recording from station V38A (13.6
times in average), the less often played stimulus is the recording from station
W38A (6.8 times in average).260

4. Analysis of experimental data

Each of our 24 subjects provided a “sorting” (or “partition”) of the 17
stimuli. The output data of the test then consists of 24 sets of 1 to 17 cat-
egories/groups of stimuli. We call “individual partition” each of those 24
partitions. Fig. 7 shows an example of an individual partition: this sample265

partition can be displayed as the final organization of icons in the test in-
terface (Fig.7a), or on the latitude/longitude plane (Fig.7b). The data can
be analyzed in several ways; after briefly quantifying the global inter-subject
consensus (Sec.4.1), we describe two analysis approaches in Secs. 4.2 and 4.3,
and discuss their outcomes in Sec. 4.4.270
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Figure 7: The partition made by one subject. (a) Screenshot of the test interface taken at
the end of the test; icons belonging to the same group have the same color. (b) The same
partition displayed on the latitude/longitude plane. Station locations are indicated by
colored crosses accompanied by station names, while a star denotes the epicenter location;
the color code is the same as in (a).

4.1. Inter-subject consensus

In order to characterize di↵erences between di↵erent partitions, the Rand
index can be used [44]. One value of the Rand index is computed for each
possible pair of subjects; with K subjects, this amounts K(K�1)

2 pairs to be
compared, i.e. 276 pairs if K=24. For subjects A and B, the Rand index is275

defined as R = a+b
a+b+c+d , where:

- a is the number of pairs of stimuli put in the same category by subject
A and in the same category by subject B;

- b is the number of pairs of stimuli put in di↵erent categories by subject
A and in di↵erent categories by subject B;280

- c is the number of pairs of stimuli put in the same category by subject
A, and in di↵erent categories by subject B;

- d is the number of pairs of stimuli put in di↵erent categories by subject
A, and in the same category by subject B.

In practice, R can take values from 0 to 1, with R=0 corresponding to total285

disagreement between the partitions of subjects A and B (a=b=0), and R=1
to total agreement (c=d=0).
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4.2. Tree analysis

The tree analysis aims at defining a perceptual distance between stimuli,
and to represent this distance on an “additive tree”. We follow the classic290

criteria described by e.g [40, 45], which can be summarized as follows:

(i) compute an “individual” co-occurrence matrixMk (square matrix whose
size is defined by the number of stimuli, i.e. 17⇥17 in the present case)
for each subject k (k=1,2,. . . ,24):

- Mk
ij = 1 if stimuli i and j are in the same group according to295

subject k

- Mk
ij = 0 if stimuli i and j are in di↵erent groups according to

subject k

(ii) calculate the total co-occurrence matrix, defined as the sum of all K
individual co-occurrence matrices: Mij =

PK
k=1 M

k
ij (Mij is large if300

stimuli i and j are often grouped together, and 0 if they are never
grouped together)

(iii) convert the co-occurrence measure into the distance matrix D such that
Dij = 1�Mij/17 (Dij is small if Mij is large; Dij = 0 if stimuli i and j
are always grouped together, and 1 if they are never grouped together)305

The matrix D is a “consensual” measure of perceptual distance, since it
expresses a consensus among subjects, and smooths the di↵erences between
subjects. The information contained in D can be visualized by a “tree,”
as described by [46]: each sound stimulus is represented by a “leaf,” and
leaves are linked together through “branches,” whose length is proportional310

to the perceptual distance D between leaves/stimuli. For instance, if one
has to climb (or descend) along many and/or long branches to go from leaf
A to leaf B, that means that stimuli A and B have been perceived as very
di↵erent by the subjects. We find the best-fitting tree to our D via Jacques
Poitevineau’s Addtree software [47].315

4.3. Central partition analysis

The central partition analysis consists essentially of identifying one or
more “consensual” partitions, each representing an “average” of the individ-
ual partitions produced by an ensemble of subjects. As opposed to the tree
analysis, of Sec. 4.2, this approach does not provide a notion of “distance”320
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between stimuli. Each central partition then describes a consensus between
subjects; this approach to data analysis does not allow one to visualize dif-
ferences in subjects’ responses, nor the individual listening behaviours or
grouping strategies.

The central partition corresponding to a group of K subjects can be iden-325

tified by the following procedure, based on [48, 49], which we implement via
Jacques Poitevineau’s wpartcent software [50]:

(i) compute the “individual” co-occurrence matrix Mk, defined in Sec. 4.2,
for each subject k (k=1,. . . ,K)

(ii) calculate the total co-occurrence matrix, as defined in Sec. 4.2, associ-330

ated with the K subjects

(iii) determine a matrix C of size N⇥N with N the number of stimuli (i.e.,
17), such that

Pi=N
i=1

Pj=N
j=1 (2Mij �K)Cij is maximum; the matrix

C is sought via optimization [50] within the space of all real N ⇥ N
matrices sharing the following properties:335

- Cij is either 0 or 1

- Cij = Cji (symmetry)

- Cij + Cjk � Cik  1 (transitivity)

- Cii = 1 (reflexivity)

(iv) the central partition is defined based on the so determined matrix C,340

placing stimuli i and j in the same group if Cij = 1, and in di↵erent
groups otherwise.

To understand the algorithm, notice, e.g., that for large Mij, optimization
will tend to pick Cij = 1 rather than 0; conversely, if Mij is close to 0,
its contribution to the function to be optimized is negative, and it will be345

preferable to pick Cij = 0. If Mij is neither large nor small, its contribution
is close to negligible and either value of Cij might be picked.

4.4. Outcome of the analysis

Instructed to form groups of stimuli, the subjects actually tried and man-
aged to do so. Fig. 8a shows the distribution of the number of categories in350

individual partitions. As we can see, no subject chose to form one single
group containing all stimuli, or to form as many singleton groups as there
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Figure 8: Histogram showing a) the distribution of the number of categories in partitions,
and b) the distribution of the number of stimuli in categories.

were stimuli. While di↵erences between stimuli within a group might be
perceived, subjects have nevertheless recognized common properties, that al-
lowed them to group the stimuli together.355

Fig. 8b shows the distribution of the number of stimuli in categories. It
can be seen that 34 categories (over a total amount of 132 categories when
summing over the 24 individual partitions) contain only 1 stimulus, so that
the grouping of stimuli according to the identification of common features or
similarity may not always be the universal strategy to evaluate such stimuli.360

However, the large majority of the other categories contain 2 to 6 stimuli.
We conclude that the subjects suceeded in producing a categorisation of the
sound stimuli.

It can be noticed that out of 34 singleton categories, 7 (21% of the sin-
gleton categories) consist of stimulus U38A, 5 (15%) of stimulus W37B, and365

3 (9%) of stimulus V35A: those seem to be the most unique stimuli in the
present 17-stimuli-corpus. On the contrary, stimulus TUL1 was never placed
alone into a singleton category: all subjects identified common properties be-
tween stimulus TUL1 and others (in particular stimulus V36A, which is put
only 1 time in a singleton category, and 19 times in the same category as370

TUL1 ).

4.4.1. Measured inter-subject consensus
Fig. 9 shows the distribution of the R over the 276 pairs of partitions,

ranging from 0.38 (fairly good agreement) to 0.96 (very strong agreement)
with an average value of 0.76. In summary, R is fairly high, indicating that375

there is some consensus amongst subjects in categorizing the stimuli. No
“outliers” are found, and the entire database will be the object of our further
analysis in the following.
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4.4.2. Outcome of the tree analysis
Fig. 10 shows the matrix D defined in Sec. 4.2, computed from all 24380

partitions, visualized via the Addtree software. It is apparent from Fig. 10
that some stimuli are often grouped together (e.g., X38A, X37A, X39A,
and W38A), other only very rarely (e.g., W35A, U37A, and X39A). Some
“consensual” groups can be identified:

- group a: X38A, X37A, X39A, W38A;385

- group b: W35A, V35A (less frequently W36A);

- group c: TUL1,V35A (less frequently U36A);

- group d: V37A,V38A;

- group e: U37A, U38A.

Members of groups d and e are all relatively close in Fig. 10 and these two390

groups could also be merged in a single, larger group. Keeping in mind the
geographical distribution of receivers (Fig. 1), one can already notice that
group b essentially consists of sounds from stations close to the epicenter,
group c of sounds from intermediate-distance stations, and groups a, d and
e of sounds from relatively far stations. Secs. 4.4.3 and 5 below confirm395

that that source-station distance is likely to play an important role in the
categorization strategy.
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Figure 10: Additive tree representing the perceptual distances between stimuli, computed
from all 24 partitions. Each line (or “branch”) ends in a stimulus or “leaf,” or is connected
to another branch. The perceptual distance between two stimuli is proportional to the
distance between the corresponding leaves, measured along the branches that connect
them. Leaves are labelled with station names, and epicenter-station distance in km. Gray
circles indicate the groups identified in the analysis (a to e): solid lines denote groups of
stimuli often grouped together, and dashed lines add stimuli perceived as similar as well,
but less frequently included in those groups.
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4.4.3. Outcome of the central partition analysis
The central partition analysis (sec. 4.3) allows to define a single partition,

most representative of the choices made by the entire population of 24 lis-400

teners. We visualize such central partition in Fig. 11 on a latitude/longitude
plane, each color denoting one category.

With the exception of group {X35A, W37B}, these “average” categories
include stimuli from stations that lie close one to another: on the lati-
tude/longitude plane, the groups appear more as “lumps” of stations than405

as a “scattering” of stations. This indicates that stimuli may be grouped
according to spatial proximity, or common geological properties of the cor-
responding stations.

The geographical organization of the average groups seems to confirm
the importance of the source-receiver distance as a grouping criterion: group410

{V35A, W35A} is made up of stimuli from stations close to the source,
groups {V36A, TUL1, U36A}, and {X35A, W37B} are made up of stimuli
from stations at a medium distance from the source, and groups {U37A,
U38A} and {V37A, V38A} are made up of stimuli from stations far from
the source. However, there must be other parameters relevant to explain the415

groupings, as for example category {X36A, X37A, X38A, X39A, W38A} is
made up of stimuli from stations at very di↵erent distances from the source.
Sec. 5 investigates the relation between the perceptual similarities and the
geophysical parameters.

5. Linking perceived similarities to geophysical parameters420

The seismograms we record and sonify are known to be controlled by sev-
eral geophysical parameters (e.g., source-receiver distance, Earth structure,
topography at the receiver, and the mechanical properties of the seismic
source), resulting in sound features that the auditory system seems able to
discriminate.425

The two stations that are most often grouped together are V35A and
W35A, which 21 out of 24 listeners have placed in the same category, and
which are closest to the epicenter. At such a short source-receiver distance, P
and S waves hit the receiver almost simultaneously, which is not the case at
larger source-receiver distances included in our data set. Preliminary analy-430

sis of the subjects’ textual comments (which we shall analyze in detail in a
separate publication) confirms that most listeners have used the lack of sep-
aration between the P- and S-wave arrivals as a criterion for categorization.
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Stations TUL1 and V36A, which are very close to one another, were
placed in the same category by 19 out of 24 subjects. 10 of these subjects435

have also included station U36A in the same group. The resulting consen-
sual category {TUL1,U36A,X36A} includes signals that are characterized by
similar crustal structure and distance between source and receiver, as well as
similar receiver elevation.

Fig. 1 and the top panels of Fig. 3 (Rayleigh- and Love-wave velocity at440

5s period, corresponding to shallow crust) show that stations X36A, X37A,
X38A X39A and W38A sit on similar terrain, characterized by low surface-
wave velocity and (with the exception of station X36A) relatively high to-
pography (roughly 300 to 500m above sea level). These five stations were
recognized as a single category by 10 subjects (plus one additional subject445

who also included other stimuli in the category). 7 other subjects exclude
X36A from what is otherwise the same category: notice that station X36A
lies on slightly di↵erent terrain and is much closer to the epicenter.

Stimuli associated with stations V37A, V38A, U37A and U38A, which
all lie in the highest-topography area of the study region (Fig. 1), are per-450

ceived as relatively similar (Fig. 10), and 7 listeners have chosen to place
them all in one category. There is, however, a pronounced tendency to form
two separate categories, one consisting of U37A and U38A (grouped together
17 times), the other of V37A and V38A (16 times). The underlying Earth’s
structure might slightly di↵er between northern stations U37A and U38A,455

and southern stations V37A and V38A (Fig. 3).
In summary, Fig. 11 suggests that audio signals have been categorized

by most listeners in terms of (i) distance between source and receiver, and
(ii) geographic location of the receiver. Source-receiver distance controls the
delay between the arrival of P and S waves, which is a prominent feature460

of audio signals (as a result, stations V35A and W35A are almost always
grouped together). Source-receiver distance, however, is not the only param-
eter a↵ecting the listeners’ categorization strategies; for instance, stations
V37A and X37A, which lie at approximately the same distance from the
epicenter, are never or rarely grouped together; the same holds for V38 and465

W38.
Receiver location determines the Earth structure sampled by seismic

waves, resulting in di↵erent frequency content, dispersion, scattering of the
waveform and, consequently, of the sonified seismogram. We have identified
in Fig. 11 a tendency to group together stations that lie on similar terrain;470

it is harder to determine whether ray paths that sample similar terrain also
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result in sonified seismograms that are perceived as similar: this will be the
subject of future work.

Receivers that lie at the same distance from a seismic source, but at di↵er-
ent azimuths (e.g., again, V37A and X37A), stand in a di↵erent geometrical475

relationship with the seismic fault: Fig. 1 shows, e.g., that stations X35A
abd X36A are in the focal mechanism’s “compressional quadrant” while the
majority of stations to the east lie in the “extensive quadrant” [30, 4, 5]. It
is likely that this also a↵ects the seismic waveform in a way that is reflected
by the sonified seismograms, but the available data do not yet allow us to480

make any strong inferences on this issue, which will have to be explored with
ad-hoc experiments.

6. Conclusions and future work

Our analysis shows that listeners perceive “clues” in sonified seismic sig-
nals, and use such clues to try to discriminate them. While the number of485

listeners is too small for a rigorous statistical analysis, there are clear simi-
larities between the responses of di↵erent listeners.

The way subjects categorize sonified seismic events seems to be consis-
tent with some physical properties of these events. The tree analysis (Fig.10)
showed that, to a first approximation, the groups are defined according to490

the epicenter-station distance. This is presumably related to the auditory
discrimination of P- and S-wave onset times. There are, however, exceptions
to this grouping strategy, suggesting that the subjects make use of other clues
in the signal in order to perform the categorization task. The central par-
tition analysis (Fig. 11) shows that the average categories (computed from495

all subjects) are well explained in terms of geographical and geological simi-
larities: the average categories tend to group together stimuli from stations
which are close one to another (in Fig. 11 we see more “lumped” groups than
“scattered” groups). This is in agreement with the fact that source-receiver
azimuth, underlying Earth structure, station elevation all a↵ect the seismic500

waveform, and thus its sonified counterpart.
In summary, we have found that the e↵ects of several physical parameters

that a↵ect a seismic waveform can also be identified, by the human auditory
system, in sonified seismograms. Disentangling the role of each parameter
is a nontrivial problem requiring further work. We shall address it by new505

experiments, using “synthetic” seismic waveforms based on very simple theo-
retical seismic models; controlled-source (rather than earthquake) data from
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a particularly homogeneous region could also be employed. We plan to form
a database of “seismic sounds” that only di↵er by one or few, well-known
parameters; the sensitivity of listeners to each parameter/combination of pa-510

rameters will thus be quantified. The performance of listeners at specific
tasks will serve to evaluate more precisely the applicability of auditory anal-
ysis to real seismic signals.

Plans for future work include the application of current auditory scene
synthesis [51, 52, 53] techniques to seismic sonification, representing the seis-515

mic wave field by a three-dimensional soundscape in which listeners can move
freely, making use of a set of simultaneous seismic records from a dense broad-
band array. It can be envisaged that the location of a receiver in real space
will define that of a source in virtual space, and seismic wave propagation
observed in areas that are well covered by seismic instruments will be rep-520

resented fairly accurately by a synthesized soundscape. The spatialization
can be achieved by current spatial audio technology, or even binaurally if the
listener’s HRTF (head-related transfer function) is convolved with the syn-
thesized sounds, while the listener’s motion is tracked in real time to render
the soundfield according to his/her viewpoint and orientation. The ability525

to explore the seismic wave field in three dimensions will facilitate auditory
analysis and presumably lead to better performance [54, 55].
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