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Abstract

Wasserstein barycenters and variance-like criterion using Wasserstein distance are used
in many problems to analyze the homogeneity of collections of distributions and structural
relationships between the observations. We propose the estimation of the quantiles of the
empirical process of the Wasserstein’s variation using a bootstrap procedure. Then we use
these results for statistical inference on a distribution registration model for general deforma-
tion functions. The tests are based on the variance of the distributions with respect to their
Wasserstein’s barycenters for which we prove central limit theorems, including bootstrap
versions.
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1 Introduction

Analyzing the variability of large data sets is a difficult task when the information conveyed by
the observations possesses an inner geometry far from the Euclidean one. Indeed, deformations
on the data such as translations, scale location models for instance or more general warping
procedures prevent the use of the usual methods in statistics. Looking for a way to measure
structural relationships between data is of high importance. This kind of issues arises when
considering the estimation of probability measures observed with deformations. This situation
occurs often in biology, for example when considering gene expression. There has been over the
last decade a large amount of work to deal with registrations issues. We refer for instance to
i ), |Allasonniere, Amit and Trouvé (2007) or Ramsay and Silverman (2005) and
references therein. However, when dealing with the registration of warped distributions, the
literature is scarce. We mention here the method provided for biological computational issues
known as quantile normalization in [Bolstad et all (IMH), Gallon, Loubes and Maza (IM) and
references therein. Recently, using optimal transport methodologies, comparisons of distribu-
tions have been studied using a notion of Fréchet mean for distributions, see for instance in
) or a notion of depth as in (Chernozhukov et all (2014).

A natural frame for applications is given by observations drawn from a deformation model
in the sense that we observe J independent samples of random variables in R, with sample j
following distribution p;, such that

Xi,j:gj(gi,j)a jzl,...,J, z'zl...,n,

where (g; ;) are i.i.d. random variables with unknown distribution p. The functions g; belong
to a class G of deformation functions, which models how the distributions ;s can be warped
one to another by functions in the chosen class. This model is the natural extension of the
functional deformation models studied in the statistical literature for which estimation pro-

cedures are provided in |Gamboa, Loubes and Maza (Iﬂlﬂ while testing issues are tackled in
Collier and Dalalyan (IZQIH In the setup of warped distributions a main goal is the estimation

of the warping functions, possibly as a first step towards registration or alignment of the (esti-
mated) distributions. Of course, without some constraints on the class G the deformation model
is meaningless (we can, for instance, obtain any distribution on R? as a warped version of a fixed
probability having a density if we take the optimal transportation map as the warping function;
see m, )) and one has to consider smaller classes of deformation functions to perform a
reasonable registration. In the case of parametric classes estimation of the warping functions is
studied in [Agullé-Antolin et all (IZQIE) However, estimation/registration procedures may lead
to inconsistent conclusions if the chosen deformation class G is too small. It is, therefore, im-
portant to be able to assess fit to the deformation model given by a particular choice of G and
this is the main goal of this paper. We note that within this framework, statistical inference on
deformation models for distributions has been studied first in [Freitag and MunK (2005). Here
we provide a different approach which allows to deal with more general deformation classes.
The pioneer works|Czado and Munk (ILM) and Munk and Czadd M) study the existence
of relationships between distributions F' and G by using a discrepancy measure between the dis-
tributions, A(F, G), built using the Wasserstein distance. The authors consider the assumption
A(F,G) > Ag versus A(F,G) < A for Ag a chosen threshold. Thus when the test is rejected,
this implies that there is a statistical evidence that the two distributions are similar with re-
spect to the chosen criterion. In this direction, we define a notion of variation of distributions
using the Wasserstein distance, W,., in the set of probability measures with finite r-th moments,
W,(R%), r > 1, which generalizes the notion of variance for random distributions over R¢. This




quantity can be defined as
1/r

J
1
Vi (1, .-y ey inf —E , ,
T(lu’ lu’) nGWTRd J : lu’]

which measures the spread of the distributions. Then, to measure closeness to a deformation
model we take a look at the minimal variation among warped distributions, a quantity that
we could consider as a minimal alignment cost. Under some mild conditions a deformation
model holds if and only if this minimal alignment cost is null and we can base our assessment
of a deformation model on this quantity. As in|Czado and MunK (ILM) and [Munk an

) we provide results (CLT’s and bootstrap versions) that enable to reject that the minimal
alignment cost exceeds some threshold (hence, to conclude that it is below that threshold). Our
results are given in a setup of general, nonparametric classes of warping functions. If, still, one
is interested in the more classical goodness-of-fit problem for the deformation model we also
provide results in a somewhat more restrictive setup.

The paper is organized as follows. The main facts about Wasserstein variation are presented
in Section 2, together with the key idea that fit to a deformation model can be recast in terms of
the minimal Wasserstein variation among warped versions of the distributions. Later, in Section
3 we prove some Lipsichtz bounds for the law of empirical Wasserstein variations as well as of
minimal alignment costs on R%. The implications of these results include that quantiles of the
minimal warped variation criterion can be consistently estimated by some suitable bootstrap
quantiles, which can be approximated by simulation, yielding some consistent tests of fit to
deformation models, provided that the empirical criterion has some regular limiting distribution.
This issue, namely, Central Limit Theorems for empirical minimal Wasserstein variation is
further explored for univariate distributions in Sections 4, covering non parametric deformation
models, and 5, with a sharper analysis for the case of semiparametric deformation models. These
sections propose consistent tests for deformation models in the corresponding setups. Section 6
provides some simulations to assess the quality of the bootstrap procedure. Finally, proofs are
postponed to Section 7.

2 Wasserstein variation and deformation models for distribu-
tions

Much recent work has been conducted to measure the spread or the inner structure of a collection
of distributions. In this paper we define a notion of variability which relies on the notion of
Fréchet mean for the space of probability endowed with the Wasserstein metrics, of which we
will recall the definition hereafter. First, for d > 1, consider the set W. (Rd) of probabilities
with finite r-th moment. For g and v in W, (]Rd), we denote by II(u, v) the set of all probability
measures 7 over the product set R? x R? with first (resp. second) marginal y (resp. v). The L,
transportation cost between these two measures is defined as

Wiuw) = _int /||:c—yu dn(z.y).

This transportation cost allows to endow the set W, (Rd) with the metric W, (i, v). More details
on Wasserstein distances and their links with optimal transport problems can be found in

(1984) or [Villani (2009) for instance.




Within this framework, we can define a global measure of separation of a collection of mea-
sures i, j = 1,...,n, as follows. Given probabilities j1,...,us € W, (R?) let

_ 1 1r
Ve, = ok (J;wr (. m)
be the Wasserstein r-variation of p1, ...,y or the variance of the p;’s.

The special case r = 2 has been studied in the literature. Existence of a minimizer of
the map n %E}-le W3(uj,n) is proved in 'Agueh and Carlier (IZQIJJ), as well as uniqueness
under some smoothness assumptions. Such a minimizer, up, is called a barycenter or Fréchet
mean of fi1, ..., uy. Hence, Vo (p1,... 1) = (& S W2(1;, up))'/?. Empirical versions of the
1iﬁ%emer are analyzed inBoissard, Le Gouic and Loubes ) orlLe Gouic, T and Loubes, J-M)

). Similar ideas have also been developed in|Cuturi, M. and Doucet, Al (2!!14) or Bigot and Klein
).

This quantity, which is an extension of the variance for probability distributions is a good
candidate to evaluate the concentration of a collection of measures around its Fréchet mean. In
particular, it can be used to measure fit to a distribution deformation model. More precisely,
assume as in the Introduction that we observe J independent i.i.d. samples with sample j,
Jj=1,...,J consisting of i.i.d. observations X; ;, ¢ = 1,...,n with common distribution ;. We
change for later convenience the notation in the Introduction. We assume that G; is a family
(parametric or nonparametric) of invertible warping functions and denote G = Gy x --- x G.
The deformation model assumes then that

there exists (¢7,...¢7) € G and i.i.d. (& ;)1<i<n such that
1<j<J

Xij=(¢)) (eiy) V1<5<J (2.1)

Equivalently, the deformation model ([ZI)) means that there exist (¢7,...¢%) € G such that
;(Xij), 1 <4 < J, 1 <i<mn,areall iid. or, if we write u;(p;) for the distribution of
©;(X; ), that there exists (¢7,...¢%) € G such that

p(er) = -+ = pa(ey)- (2.2)

We propose to use the Wasserstein variation to measure fit to model ((21)), through the
minimal alignment cost

An(G) = inf VI (uaer), - pma(es)) - (2.3)
(P1,--07)EG

Let us assume that pq(@1),...,pms(01), (01,...,05) € G are in W,.(R%). If the deformation
model (2] holds then A,(G) = 0. Under the additional mild assumption that the minimum in
[23) is attained we have that the deformation model can be equivalently formulated as

A.(G)=0 (2.4)
and a goodness-of-fit test to the deformation model becomes, formally, a test of
Ho: A.(G)=0 wvs. Hg: A.(G) >0. (2.5)
A testing procedure can be based on the empirical version of A,.(G), namely,

Anp(G) = inf VI (pna(e1),- o pin,a () (2.6)
(le---vﬂﬁJ)eg



where p, j(p;) denotes the empirical measure on ¢;(X1;),...,¢;(X, ;). We would reject the
deformation model (Z.1]) for large values of A,, ,.(G).

As noted in (Czado and Munk (1998) or [Munk and Czadd (1998) the testing problem (23
can be considered as a mere sanity check for the deformation model, since lack of rejection of
the null does not provide statistical evidence that the deformation model holds. Consequently,
as in the cited references, we will also consider the alternative testing problem

Hy: A(G) > Ao vs. Hg: A(G) < Ay, (2.7)

where Ay > 0 is a fixed threshold. With this formulation the test decision of rejecting the null
hypothesis implies that there is statistical evidence that the deformation model is approximately
true. In this case rejection would correspond to small observed values of A, ,(G). In later
sections we provide theoretical results that allow the computation of approximate critical values
and p-values for the testing problems (23] and (2.7)) under suitable assumptions.

3 Bootstraping Wasserstein’s variations

We present now some general results on Wasserstein distances that will be applied to estimate
the asymptotic distribution of the minimal alignment cost statistic, A,, ,(G), defined in (2Z.6]). In
this section, we write £(Z) for the law of any random variable Z. We note the abuse of notation
in the following, in which W, is used both for Wasserstein distance on R and on R¢, but this
should not cause much confusion.

Our first result shows that the laws of empirical transportation costs are continuous (and
even Lipschitz) functions of the underlying distributions.

Theorem 3.1. Set v,V n probability measures in W, (Rd) ,Y1,....Y, i.i.d. random vectors with
common law v, Y{,..., Y}, ii.d. with law V' and write v, v), for the corresponding empirical
measures. Then

Wr(ﬁ(WT’(Vny 77))7 ﬁ(WT’(Vrlw T,))) S WT(V7 V/)'

The deformation assessment criterion introduced in section 2 is basd on the Wasserstein r-

variation of distributions, V,.. It is convenient to note that V' (vq,...,vy) can also be expressed
as
Vi(v,...,vg) = inf /T(yl,...,yJ)dw(yl,...,yJ), (3.1)
well(vi,...,vy)
where II(vy, ..., vy) denotes the set of probability measures on R? with marginals v, ...,v; and
. J
T(y17 v 7yJ) = I, cpd % Zj:l ”y] - Z”T’
Here we are interested in empirical Wasserstein r-variations, namely, the r-variations com-
puted from the empirical measures vy, ; coming from independent samples Y1 j,...,Yy; ; of

iid. random variables with distribution v;. Note that in this case problem (BI) is a linear
optimization problem for which a minimizer always exists.

As before, we consider the continuity of the law of empirical Wasserstein r-variations with
respect to the underlying probabilities. This is covered in the next result.

Theorem 3.2. With the above notation

W:(ﬁ(VT(Vm,l"“vVnJ,J))vE(VT(V/ % J)))§

n171,. ’ nJ?

W;(Vj’yl‘)'

=
.Mk‘

1

J



A useful consequence of the above results is that empirical Wasserstein distances or r-
variations can be bootstrapped under rather general conditions. To be more precise, we take
in Theorem 3.1 v/ = v,,, the empirical measure on Y7,...,Y, and consider a bootstrap sample
Yy, ...,Y,, of iid. (conditionally given Yi,...,Y}) observations with common law v,. We
will assume that the resampling size m,, satisfies m,, — oo, m, = o(n) and write v}, for the
empirical measure on Y{*,...,Ys and L*(Z) for the conditional law of Z given Yi,...,Y,.
Theorem Bl now reads

Wi (LW (v, v), LWr (Y, V) < Wi (U, v).

mp?

Hence, if W,.(v,,v) = Op(1/r,) for some sequence r, > 0 such that r,, /r, — 0 as n — oo,
then, using that W,.(L(aX), L(aY)) = aW,(L(X),L(Y)) for a > 0, we see that

Wi (L (o, W02, 0))s L W (Ui ) < 2220 Wi (0, 1) — O (3.2)

)
Tn

in probability.

Asume that, in addition, r, W, (v,,v) — 7 (v) for a smooth distribution v (v). Then (see,
e.g., Lemma 1 in Janssen and Pauld (2003)) if é,(c) denotes the o quantile of the conditional
distribution £*(ry,, W, (v, ,v))

Mp?

P (r,W,(vp,v) < ép(a)) - a asn — oo. (3.3)

We conclude in this case that the quantiles of r,, W, (v, ) can be consistently estimated by the
bootstrap quantiles, ¢é,(a), which, in turn, can be approximated through Monte-Carlo simula-
tion.

As an example, if d = 1 and r» = 2, under integrability and smoothness assumptions on v we

have /nWa(vy,v) — ( 01 %dt) 1/2, where f and F~! are the density and the quantile
function of v, see ldel Barrio, Giné and Utzet M), and ([3.3)) holds.

For the deformation model (ZII), statistical inference is based on A, ,(G), introduced in
([2.6). Now consider A;, ,.(G), the corresponding version obtained from samples with underlying
distributions ,ug. Then, a version of Theorem is valid for these minimal alignment costs,
provided the deformation classes are uniformly Lipschitz, namely, under the assumption that

L;:= sup ||(,09(l‘) — 90](33)”

x#Y,0;€G; ||$ - y”

. oi=1,...,J (3.4)

are finite.

Theorem 3.3. If L = max(Ly,...,L;) < oo, with L; as in (3.7)), then

J
W7 (E((An r(@)7), £(( A (G))V7) < L7 S W g 1),
j=1

Hence, the Wasserstein distance of the variance of two collections of distributions can be
controlled using the distance between the distributions. The main consequence of this fact is
that the minimal alignment cost can be also bootstrapped as soon as a distributional limit
theorem exists for A, ,(G), as in the discussion above. In sections 4 and 5 below we present
distributional results of this type in the one dimensional case. We note that, while general
central limit theorems for the empirical transportation cost are not available in dimension d > 1,
some recent progress has been made in this line, see, e.g., BMMJM_&M (IM) for
Gaussian distributions and [Sommerfeld and Munk (2016), which gives such type of results for
distributions on R? with finite support. Further advances in this line would enable to extend
the results in the following section to higher dimension.




4 Assessing fit to non-parametric deformation models

We focus in this and the next sections on the case d = 1 and r = 2 and will simply write A(G) and
A, (G) (instead of A2(G) and Az, (G)) for the minimal alignment cost and its empirical version,
defined in ([Z3) and (Z6). Otherwise we keep the notation in section 2, with Xy ;,..., X, ;
iid. r.v.s with law p; being one of the J independent samples. Now G; is a class of invertible
warping functions from R to R which we assume to be increasing. We note that in this case
the barycenter of a set of probabilities pq, ..., us with distribution functions Fi,..., Fy is the

probability having quantile function Fgl = §23‘]=1 Fj_l, see, e.g., [Agueh and Carlier (2011 ).

We observe further that 11;(p;) is determined by the quantile function ¢; o Fj_l. We will write

1 J
ij o Fj (4.1)

for the quantile function of the barycenter of u1(¢1),...,pus(¢s), while — will denote conver-
gence in distribution.

In order to prove a CLT for A, (G) we need to make assumptions on the integrability and
regularity of the distributions p; as well as on the smoothness of the warping functions. We
consider first the assumptions on the distributions. For each u;, j = 1,...,J, we denote its
distribution function by F;. We will assume that j; is supported on an (possibly unbounded)
interval in the interior of which F} is C? and F ]/ = f; > 0 and satisfies

Fj(@)(1-F; (2)) f; (=)

1 OE < 00, (4.2)
and, further, that for some g > 1
/ 1 ENCCEDE R (4.3)
CIGH))
and for some r > 4
E[|X;|] < cc. (4.4)

Assumption (£2)) is a classical regularity requirement for the use of strong approximations
for the quantile process, as in kl&rgmmd.ﬂm&lﬂ (l19_9_3 ) or del Barrio, Giné and Utzef (IZD_OE
Our proof relies on the use of these techniques. Then (A3]) and (£4]) are mild integrability
conditions. If F; has regularly varying tails of order —r (as, for instance, Pareto tails) then
both conditions hold (and also (£.2])) as long as r > 4 and 1 < ¢ < 2r/(r + 2). Of course the
conditions are fulfilled by distributions with lighter tails such as exponential or Gaussian laws
(for any q € (1,2)).

Turning to the assumptions on the classes of warping functions, we recall that a uniform
Lipsichtz condition was needed for the approximation bound in Theorem For the CLT
in this section we need some refinement of that condition, the extent of which will depend

on the integrability exponent ¢ in (43]), as follows. We set pg = max (qiil, 2) and define on

1
H; = CYHR) N LP° (X;) the norm th”?—tj = sup |7 (z)| + E[|h; (X;)["’]?0 , and on the product
space Hy X --- X Hy, [|h]ly = Z}-Izl thHHj and assume that

Gj C M; is compact for || - |3, and sup |h'(z)) — B (z)
heg;

— 0, (4.5)

SUPheg; |xh —z|—0



and, finally, that for some r > max(4,py),

E sup |h (X;)]" < . (4.6)
heg;

We note that (4.0)) is a slight strengthening of the uniform moment bound already contained
in (5] (we could take py > max(;%3,4) in [5) and (E6) would follow). Our next result gives

a CLT for A,,(G) under the assumptions on the distributions and deformation classes described
above. The limit can be simply described in terms of a centered Gaussian process indexed by
the set of minimizers of the variation functional, namely,

Ulp) = Vi (u1(er), - ().

An elementary computation shows that (U'/2(p) — UY?($))? < %ijl E(p;(X;) — ¢5(X;))?,

from which we conclude continuity of U with respect to || - ||. In particular, the set
= {¢ €G: Ulp) = inf U(qﬁ)} (4.7)
$EG

is a nonempty compact subset of G.
Theorem 4.1. Assume that (Bj)1<j<J are independent Brownian bridges. Set

B,

1
cj(p) = 2/0 o Fil(pjo Bt — Fél(sﬁ))m
J J

and C(p) = §Zj=1 ci(p), ¢ € G. Then, under assumptions ({7.2) to [{{-0), C is a centered

Gaussian process on G with trajectories a.s. continuous with respect to || - ||3. Furthermore,
Vi(dn(G) — A(G)) — minC(p).
A proof of Theorem HTl is given in the Appendix below. The random variables fol cp; o
Fj_1 fjﬁ%l (pjo Fj_1 — F5'(p)) are centered Gaussian, with variance

/[0 i) = st) L (o3 (B (9) - Fi(2)(8)
gy (o3 (F7 (5)) = F (9)(s))dsat

In particular, if U has a unique minimizer the limiting distribution in Theorem [1] is normal.
However, our result works in more generality, even without uniqueness assumptions.

We remark also that although we have focused for simplicity on the case of samples of equal
size, the case of different sample sizes, nj, j = 1,...,J, can also be handled with straightforward
changes. More precisely, let us write A, (G) for the minimal alignment cost computed from
the empirical distribution of the samples and assume that n; — +oo and

n] 2
—— > (v)" >0
n1+"'+nJ (7)) ’
then with straightforward changes in our proof we can see that

e (A (9) — A@)) = min (), (43)



where C(p) = %ijl ¢i(p) and ¢;(p) = (Hp;,gj’yp)cj(gp).

If we try, as argued in section 2, to base our assessment of fit to the deformation model
@) on A,,(G), we should note that the limiting distribution in Theorem [£.1] depends on the
unknown distributions ; and cannot be used for the computation of approximate critical values
or p-values without further adjustments. We show now how this can be done in the case of the
testing problem (2.7), namely, the test of

Hy: A(G) > Ao vs. Hy: A(G) < Ao,

for some fixed threshold Ag > 0, through the use of a bootstrap procedure.

: * * .. .
Let us consider bootstrap samples X1,j= . 7an,j of i.i.d. observations sampled from p, ;,
the empirical distribution on Xij,..., X, ;. We write p;, . for the empirical measure on
* * .
X{j s X5, ; and introduce

Ay, (G) = inf V3 (i, 1(01), -+ i 5 (#0))-
peg

Now, we base our testing procedure on the conditional a-quantiles (given the X ;’s) of \/m, (A}, (G)—
Ayp), which we denote é,(c; Ag). Our next result, which follows from Theorems B3] and A1
shows that the test that rejects Hy when

VI(An(G) — Ag) < énla; Ag)

is a consistent test of approximate level a for ([27). We note that the bootstrap quantiles
én(a; Ag) can be computed using Monte-Carlo simulation.

Corollary 4.2. If m,, — oo, and m, = O(y/n), then under assumptions {{.3) to (4-6))

0 ifAG) > A
P(Vi(An(G) — Ag) < n(a5A0)) = a0 if A(G) = Ag (4.9)
1 if AG) < Ag

Rejection in the testing problem (2.7 would result, as noted in section 2, in statistical evi-
dence supporting that the deformation model holds approximately (hence, that related registra-
tion methods can be safely applied). If, nevertheless, we were interested in gathering statistical
evidence against the deformation model then we should consider the classical goodness-of-fit
problem (2.5). Some technical difficulties arise then. Note that if the deformation model holds,
that is, if A(G) = 0, then we have ¢; o Fj_1 = F5'(y) for each ¢ € T', which implies that the
result of Theorem [£.1] becomes

VA (G) = 0.

Hence, a nondegenerate limit law for A, (G) in this case requires a more refined analysis, that
we handle in the next section.

5 Goodness-of-fit in semiparametric deformation models

In many cases, deformation functions can be made more specific in the sense that they follow a
known shape depending on parameters that may differ for sample to sample. In our approach
to the classical goodness-of-fit problem (Z5]) we consider a parametric model in which ¢; = ©p;
for some finite dimensional parameter ¢; that describes the warping effect within a fixed shape.



Now, that the deformation model holds means that there exist 6* = (7,...,0%) such that for
1<i<n1<j<J,
Xij = ‘Pe_;l (€i5) -

Hence, from now on, we will consider the following family of deformations, indexed by a param-
eter A € A C RP:
p:AXxR — R

(A, x) = oy ()

The classes G; become now {py, : 0; € A}. We denote © = A7 and write A,(©) and A(O)
instead of A,(G) and A(G). We also use the simplified notation 1;(6;) instead of p; (gpgj),
Fp () for Fg (e, ,---,ve,) and similarly for the empirical versions. Our main goal is to prove
a weak limit theorem for A, (©) under the null in (Z.3]). Therefore, throughout this section we
assume that model (21]) holds. This means, in particular, that the quantile functions of the
samples satisfy Fj_1 = 4,00_;1 o G~1, with G the d.f. of the €ij’s. As before, we assume that the

warping functions are invertible and increasing, which now means that, for each A € A, ¢, is an
invertible, increasing function. It is convenient at this point to introduce the notation

1/}]'()‘7‘%) = (:0)\((:09_;1(‘%))7 J=1.. J (51)

and ¢ for a random variable with the same distribution as the ¢; ;. Note that ¢;(07,2) = =.
Now, under smoothness assumptions on the functions v; that we present in detail below, if
the parameter space is compact then the function

Un(r,....05) = V5 (1 (01),- .., tin,s(0))

admits a minimizer, that we will denote by 6, that is

0, € argmin U, (6). (5.2)
/e

Of course, since we are assuming that the deformation model holds, we know that 6* is a
minimizer of

U(b,...,00) = Vs (@ (61), -, s (01)).

For a closer analysis of the asymptotic behavior of A, (0) under the deformation model we need
to make the following identifiability assumption

0" belongs to the interior of A and is the unique minimizer of U. (5.3)

Note that, equivalently, this means that #* is the unique zero of U.

As in the case of nonparametric deformation models, we need to impose some conditions on
the class of warping functions and on the distribution of the errors, the ¢; ;. For the former,
we write D or D, for derivative operators with respect to parameters (hence, for instance,
Dyj(\,xz) = (D1Y;(\, z), ... ,Dpwj()\,x))T is the vector consisting of partial derivatives of 1);
with respect to its first p arguments evaluated at (A, x); D%1;(A\,2) = (Dy,p15 (A, )y, is the
hessian matrix for fixed z and so on). w;-()\,x) and similar notation will stand for derivatives

with respect to z. Then we will assume that for each j = 1,...,J, u,v = 1,...,p, and some
r >4
¥;(-, ) is C2, (5.4)
E[supwj()\,s)‘r] < 00, E[sup|Duwj()\,a)|r] < 00, E[sup‘Du,vl/Jj()\,a)m < oo, (5.5)
AEA AEA AEA

10



and

supkeA’xi‘L—x’—)O

Y5(-,-) is bounded on A x R and  sup 1/1;-()\,:55;) —¢5(\ ) > 0. (5.6)
AEA

Turning to the distribution of the errors, we will assume that G is C? with G’(z) = g(x) > 0

on some interval and ,
G(z) (1 -G(z)) g (x)

sup < 00. 5.7
z g(x)? 67)
Additionally (but see the comments after Theorem [B.1] below) we make the assumption that
1
t(1—1)
——————dt < cc. (5.8)
/o g° (G=1(1))

Finally, before stating the asymptotic result for A4, (©), we introduce the p x p matrices

Bii = / D07, G (1))s(67, G ()T,
Sy = - / Des(07, G ()05, G ()t i 4
and the (pJ) x (pJ) matrix
Y11 0 Xy
Y= : s (5.9)
Yoo Xgg
Y. is a symmetric, positive semidefinite matrix. To see this, consider zi1,...,z; € RP and
zT =[27,...,2%] and note that

2 1
VS = / (20— 1) - D67, G (1))

7

= 2 (i D07, G (0) ;- Dy (65, G (1)) e
= ] S D 01.67 0) (o Dy 65,67 )P > .

In fact, X is positive definite, hence invertible, apart from some degenerate cases, For instance,
if p=1, ¥ is invertible unless all the functions D;y;(6, G~*(t)) are proportional.
We are ready now for the announced distributional limit theorem.

Theorem 5.1. Assume that the deformation model holds. Under assumptions [5.3) to (5.7
0, — 0
in probability. If, in addition, ® is invertible, then
Vi, —0%) = 7Y,

where Y = (Y{£, ..., YT with

2 [N e o ‘
_j/o Dwy(ej’G (t))g(G—l(t))dt’

11



B; = Bj — % 2i=1 By and (Bj), ;< ; independent Brownian bridges. Furthermore, if (Z8) also
holds, then o

I Yy B N2 1o
nAn(@)Aj;/o <goé_1> - SYTs .

We have to make a number of comments here. First, we note that, while, for simplicity, we
have formulated Theorem [5.1] assuming that the deformation model holds, the CLT for 6, still
holds (with some additional assumptions and changes in ®) in the case when the model is false
and 0* is not the true parameter, but the one that gives the best (but imperfect) alignment.
Since our focus here is the assessment of the deformation models we refrain from pursuing this

issue.

Our second comment is about the indentifiability condition (5.3]). At first sight it can seem
to be too strong to be realistic. Actually, for some deformation models it could happen that
P9 © Py = Yoy for some 0 x7 € O. In this case, if X;; = 4,0(;;1 (¢i;) with g ; i.i.d., then, for any 6,
Xij = o (8i ) with & ; = pg(e; ;) which are also i.i.d. and, consequently, (6 * 65,...,0  0%)
is also a Ze]ro of U. This applies, for instance, to location and scale models. A simple fix to
this issue is to select one of the signals as the reference, say the J-th signal, and assume that

% is known (since it can be, in fact, chosen arbitrarily). The criterion function becomes then

Ubh,...,05-1) = U(b1,...,0,-1,07). One could then make the (more realistic) assumption
that 6* = (0,...,0%_,) is the unique zero of U and base the analysis on Uy (61,...,05-1) =

Un(01,...,05-1,0%) and 0, = arg ming ﬁn(é) The results in this section can be adapted almost

verbatim to this setup. In particular, /n(f, — 6*) — L'V, with Y7 = (vf,...,YE ) and
Y= [Xijli<ij<s—1. Again, the invertibility of Y is almost granted. In fact, arguing as above,
we see that and ¥ is positive definite if the functions Dyi(0F,GL(t)),i=1,...,J — 1, are not
null.

Next, we discuss about the smoothness and integrability conditions on the errors. As before,
(57 is a regularity condition that enables to use strong approximations for the quantile process.
One might be surprised that the moment condition (4£.4]) does not show up here, but in fact it is
contained in (5.35)) (recall that ¢;(07, z) = z). The integrability condition (5.8) is necessary and

gg(g(if)f(mdt < oo (from which we see that the limiting random variable

in the last claim in Theorem [5.1lis an a.s. finite random variable) and implies that

. . 1
sufficient for ensuring [,

1 B 2
3G~ | 92<G@<t>>

with G,, the empirical d.f. on a sample of size n and d.f G. We refer toldel Barrio, Giné and Utzetl

) and [Samworth and Johnsonl (2004) for details. Condition (@A) is a strong assumption
on the tails of G and does not include, for instance, normal distributions. On the other hand,
under the less stringent condition

ot (s Nt — st)?
| | we e (510

which is satisfied for normal laws, it can be shown that the limit as 6 — 0

=0 B(t)2 — t(1 —t)
T e o

dt,
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exists in probability and can be expressed as a weighted sum of independent, centered X1 random

variables, see MMM (Iﬂﬂ for details. Then, denoting that kind of limits

as 01 %dt, under some additional tail conditions (still satisfied by normal laws; these

are conditions (2.10) and (2.22) to (2.24) in the cited reference) we have

1 2 41
T e

with ¢, = fll/nl/ " %dt A simple look at the proof of Theorem 5.1 shows that under these
conditions (instead of (5.8])) we can conclude that

52 J—1

A, () — L, = Ly B S Ly Ty, (5.11)

Our last comment about the assumptions for Theorem [B.1] concerns the compactness as-
sumption on the parameter space. This may lead in some examples to artificial constraints on
the parameter space. On the other hand, under some conditions (see, e.g., Corollary 3.2.3 in
Van der Vaart and Wellnex] (ILM)) it is possible to prove that the global minimizer of the empir-
ical criterion lies in a compact neighborhood of the true minimizer. In such cases the conclusion
of Theorem [5.I] would extend for the unconstrained deformation model. As a toy example con-
sider the case of deformations by changes in scale, with J = 2. As above we fix the parameters
of, say, the first sample, and consider the family of deformations ¢, (x) = ocz. We assume that
the deformation model holds, with the first sample having d f. G and the second 1 _G~! (hence,

*

o™ is the unique minimizer of U(c)). We obtain that U, (o) = ; fo . 2) from which
we see that 6, = (an_lan_%)/( [(F3)?) — o as. and thus the conclusmn of Theorem [5.1]

n,

remains valid if we take © = (0,00). To avoid further technicalities we prefer to think of this as
a different problem that should be handled in an ad hoc way for each particular example.

Turning back to our goal of assessment of the deformation model ([2]) based on the observed
value of A, (©), Theorem [5.1] gives some insight into the threshold levels for rejection of the null
in the testing problem (2.5)). However, the limiting distribution still depends on unknown objects
and designing a tractable test requires to estimate the quantiles of this distribution. This is the
goal of our next result.

We consider bootstrap samples X7 ;,..., X, - of i.i.d. observations sampled from p7, write
[, ; for the empirical measure on X7 ;,..., X7 . and A}, (©) for the minimal alignment cost
computed from the bootstrap samples. We also erte cn( ) for the conditional a quantile of

mp Ay, () given the X ;.

Corollary 5.2. Assume that the semiparametric deformation models holds. If m, — oo, and
my/n — 0, then under assumptions [5.3) to (2.8) we have that

P(nA,(©) > é,(1 —a)) — a. (5.12)

Corollary [5.2] show that the test that rejects Hy : A(0) = 0 (which, as disussed in section 2,
is true if and only if the deformation model holds) when nA, (0©) > é,(1—«) is asymptotically of
level . It is easy to check that the test is consistent against alternatives that satisfy regularity
and integrability assumptions as in Theorem [G.11

The key to Corollary[5.2is that under the assumptions a bootstrap CLT holds for m,, 4}, (©).
As with Theorem [B.1] the integrability conditions on the errors can be relaxed and still have
a bootstrap CLT. That would be the case if we replace (0.I12) by (5.I0) and the additional
conditions mentioned above under which (5IT]) holds. Then, the further assumption that the
errors have a log-concave distribution and m,, = O(n”) for some p € (0,1) would be enough to
prove a bootstrap CLT, see the comments after the proof of Corollary in the Appendix. In
particular, a bootstrap CLT holds for Gaussian tails.

13



6 Simulations

We present in this section different simulations in order to study the goodness of fit test we
propose in this paper. In this framework, we consider the scale-location family of deformations,
i.e 0" = (u*,0") and observations such that X;; = pu} + oje; 5, for different distributions of ¢; ;.

6.1 Construction of an a-level test

First, we aim at studying the bootstrap procedure which enables to build the test. For this we
choose a level a = 0.05 and aim at estimating the quantile of the asymptotic distribution using
a bootstrap method.

Let B be the number of bootstrap samples, we proceed as follows to design a bootstrapped
goodness of fit test.

1. Forallb=1,...,B,

1.1. For j =1,...,J, create a bootstrap sample Xibj, e ,X*b with fixed size 0 < m < n,

m?]’
of the first observation sample X1 ;,..., X, ;

1.2. Compute (uﬂb’)2 = ein(g Uz(6).
€

2. Sort the values (ufff)2,b =1,...,B,

(@5”)2 <...< (ufr(bB))z,

then take ¢, (1 — a) = u:,gB(l_a)), the 1 — « quantile of the bootstrap distribution of the
statistic inf U, ().
0O
2
3. The test rejects the null hypothesis if nu2 > m <uf,§B(1_a))) .

Once the test is built, we first ensure that the level of the test has been correctly achieved.
For this we repeat the test for large K (here K = 1000) to estimate the probability of rejection

of the test as
K

1
Pn= K ; 1(nuiyk>m<u;£i(1*a)))2> :
We present in Table [l these results for different J and several choices for m = m,, depending on
the size of the initial sample.

As expected, the bootstrap method enables to build a test of level o provided the bootstrap
sample is large enough. The required size of the sample increases with the number of different
distributions J to be tested.

6.2 Power of the test procedure

Then we compute the power of previous test for several situations. In particular we must
compute the probability of rejection of the null hypothesis under H,. Hence for several number
of distributions, we test the assumption that the model comes from a warping frame, when
a different distribution called ~ is observed. The simulations are conducted for the following
choices of the number of sample and for the different distributions;

14



e J=2:N(0,1) and ~;
o J=3:N(0,1), N (5,22) and ~;
o J=5:N(0,1), N (522), N(3,1), N (1.5,3%) and v;

e J=10: N(0,1), N (5,22), N (3,1), N (1.5,3%), N (7,4%), N (2.5,0.5%), N (1,1.5%),
N (4,3%), N (6,5%) and ~;

and also for different choices of ~.
e Exponential distribution with parameter 1;
e Double exponential with parameter 1 (a.k.a Laplace distribution);
e Student distribution 7'(3) and 7'(4) with 3 and 4 degrees of freedom.

All simulations are done for different sample sizes and different bootstrap samples, n and
my,. The results are presented in Tables 2], Bl Ml and Bl respectively.

We observe that the power of the test is very high in most of the cases. For the Exponential
distribution, the power is close to 1. Indeed this distribution is very different from the Gaussian
distribution since it is not symmetric, resulting easy to discard the null assumption. The three
other distributions do share with the Gaussian the property of symmetry, and yet the power
of the test is also close to one, increasing with the number of observations. Finally, for the
Student’s distribution, the higher the number of degrees of freedom, the more similar it becomes
to a Gaussian distribution. This explains why it becomes more difficult for the test to reject the
null hypothesis when using a Student with 4 degrees of freedom rather than with 3.

7 Appendix

7.1 Proofs for section 3

PrOOF OF THEOREM Bl We set T,, = W,.(vy,n) and T), = W,(v},,n) and IL,(n) for the set

of probabilities on {1,...,n} x R? with first marginal equal to the discrete uniform distribution
on {1,...,n} and second marginal equal to n and note that we have T, = inf ¢, ;) a(m) if we
denote

1/r
am) = ( / v; —z||fd7r<z',z>) |
{1,....,n} xR

We define similarly o'(7) from the Y/ sample to get T}, = inf cpr, () o’ (7). But then, using the
inequality |[|al| — [[[]] < [la — b],

1/r n
1
a(m) —d (7)) < / Y; - Y/ ||["drn (i, 2 =| - Y; - Y/|"
la(m) — a'(7)] ( P | |"dm( )) (n; | ||>

This implies that

1/r

1 n
To =T < =D Vi =Y/|I"
1=1
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If we take now (Y,Y’) to be an optimal coupling of v and v/, so that E[||]Y —Y'|"] =
W (v,v') and (Y1,Y),...,(Yn,Y,) to beii.d. copies of (Y,Y”) we see that for the corresponding
realizations of T, and T, we have

E(|T, - T ZE 1Y; = Y/|I"] = Wi (v,v/)".

But this shows that W,.(L(T,), L(T})) < W,(v,v'), as claimed.

O
ProoF OF THEOREM B.2] We write V,.,, = Vi(Vny 1, -+ Vny ) and V), = VT(V;HJ, .. ,I/;UJ).
We note that
V' =  inf /T11 dr(iy, ... i),
= o™t L (i1 Jg)dm (i1 7)
where Uj is the discrete uniform distribution on {1,...,n;} and T'(i1,...,i5) = min,cga 5 ZJ 1Y,
—z||". We write T"(i1,...,iy) for the equivalent functlon computed from the Y/;’s. Hence we
have
1
T (i1, .., i)Y =T, ... i)Y < 5 Z i = Yl

which implies

(/T(il,...,Z'J)dﬂ(il,..,,i])>1/7“_ </T(z’l,...,iJ)dw(z'l,...,z'J)>1/r

1 . .
= /jZH 1] i/j,jHTdﬂ-(Zl?’”sz)
1< 1 &1
SR )07 [ EREIHCETIAEE ol €5 oH Ny
j=1 i=1

J=1

T

<

So,
1< (1
Vi = Vil < 7 Z <—Z 1Y — YM’“) '

If we take (Y;,Y) to be an optimal coupling of vj and v and (Y15, ), ..., (Ya, j, Y’ ;) to be

Jr 5y
i.i.d. copies of (Y],Y]) for j =1,...,J, then we obtain
1 J 1 J
B Vo~ Vil < 23 ( ZE Vi = Y1 ) LS W)
J=1 j=1

The conclusion follows.

PrROOF OF THEOREM [3.3l We argue as in the proof of Theorem and write

Ay, (G) = inf [ inf )/T(go; il,...,iJ)dﬂ(il,...,iJ)] ,

peg well(Un,...,Uy
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where T'(;i1,... i) = mingep + 23-]:1 1Zi; i (0j) —yll". We write T"(;i1, ..., i) for the same
function computed on the Z; ;(¢;)’s. Now, from the fact [|Z; ;(¢;) = Z] ; ()" < L"| X35 — X, 51"
we see that

J
T (@31, i) T =T (i, i) T| < L' > Iy = Xl
i=1

and, as a consequence, that

j

J
1
Vi (pin1 (1), -+ s i, (0.0)) = Vil 1 (1), -y i, g (00)|" < == Z Z — XG5 = X 4lI"
j=li;= J

which implies

J

(Anr )7 = (A1, (@) < =57 (& S50 X = XL,117)

J=1

If, as in the proof of Theorem 3.2} we assume that (X;;,X];), i = 1,...,n; are i.i.d. copies
of an optimal coupling for p; and ,u;-, with different samples mdependent from each other we
obtain that

E [|(Anr @)Y — (4,@)] < & Zwr o 1)

7.2 Proofs for sections 4 and 5

We provide here proofs of the main results in sections 4 and 5. Our approach relies on the
consideration the processes

J
C(9) = Vn(Un(p) = U(p)) and C(p Z ), ¢€g, (7.1)

K«I)—‘

where Up () = V& (bn1(01), - - - in,g (1)), U(p) = VE(pa(e1), -, ms(e)),
! / 1 1 1 Bj

(p) =2 o F N0 FTY — F it

o) =2 e oo B - B (0

and (Bj), < ; are independent standard Brownian bridges on (0,1). We prove below that the
empirical deformatlon cost process C,, converges weakly to C' as random elements in L>°(G),
the space of bounded, real valued functions on G. Theorem [Z] will follow as a corollary of this
result.

We will make frequent use in this section of the following technical Lemma, which follows
easily from the triangle and Holder’s inequalities. We omit the proof.

Lemma 7.1. Under Assumption (4.0)
1
. L - 1 -
i) supy,eg, V[ (s 0 F; H2 o0, SUpy, eg; \/ﬁfl_%(goj o F} h2 0.
1
.. - — 1 — . ..
it) supy, g, Vv [ (e 0 anl)2 — 0, sup,, g, \/ﬁfl_%(cpj o Fnjl)2 — 0 n probability.
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iii) If moreover (7.3) holds then for all 1 < j, k < .J

L/t —1)
/ (_1 sup |¢; (F ‘dt < 00 (7.2)
o Jk(F) ) i€G;

Theorem 7.2. Under assumptions ({{.3) to{f-0) Cn and C have a.s. trajectories in L*(G).
Furthermore, C' is a tight Gaussian random elemnt and C,, converges weakly to C' in L*(G).

Proor. We start noting that U,(¢) = 5 ZJ 1 fo gpjoF ! F;}B(gp))z and U(p) = %ijl Ol(cpjo
Fj_l—Fgl(gp))2 with Fn_’}g(gp) = % ijl gpjan], Fg L ) % E}'le gpjon_l. Now, (4.6]) implies

that sup, g, fol(gojOFj_l)2 < oco. Similarly, assumption ([@L.5) implies K := supy, cg. ze(c;.d,) [95(®)] <
oo. Noting that fol (pjoF _1 2< 2f01 (p]oF_1)2+2K2 fol _1 F._l)2 we see that sup,, ¢g, fol (pj0

F ]) < 0o a.s. and, Wlth httle additional effort, conclude that C), has a.s. bounded trajectories.

On the other hand, writing d; ;(¢) = fo @’ o FJ_ F .

gokOF we see that for ¢, p € G
< ! / ! Bk 1
0(0) = dialo)l <165 =il || 5 ron o B
1/ 1 By —1 —1
[ Bor oo o )

=
/f F—l"p’“OF ‘
k ©

_ _ 1/po
+(Sup |,0J <f0 |fkoF ‘ ) <f0 lor o Fy, ! — pr o Fy 1|Po)

CJ,

é H(p] p] |OO Sup
PrEGK

But using iii) of Lemma [T1]

NG —t
/ fx oF—1 Pk © / L) %‘Q;J |i0j (F (1)) dt < oo.

Hence, almost surely, sup%g ‘ fol %gpj on_l‘ < 00. Furthermore, from assumption (£3]), we
3%t

sup
PrEGK

get that, a.s. fo ( +)? < oo and thus, for some a.s. finite random variable T', |d; x, (¢) — dj i (p)| <

oF

T |l —pllg for ¢, p 6 G. From this conclude that the trajectories of C' are a.s. bounded, uni-

formly continuous functions on G, endowed with the norm ||-||; introduced in (£5). In particular,

C' is a tight random element in L>°(G), see, e.g., p. 39-41 in [Van der It an 1ln (ILM)
From this point we pay attention to the quantile processes, namely,

png(t) = Vil (FT ) E (1) — F7NE), 0<t<1, j=1,....J

A trivial adaptation of Theorem 2.1, p. 381 in b&rgmm_ﬂgmarﬂ (l19_9j) shows that, under

([@2)), there exist, on a rich enough probability space, independent versions of p,, ; and indepen-
dent families of Brownian bridges {B, j}n=100, j = 1,...,J, satisfying

1/ |Pnj(t) = Bn(t)] _ { (<10g(n>) ifv=0 (7.3)

su 7
1/n§t§11)—1/n (t(1—1)) O,(1)if0<v<1/2

We work, without loss of generality, with these versions of p,, ; and B,, j. We show now that

sup |C (@) — C’n(gp)‘ — 0 in probability (7.4)
peG
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o A 1 _ _ _ Bn
with Co(p) = 3 1 cnj () and enj(0) =2 fy & o (0 0 Fy ' = Fp' (9)) 5 5
J

this we note that some simple algebra yields Cy, () = % ijl Cn,j + % 23-]:1 Tn,; With
1
Cnyj = \/ﬁ/ (pjo Fyt —pjo Fi)(pjo Fit = Fgl(p),
0

1
g =V [ s 0 Bl =y o F7) = (Fb(e) = P (o)
From the elementary inequality (a1 + -+ ay)? < Ja} + --- + Ja?% we get that
J
1 - 4 4 _
=D g < \FZ/ joF,; —@joF; ! \FZK/ - F
j=1

with Kj 1= supy, cg. ve(c;.d;) |95(%)] < 00, as above. Now we can use ([€4) and argue as in the

proof of Theorem 2 in |Alyﬁmz;EsL£l1&uﬂ_aJJ (2008) to conclude that \/n fol(Fn_ ]1 — Fj_l)2 — 0
in probability and, as a consequence, that

1
sup |Cn(p) — = > nj (@) ‘ — 0 in probability. (7.5)

On the other hand, the Cauchy-Schwarz’s inequality shows that
z -1 —1 —1 -1 2
n( [ a0 Fig = wio s o B = Fyt(e)
1 1
< V[ T(pjo Byl — w0 FPV | (o By = Fpl()?
= n 0 (10‘] n,j (70,7 7 n 0 (10.] 7 B (70

and using i) and ii) of Lemma [l the two factors converge to zero uniformly in ¢. A similar
argument works for the upper tail and allows to conclude that we can replace in (Z.3)) ¢, ;(¥)

with &, () := 2\/_f "(pjoFy,; —pjo F’j_l)(gpj o Fj_1 — F5'(¢)). Moreover,

B,, ; _ _
771’)_ ‘ sup |( ‘ ) F FBl(cp))‘
fioF peg

1

E B, n

su Lo Ft— _(pioF 1 — Frt ‘<K/
p| [ o r ! e 1 - )] < K

peg 0

and by iii) of Lemma [J] and Cauchy-Schwarz’s inequality

E /
0
1 Bn]

Hence, sup,¢g ‘ fo pio Tf((pj ° Fj_l - Fgl(go))‘ — 0 in probability and similarly for the

B, w1 —
ol =] < [ g w0 F @0k~

right tail. Now, for every t € (O 1) we have
pj 0 F 1 (t) = @5 0 FH(t) = ¢ (K, (1)) (Fj (1) = F ' (1) (7.6)

for some K, o, () between Fn_; (t) and F~1(t). Therefore, (recall (Z.6))), to prove (Z.4) it suffices
to show that

(i (F; (1) = Fg'(o)(1))dt (7.7)



in probability. To check it we take v € (0,1/2) in (Z3]) to get

1-1 (4 — -
[, et sl aup g7 0) - P o))
n A c

Sn”‘iOP(l)/l miég‘gpj(ﬁ’j_l(ﬂ)—Fgl(gp)(tﬂdt—)() (7.8)

in probability (using dominated convergence and iii) of Lemma [[I). We observe next that,
for each t € (0,1), supy, g, [Kn,p, () — Fj_l(t)| — 0 a.s., since K, ,.(t) lies between Fn_jl(t)
and Fj_l(t). Therefore, using (3] we see that sup,, g, [} (Kny,(t) — gp}(Fj_l(t)] — 0 a.s.
while, on the other hand, sup,, cg. |¢}(Kn,p, (t)) — @;(Fj_l(tm < 2K;. But then, by dominated
convergence we get that

E[ sup [} (Kn, (1) = ¢(F (0)2] = 0,
®j€Y;

. = - - .
Since by iii) of Lemma [Tl we have that t — ﬁ sup,eg |5 (F; L)) — FBI(cp)(t)’ is inte-

grable we conclude that

1-1 iy
Eilég/ | (K (1)) — w&(ﬂ»‘%ﬂ)l%m(p]ﬂ(w) — F (o) (t)]dt

1
n

tends to 0 as n — oo and, consequently,

1-1 iy
sup o 6, () - w}(FJf1<t>>|%|wj<ﬂ-—l<t>> ~F (o))t

vanishes in probability. Combining this fact with (Z8]) we prove (7)) and, as a consequence,
(74]). Finally, observe that for all n > 1, C has the same law as C),. This completes the proof.
O

1
n

PROOF OF THEOREM Il From Skohorod Theorem (see, e.g., Theorem 1.10.4 inVan der It an 1In
(@)) we know that there exists on some probability space versions of (), and C for which
convergence of (), to C holds almost surely. From now on, we place us on this space and observe

that

Vn(An(9) = A(G)) < Vninf Uy — VninfU = inf Cu(p). (7.9)
Pt

On the other hand, if we consider the (a.s.) compact set Iy = {p € G : U(p) < infgU +
% |Crllo}s then, if ¢ ¢ Ty, Uy (@) > infgU + % |Crlls » while if ¢ € T', then, U, (¢) <
infg U + ﬁ |Cnl - Thus, necessarily, infg U,, = infr, U,, = infy, (U, — U + U) > infr, (U, —
U) +infp, U = infr, (U,, — U) + infp U. Together with (79]) this entails

inf Cn(p) < Vn(An(9) — A(G)) < inf Cn(e) (7.10)

pely el

Note that for the versions that we are considering ||C), — Clloc — 0 a.s.. In particular, this
implies that infr C,, — infp C a.s.. Hence, the proof will be complete if we show that a.s.

inf C;, = inf C. (7.11)
g r
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To check this last point, consider a sequence ¢, € I';, such that C,(y,) < infp, C, + % By
compactness of G, taking subsequences if necessary, @, — g for some ¢g € G. Continuity
of U yields U(pn) — Ul(pg) and as a consequence, that U(pg) < infg U, that is, pg € ' a.s..
Furthermore,

|Cn(en) = Clgo)| < 1Cn = Clls +1C (2n) = C (0)| = 0.
This shows that
lim inf illgf Cn > C (po) = iI%fC (7.12)
and yields (ZIT]). This completes the proof.
U

PROOF OF COROLLARY L2l In Theorem B3] take ; = pui, j. Then, writing £* for the condi-
tional law given the Xj ;, the result of Theorem [B.3] reads

J
51
W3 (LA, (9))12), £°((45,,(G)') jz W3 (15 im.5);

with L = sup,eg Hcp;H < 00. Since Wi(L(aX +b),L(aY + b)) = aW,(L(X),L(Y)) for a >
0,b € R, the last bound gives

W3 (L (/i (Am, (G = (AG))'/?)), £* (Vi (45, (G)'/? — <A<g>>1/2))>
< L mn Z \/7W2 (1455 b 7)-

As noted in the proof of Theorem [} the assumptions imply that /W3 (u;, pn ;) vanishes in
probability. Also, Theorem .1l and the delta method yield that

1

Vi (A, (O = (AO)) = g™

with v the limiting law there, which, combined to the above bound, shows that

. 1
Vi (45, G)'? = (AG)'?) = grrenim

in probability. A further use of the delta method yields

Vimn (A7,,(G) — A(G)) =7
in probability. The result follows now from Lemma 1 in Janssen and Pauls (2003). O

Proor orF THEOREM [B.1l We assume for simplicity that p = 1. The general case follows with
straightforward changes. Let us observe that

1 1
Un(0) =5 /0 (500, G ) = 5 ke ¥ (Or, G 1)),
j=1

with G, ; the empirical d.f. on the ¢; ;’s (which are i.i.d. G). A similar expression, replacing
G, ; with G is valid for U(#). Then (5.6]) implies that supg |Up,(0) —U(#)| — 0, from which (recall
[(B3) it follows that 6, — 0* in probability. Note that the second part in Assumption (5.6]) is a
technical assumption that ensures that, when considering a Taylor expansion in the integral of
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Un(0), the remainder term in w;-()\, H;;) — w;-()\, Gj_l) for any H, ! ; lying between G ;and G !
(obtained through a Taylor expansion) goes uniformly to zero.

From (5.4]) we have that U, is a C? function whose derivatives can be computed by differ-
entiation under the integral sign. This implies that

2 rt B _ N
DULO) = 5 [ Dv6,. 62000506, 6. = § Tlin00. G 1),
2 1 - _
Dy Un(0) = ~=3 /0 Dipy (0, Gy 1) D (0. G Y), P # 4 (7.13)

and

2 [t - _ -
DppUn(f) = j/o D2¢p(9paGn;;)(qﬁj(ej’Gn,;‘)_%Zgzlwk(ekan,}f))

B 1
AT 00,60, G0

Usmg also (IBE) we obtain similar expressions for the derivatives of U(#), replacing everywhere
G ! o With G~1. We write DU, (0) = (D;U,(0))1<j<s, DU(0) = (D;U(0))1<;< for the gradients
and X, (0) = [Dp7qUn(0)]1Sp7qSJ, X(0) = [DpqU(8)]1<p,g<sfor the Hessians of U, and U. Note
that ¥* = 3(6*) is assumed to be invertible.

We write now p,, ; for the quantile process based on the ¢; ;’s. Observe that (5.7) ensures
that we can assume, without loss of generality, that there exist independent Brownian bridges,
By, j, satisfying ([L3)). Now, recalling that ¢;(07,2) = = we see that

Pn,J( ) — % Zg:1 Pn,k(t)
nD;Up( / D dt. 7.14
Now, using (B and arguing as in the proof of Theorem ] we conclude that
Bk (1)
D —1 4y Lokt it = / D 1) —2k i) 0
/ 065, G (0) LA (65, 67 0)
in probability and, consequently,
(1) = 5 2=y Bui(t)
D;U,(6%) / D - J A= R dt] — 0 7.15
‘f ) (7.15)

in probability. B
A further Taylor expansion of D;U, around 6* shows that for some 9? between 6, and 6*
we have

DiUn(0) = DyUn(67) + (DyUn(03), ... D3 U(03) - (6, — 07)
and because én is a zero of DU,,, we obtain
—D;Un(0%) = (D1;Un(07), ... DyjUn(87)) - (B — 07).

Writing %, for the J x J matrix whose J-th row equals (Dy;U,, (9 )s--s DUy (é ), i=1,...,J,

we can rewrite the last expansion as
—/nDU,(6*) = Spv/n(0, — 0%). (7.16)
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Now, recalling (ZI3)), assumptions (5.4) and (G.5) yield that ¥, — X* = 3(#*) in probability.
As a consequence, ([7I6]) and (T.I5) together with Slutsky’s Theorem complete the proof of the
second claim.

Finally, for the proof of the last claim, since DU, (6,) = 0, a Taylor expansion around 6,

shows that )

nUn (0%) — nUy(0,) = :

for some 6,, between 6,, and 6*. Arguing as above we see that 2(§n) — >* in probability. Hence,
to complete the proof if suffices to show that

1N 1 (Byi(t) — 25 B, (1)
o) 33 [ TR O

in probability. Since

_1’“ (P () = 33701 pus(®))?
"l ‘32/ a0 a—

this amounts to proving that

in probability. Taking v € (0, 1) in (Z3) we see that

/1_ (pn,J(t) By,
1 9(G—1(1))

n

. 2
using condition (5.8 and dominated convergence. From (5.8]) we also see that fll 1 %l%gdt —

0 in probability. Condition (B8] implies also that fl 1 M()))zdt — 0 in probablhty, see

Samworth and Johnson (IJEA Similar considerations apply to the left tail and complete the

proof.

O

PrOOF OF COROLLARY [5.21 Writing £* for the conditional law given the X; ;’s, we see from
Theorem B3] that

J
W2 (LA, (O)2), £ (i (47, (0) ) < %%Z 0 fin),

where L = sup, , ; wg(A, x), v denotes the law of the errors, ¢; j, and fi,, ; the empirical d.f. on
€1js---En,;. Note that L < oo by (5.6, while nW3(u, fin, j) = Op(1) as in the proof of Theorem
B Hence, we conclude that

1< (Y, By N2 1.

in probability. The conclusion now follows from Lemma 1 in Janssen and Pauls M)
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If centering were necessary and we had (GI1]) rather than the limit in Theorem [ we
could adapt the last argument as follows. If A and B are positive random variables then
E|A—B| < E(AY?—B'Y?)2 1 2(EAE(A'Y? —BY/2)2)1/2_ We can apply this bound to (an optimal
coupling of ) m, A, (©) and m, Ay, (©). Now if the errors have a log-concave distribution then
nEW3(p, fin ;) = O(logn), see Corollary 6.12 in [Bobkov and Ledoux (2014) and we conclude
that

Wi(L(mnAm,(©) = tm,,), L~ (M Ay, (0) = ¢m,,)) = Wi(L(mnAm,(0)), L7 (mn Ay, (0)))
vanishes in probability if m,, = O(n”) for some p € (0,1) . As a consequence,

J 1 R2 2
1 B EB 1
mp AL m — g —yTy-ly
o (O) = ema =5 ot /0 (goG=1)2 2

in probability.
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0,6

0,7

0,8

0,9

0,95

J‘ n My =N My =N My = N7 My = N7 My =N My =N
| 50 0,144 0,079 0,038 0,046 0,041 0,03
| 100 0,148 0,067 0,07 0,05 0,04 0,033
| 200 0,129 0,085 0,068 0,043 0,037 0,044
2 | 500 0,138 0,089 0,05 0,048 0,035 0,036
| 1000 0,127 0,086 0,063 0,055 0,039 0,032
| 2000 0,129 0,104 0,071 0,048 0,043 0,038
| 5000 0,039 0,042 0,041 0,049 0,043 0,055
| 50 0,295 0,194 0,115 0,078 0,054 0,034
| 100 0,273 0,163 0,089 0,053 0,034 0,039
| 200 0,238 0,15 0,077 0,054 0,047 0,031
3500 0,226 0,122 0,07 0,057 0,042 0,029
| 1000 0,217 0,107 0,092 0,069 0,042 0,035
| 2000 0,221 0,128 0,077 0,053 0,043 0,035
| 5000 0,205 0,145 0,082 0,06 0,025 0,047
| 50 0,659 0,428 0,281 0,129 0,111 0,081
| 100 0,583 0,337 0,192 0,104 0,083 0,053
| 200 0,538 0,281 0,159 0,081 0,078 0,029
51500 0,449 0,267 0,138 0,063 0,056 0,04
| 1000 0,415 0,238 0,129 0,064 0,051 0,037
| 2000 0,354 0,212 0,115 0,06 0,053 0,032
| 5000 0,322 0,203 0,108 0,057 0,061 0,039
| 50 0,996 0,971 0,873 0,702 0,553 0,456
| 100 0,994 0,902 0,708 0,433 0,33 0,226
| 200 0,958 0,802 0,521 0,247 0,184 0,119
10 | 500 0914 0,663 0,388 0,149 0,093 0,063
| 1000 0,864 0,532 0,286 0,119 0,084 0,046
| 2000 0,813 0,473 0,239 0,103 0,063 0,051
| 5000 0,756 0,449 0,217 0,088 0,061 0,041

Table 1: Simulations under Hy
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m, =n

0,6

my, =n%" my, =n m, =n°

0,95

m, =n°>

My, =N

0,961

0,919 0,897 0,864

0,

829

0,

838

0,998 0,998 0,995

0,

994

0,993

1 1 1

1

1

_ | = = =

1
1
1
1

—_ | = = | =

1
1
1
1

0,

939

0

91

0,

999

0,999

= = == = | =

—= = | == = =] =

10

—= = | = | = | = | = | =

Table 2: Power of the test for ~y Le (1)

26



0,6

0,7

0,8

0,9

0,95

J‘ n my =N my =N my =N My =N My =N My =N
| 50 0,426 0,33 0,3 0,241 0,223 0,163
| 100 0,658 0,534 0,468 0,365 0,361 0.3
| 200 0,855 0,824 0,751 0,665 0,613 0,602
2 | 500 0,998 0,998 0,993 0,982 0,965 0,962
| 1000 1 1 1 1 0,999 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,657 0,533 0,422 0,331 0,282 0,223
| 100 0,831 0,708 0,586 0,514 0,461 0,377
| 200 0,946 0,915 0,841 0,778 0,709 0,661
3 | 500 1 0,998 0,997 0,994 0,989 0,977
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,895 0,741 0,633 0,471 0,394 0,333
| 100 0,936 0,874 0,728 0,623 0,519 0,443
| 200 0,994 0,947 0,903 0,847 0,786 0,696
5 | 500 1 1 1 0,996 0,992 0,985
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0,997 0,97 0,875 0,79 0,703
| 100 0,997 0,985 0,949 0,854 0,765 0,643
| 200 1 0,996 0,968 0,924 0,859 0,789
10 | 500 1 1 1 0,996 0,996 0,975
| 1000 1 1 1 1 1 0,999
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1

Table 3: Power of the test 4 Laplace (0,1)
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0,6

0,7

0,8

0,9

0,95

I‘ n mp =n> mp =n> mpy =N mpy = N7 mpy =n> mp =1
| 50 0,566 0,445 0,429 0,352 0,321 0,307
| 100 0,775 0,704 0,647 0,576 0,503 0,454
| 200 0,942 0,927 0,882 0,833 0,771 0,697
2 | 500 1 0,997 0,995 0,991 0,989 0,957
| 1000 1 1 1 1 1 0,986
| 2000 1 1 1 1 1 0,999
| 5000 1 1 1 1 1 0,997
| 50 0,745 0,653 0,546 0,46 0,402 0,349
| 100 0,881 0,821 0,738 0,65 0,592 0,563
| 200 0,98 0,958 0,928 0,891 0,873 0,794
3] 500 1 1 0,999 0,997 0,997 0,978
| 1000 1 1 1 1 1 0,995
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 0,91 0,813 0,682 0,593 0,525 0,45
| 100 0,972 0,909 0,822 0,751 0,686 0,621
| 200 0,995 0,984 0,967 0,915 0,887 0,836
5 | 500 1 1 1 0,999 0,999 0,995
| 1000 1 1 1 1 1 1
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 1
| 50 1 0,997 0,953 0,894 0,827 0,758
| 100 0,999 0,993 0,969 0,907 0,862 0,79
| 200 1 0,998 0,995 0,961 0,941 0,903
10 | 500 1 1 1 1 0,998 0,988
| 1000 1 1 1 1 1 0,998
| 2000 1 1 1 1 1 0,999
| 5000 1 1 1 1 1 1

Table 4: Power of the test v < T(3)
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0,6

0,7

0,8

0,9

0.95

I ‘ n My =N My =N My =N My =N My =N My =N
| 50 0,398 0,353 0,292 0,207 0,182 0,183
| 100 0,623 0,52 0,429 0,341 0,29 0,228
| 200 0,826 0,717 0,65 0,589 0,526 0,41
2 | 500 0,989 0,978 0,954 0,928 0,878 0,787
| 1000 1 1 0,999 1 0,984 0,955
| 2000 1 1 1 1 1 0,985
| 5000 1 1 1 1 1 0,993
| 50 0,634 0,495 0,4 0,295 0,263 0,222
| 100 0,756 0,666 0,56 0,465 0,399 0,336
| 200 0,914 0,859 0,778 0,663 0,602 0,521
31500 0,998 0,989 0,985 0,972 0,928 0,868
| 1000 1 1 1 1 0,999 0,963
| 2000 1 1 1 1 1 0,989
| 5000 1 1 1 1 1 1
| 50 0,851 0,709 0,583 0,426 0,359 0,316
| 100 0,919 0,825 0,668 0,546 0,493 0,316
| 200 0,959 0,908 0,842 0,738 0,684 0,578
5 | 500 1 0,997 0,994 0,973 0,934 0,888
| 1000 1 1 1 1 0,999 0,968
| 2000 1 1 1 1 1 1
| 5000 1 1 1 1 1 0,999
| 50 1 0,986 0,941 0,813 0,774 0,653
| 100 1 0,988 0,925 0,806 0,738 0,606
| 200 1 0,991 0,948 0,854 0,813 0,679
10 | 500 1 1 0,998 0,985 0,954 0,886
| 1000 1 1 1 1 0,997 0,949
| 2000 1 1 1 1 1 0,974
| 5000 1 1 1 1 1 0,995

Table 5: Power of the test L T(4)
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