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Abstract

Wasserstein barycenters and variance-like criterion using Wasserstein distance are used in
many problems to analyze the homogeneity of collections of distributions and structural rela-
tionships between the observations. We propose the estimation of the quantiles of the empirical
process of the Wasserstein’s variation using a bootstrap procedure. Then we use these results for
statistical inference on a distribution registration model for general deformation functions. The
tests are based on the variance of the distributions with respect to their Wasserstein’s barycenters
for which we prove central limit theorems, including bootstrap versions.

AMS subject classifications: Primary, 62H10; secondary,62E20
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1 Introduction

Analyzing the variability of large data sets is a difficult task when the information conveyed by the
observations possesses an inner geometry far from the Euclidean one. Indeed, deformations on the
data such as translations, scale location models for instance or more general warping procedures pre-
vent the use of the usual methods in statistics. Looking for a way to measure structural relationships
between data is of high importance. This kind of issues arises when considering the estimation of
probability measures observed with deformations. This situation occurs often in biology, for example
when considering gene expression. There has been over the last decade a large amount of work to deal
with registrations issues. We refer for instance to Amit et al. (1991), Allasonnière, Amit and Trouvé
(2007) or Ramsay and Silverman (2005) and references therein. However, when dealing with the
registration of warped distributions, the literature is scarce. We mention here the method pro-
vided for biological computational issues known as quantile normalization in Bolstad et al. (2003),
Gallón, Loubes and Maza (2013) and references therein. Recently, using optimal transport method-
ologies, comparisons of distributions have been studied using a notion of Fréchet mean for distribu-
tions, see for instance in Agueh and Carlier (2011) or a notion of depth as in Chernozhukov et al.
(2014).

∗Corresponding author: loubes@math.univ-toulouse.fr
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A natural frame for applications is given by observations drawn from a deformation model in the
sense that we observe J independent samples of random variables in R

d, with sample j following
distribution µj, such that

Xi,j = gj (εi,j) , j = 1, . . . , J, i = 1 . . . , n,

where (εi,j) are i.i.d. random variables with unknown distribution µ. The functions gj belong to
a class G of deformation functions, which models how the distributions µj’s can be warped one
to another by functions in the chosen class. This model is the natural extension of the functional
deformation models studied in the statistical literature for which estimation procedures are provided
in Gamboa, Loubes and Maza (2007) while testing issues are tackled in Collier and Dalalyan (2015).
In the setup of warped distributions a main goal is the estimation of the warping functions, possibly
as a first step towards registration or alignment of the (estimated) distributions. Of course, without
some constraints on the class G the deformation model is meaningless (we can, for instance, obtain any
distribution on R

d as a warped version of a fixed probability having a density if we take the optimal
transportation map as the warping function; see Villani (2009)) and one has to consider smaller
classes of deformation functions to perform a reasonable registration. In the case of parametric
classes estimation of the warping functions is studied in Agulló-Antoĺın et al. (2015). However,
estimation/registration procedures may lead to inconsistent conclusions if the chosen deformation
class G is too small. It is, therefore, important to be able to assess fit to the deformation model
given by a particular choice of G and this is the main goal of this paper. We note that within
this framework, statistical inference on deformation models for distributions has been studied first
in Freitag and Munk (2005). Here we provide a different approach which allows to deal with more
general deformation classes.

The pioneer works Czado and Munk (1998) and Munk and Czado (1998) study the existence
of relationships between distributions F and G by using a discrepancy measure between the dis-
tributions, ∆(F,G), built using the Wasserstein distance. The authors consider the assumption
∆(F,G) > ∆0 versus ∆(F,G) ≤ ∆0 for ∆0 a chosen threshold. Thus when the test is rejected, this
implies that there is a statistical evidence that the two distributions are similar with respect to the
chosen criterion. In this direction, we define a notion of variation of distributions using the Wasser-
stein distance, Wr, in the set of probability measures with finite r-th moments, Wr(R

d), r ≥ 1, which
generalizes the notion of variance for random distributions over Rd. This quantity can be defined as

Vr (µ1, . . . , µJ) = inf
η∈Wr(Rd)





1

J

J
∑

j=1

W r
r (µj , η)





1/r

,

which measures the spread of the distributions. Then, to measure closeness to a deformation model
we take a look at the minimal variation among warped distributions, a quantity that we could
consider as a minimal alignment cost. Under some mild conditions a deformation model holds if
and only if this minimal alignment cost is null and we can base our assessment of a deformation
model on this quantity. As in Czado and Munk (1998) and Munk and Czado (1998) we provide
results (CLT’s and bootstrap versions) that enable to reject that the minimal alignment cost exceeds
some threshold (hence, to conclude that it is below that threshold). Our results are given in a
setup of general, nonparametric classes of warping functions. If, still, one is interested in the more
classical goodness-of-fit problem for the deformation model we also provide results in a somewhat
more restrictive setup.

The paper is organized as follows. The main facts about Wasserstein variation are presented in
Section 2, together with the key idea that fit to a deformation model can be recast in terms of the
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minimal Wasserstein variation among warped versions of the distributions. Later, in Section 3 we
prove some Lipsichtz bounds for the law of empirical Wasserstein variations as well as of minimal
alignment costs on R

d. The implications of these results include that quantiles of the minimal warped
variation criterion can be consistently estimated by some suitable bootstrap quantiles, which can be
approximated by simulation, yielding some consistent tests of fit to deformation models, provided
that the empirical criterion has some regular limiting distribution. This issue, namely, Central Limit
Theorems for empirical minimal Wasserstein variation is further explored for univariate distributions
in Sections 4, covering non parametric deformation models, and 5, with a sharper analysis for the
case of semiparametric deformation models. These sections propose consistent tests for deformation
models in the corresponding setups. Finally, proofs are postponed to Section 6.

2 Wasserstein variation and deformation models for distributions

Much recent work has been conducted to measure the spread or the inner structure of a collection
of distributions. In this paper we define a notion of variability which relies on the notion of Fréchet
mean for the space of probability endowed with the Wasserstein metrics, of which we will recall
the definition hereafter. First, for d ≥ 1, consider the set Wr

(

R
d
)

of probabilities with finite r-th
moment. For µ and ν in Wr

(

R
d
)

, we denote by Π(µ, ν) the set of all probability measures π over
the product set Rd × R

d with first (resp. second) marginal µ (resp. ν). The Lr transportation cost
between these two measures is defined as

Wr(µ, ν)
r = inf

π∈Π(µ,ν)

∫

‖x− y‖r dπ(x, y).

This transportation cost allows to endow the set Wr

(

R
d
)

with the metric Wr(µ, ν). More details
on Wasserstein distances and their links with optimal transport problems can be found in Rachev
(1984) or Villani (2009) for instance.

Within this framework, we can define a global measure of separation of a collection of measures
µj, j = 1, . . . , n, as follows. Given probabilities µ1, . . . , µJ ∈ Wr(R

d) let

Vr (µ1, . . . , µJ) = inf
η∈Wr(Rd)

( 1

J

J
∑

j=1

W r
r (µj, η)

)1/r

be the Wasserstein r-variation of µ1, . . . , µJ or the variance of the µj’s.
The special case r = 2 has been studied in the literature. Existence of a minimizer of the

map η 7→ 1
J

∑J
j=1W

2
2 (µj, η) is proved in Agueh and Carlier (2011), as well as uniqueness under some

smoothness assumptions. Such a minimizer, µB , is called a barycenter or Fréchet mean of µ1, . . . , µJ .
Hence, V2 (µ1, . . . , µJ) = ( 1J

∑J
j=1W

2
2 (µj , µB))

1/2. Empirical versions of the barycenter are analyzed
in Boissard, Le Gouic and Loubes (2015) or Le Gouic, T and Loubes, J-M. (2016). Similar ideas
have also been developed in Cuturi, M. and Doucet, A. (2014) or Bigot and Klein (2012).

This quantity, which is an extension of the variance for probability distributions is a good candi-
date to evaluate the concentration of a collection of measures around its Fréchet mean. In particular,
it can be used to measure fit to a distribution deformation model. More precisely, assume as in the
Introduction that we observe J independent i.i.d. samples with sample j, j = 1, . . . , J consisting of
i.i.d. observations Xi,j, i = 1, . . . , n with common distribution µj. We change for later convenience
the notation in the Introduction. We assume that Gj is a family (parametric or nonparametric) of
invertible warping functions and denote G = G1 × · · · × GJ . The deformation model assumes then

3



that

there exists (ϕ⋆
1, . . . ϕ

⋆
J) ∈ G and i.i.d. (εi,j)1≤i≤n

1≤j≤J
such that

Xi,j =
(

ϕ⋆
j

)−1
(εi,j) ∀1 ≤ j ≤ J (2.1)

Equivalently, the deformation model (2.1) means that there exist (ϕ⋆
1, . . . ϕ

⋆
J ) ∈ G such that ϕ⋆

j (Xi,j),
1 ≤ j ≤ J , 1 ≤ i ≤ n, are all i.i.d. or, if we write µj(ϕj) for the distribution of ϕj(Xi,j), that there
exists (ϕ⋆

1, . . . ϕ
⋆
J) ∈ G such that

µ1(ϕ
∗
1) = · · · = µJ(ϕ

∗
J ). (2.2)

We propose to use the Wasserstein variation to measure fit to model ((2.1)), through the minimal
alignment cost

Ar(G) := inf
(ϕ1,...,ϕJ)∈G

V r
r (µ1(ϕ1), . . . , µJ(ϕJ)) . (2.3)

Let us assume that µ1(ϕ1), . . . , µJ(ϕJ ), (ϕ1, . . . , ϕJ) ∈ G are in Wr(Rd). If the deformation model
(2.1) holds then Ar(G) = 0. Under the additional mild assumption that the minimum in (2.3) is
attained we have that the deformation model can be equivalently formulated as

Ar(G) = 0 (2.4)

and a goodness-of-fit test to the deformation model becomes, formally, a test of

H0 : Ar(G) = 0 vs. Ha : Ar(G) > 0. (2.5)

A testing procedure can be based on the empirical version of Ar(G), namely,

An,r(G) := inf
(ϕ1,...,ϕJ )∈G

V r
r (µn,1(ϕ1), . . . , µn,J(ϕJ )) , (2.6)

where µn,j(ϕj) denotes the empirical measure on ϕj(X1,j), . . . , ϕj(Xn,j). We would reject the defor-
mation model (2.1) for large values of An,r(G).

As noted in Czado and Munk (1998) or Munk and Czado (1998) the testing problem (2.5) can
be considered as a mere sanity check for the deformation model, since lack of rejection of the null
does not provide statistical evidence that the deformation model holds. Consequently, as in the cited
references, we will also consider the alternative testing problem

H0 : Ar(G) ≥ ∆0 vs. Ha : Ar(G) < ∆0, (2.7)

where ∆0 > 0 is a fixed threshold. With this formulation the test decision of rejecting the null
hypothesis implies that there is statistical evidence that the deformation model is approximately
true. In this case rejection would correspond to small observed values of An,r(G). In later sections
we provide theoretical results that allow the computation of approximate critical values and p-values
for the testing problems (2.5) and (2.7) under suitable assumptions.

3 Bootstraping Wasserstein’s variations

We present now some general results on Wasserstein distances that will be applied to estimate the
asymptotic distribution of the minimal alignment cost statistic, An,r(G), defined in (2.6). In this
section, we write L(Z) for the law of any random variable Z. We note the abuse of notation in the
following, in which Wr is used both for Wasserstein distance on R and on R

d, but this should not
cause much confusion.

Our first result shows that the laws of empirical transportation costs are continuous (and even
Lipschitz) functions of the underlying distributions.
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Theorem 3.1. Set ν, ν ′, η probability measures in Wr

(

R
d
)

, Y1, . . . , Yn i.i.d. random vectors with
common law ν, Y ′

1 , . . . , Y
′
n, i.i.d. with law ν ′ and write νn, ν

′
n for the corresponding empirical mea-

sures. Then
Wr(L(Wr(νn, η)),L(Wr(ν

′
n, η))) ≤Wr(ν, ν

′).

The deformation assessment criterion introduced in section 2 is basd on the Wasserstein r-
variation of distributions, Vr. It is convenient to note that V r

r (ν1, . . . , νJ) can also be expressed
as

V r
r (ν1, . . . , νJ) = inf

π∈Π(ν1,...,νJ)

∫

T (y1, . . . , yJ)dπ(y1, . . . , yJ), (3.1)

where Π(ν1, . . . , νJ) denotes the set of probability measures on R
d with marginals ν1, . . . , νJ and

T (y1, . . . , yJ) = minz∈Rd
1
J

∑J
j=1 ‖yj − z‖r.

Here we are interested in empirical Wasserstein r-variations, namely, the r-variations computed
from the empirical measures νnj ,j coming from independent samples Y1,j , . . . , Ynj ,j of i.i.d. random
variables with distribution νj. Note that in this case problem (3.1) is a linear optimization problem
for which a minimizer always exists.

As before, we consider the continuity of the law of empirical Wasserstein r-variations with respect
to the underlying probabilities. This is covered in the next result.

Theorem 3.2. With the above notation

W r
r (L(Vr(νn1,1, . . . , νnJ ,J)),L(Vr(ν ′n1,1, . . . , ν

′
nJ ,J))) ≤

1

J

J
∑

j=1

W r
r (νj , ν

′
j).

A useful consequence of the above results is that empirical Wasserstein distances or r-variations
can be bootstrapped under rather general conditions. To be more precise, we take in Theorem 3.1
ν ′ = νn, the empirical measure on Y1, . . . , Yn and consider a bootstrap sample Y ∗

1 , . . . , Y
∗
mn

of i.i.d.
(conditionally given Y1, . . . , Yn) observations with common law νn. We will assume that the resam-
pling size mn satisfies mn → ∞, mn = o(n) and write ν∗mn

for the empirical measure on Y ∗
1 , . . . , Y

∗
mn

and L∗(Z) for the conditional law of Z given Y1, . . . , Yn. Theorem 3.1 now reads

Wr(L∗(Wr(ν
∗
mn
, ν)),L(Wr(νmn , ν))) ≤Wr(νn, ν).

Hence, if Wr(νn, ν) = OP(1/rn) for some sequence rn > 0 such that rmn/rn → 0 as n → ∞, then,
using that Wr(L(aX),L(aY )) = aWr(L(X),L(Y )) for a > 0, we see that

Wr(L∗(rmnWr(ν
∗
mn
, ν)),L(rmnWr(νmn , ν))) ≤

rmn

rn
rnWr(νn, ν) → 0 (3.2)

in probability.

Asume that, in addition, rnWr(νn, ν) ⇀ γ (ν) for a smooth distribution γ (ν). Then (see, e.g.,
Lemma 1 in Janssen and Pauls (2003)) if ĉn(α) denotes the α quantile of the conditional distribution
L∗(rmnWr(ν

∗
mn
, ν))

P (rnWr(νn, ν) ≤ ĉn(α)) → α as n→ ∞. (3.3)

We conclude in this case that the quantiles of rnWr(νn, ν) can be consistently estimated by the
bootstrap quantiles, ĉn(α), which, in turn, can be approximated through Monte-Carlo simulation.

As an example, if d = 1 and r = 2, under integrability and smoothness assumptions on ν we have
√
nW2(νn, ν) ⇀

(

∫ 1
0

B2(t)
f2(F−1(t))dt

)1/2
, where f and F−1 are the density and the quantile function of

ν, see del Barrio, Giné and Utzet (2005), and (3.3) holds.
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For the deformation model (2.1), statistical inference is based on An,r(G), introduced in (2.6).
Now consider A′

n,r(G), the corresponding version obtained from samples with underlying distribu-
tions µ′j. Then, a version of Theorem 3.2 is valid for these minimal alignment costs, provided the
deformation classes are uniformly Lipschitz, namely, under the assumption that

Lj := sup
x 6=y,ϕj∈Gj

‖ϕj(x)− ϕj(x)‖
‖x− y‖ , j = 1, . . . , J (3.4)

are finite.

Theorem 3.3. If L = max(L1, . . . , Lj) <∞, with Lj as in (3.4), then

W r
r (L((An,r(G))1/r),L((A′

n,r(G))1/r)) ≤ Lr 1

J

J
∑

j=1

W r
r (µj, µ

′
j).

Hence, the Wasserstein distance of the variance of two collections of distributions can be controlled
using the distance between the distributions. The main consequence of this fact is that the minimal
alignment cost can be also bootstrapped as soon as a distributional limit theorem exists for An,r(G),
as in the discussion above. In sections 4 and 5 below we present distributional results of this type
in the one dimensional case. We note that, while general central limit theorems for the empirical
transportation cost are not available in dimension d > 1, some recent progress has been made in this
line, see, e.g., Rippl, Munk and Sturm (2015) for Gaussian distributions and Sommerfeld and Munk
(2016), which gives such type of results for distributions on R

d with finite support. Further advances
in this line would enable to extend the results in the following section to higher dimension.

4 Assessing fit to non-parametric deformation models

We focus in this and the next sections on the case d = 1 and r = 2 and will simply write A(G)
and An(G) (instead of A2(G) and A2,n(G)) for the minimal alignment cost and its empirical version,
defined in (2.3) and (2.6). Otherwise we keep the notation in section 2, with X1,j , . . . ,Xn,j i.i.d.
r.v.s with law µj being one of the J independent samples. Now Gj is a class of invertible warping
functions from R to R which we assume to be increasing. We note that in this case the barycenter
of a set of probabilities µ1, . . . , µJ with distribution functions F1, . . . , FJ is the probability having
quantile function F−1

B := 1
J

∑J
j=1 F

−1
j , see, e.g., Agueh and Carlier (2011). We observe further that

µj(ϕj) is determined by the quantile function ϕj ◦ F−1
j . We will write

F−1
B (ϕ) =

1

J

J
∑

j=1

ϕj ◦ F−1
j (4.1)

for the quantile function of the barycenter of µ1(ϕ1), . . . , µJ(ϕJ ), while ⇀ will denote convergence
in distribution.

In order to prove a CLT for An(G) we need to make assumptions on the integrability and regularity
of the distributions µj as well as on the smoothness of the warping functions. We consider first the
assumptions on the distributions. For each µj, j = 1, . . . , J , we denote its distribution function by
Fj . We will assume that µj is supported on an (possibly unbounded) interval in the interior of which
Fj is C2 and F ′

j = fj > 0 and satisfies

sup
x

Fj(x)(1−Fj(x))f ′
j(x)

fj(x)2
<∞, (4.2)
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and, further, that for some q > 1
∫ 1

0

(t(1−t))
q
2

(fj(F−1

j
(t)))

q dt <∞ (4.3)

and for some r > 4
E [|Xj |r] <∞. (4.4)

Assumption (4.2) is a classical regularity requirement for the use of strong approximations for
the quantile process, as in Csörgő and Horváth (1993) or del Barrio, Giné and Utzet (2005). Our
proof relies on the use of these techniques. Then (4.3) and (4.4) are mild integrability conditions. If
Fj has regularly varying tails of order −r (as, for instance, Pareto tails) then both conditions hold
(and also (4.2)) as long as r > 4 and 1 < q < 2r/(r + 2). Of course the conditions are fulfilled by
distributions with lighter tails such as exponential or Gaussian laws (for any q ∈ (1, 2)).

Turning to the assumptions on the classes of warping functions, we recall that a uniform Lipsichtz
condition was needed for the approximation bound in Theorem 3.3. For the CLT in this section we
need some refinement of that condition, the extent of which will depend on the integrability exponent

q in (4.3), as follows. We set p0 = max
(

q
q−1 , 2

)

and define on Hj = C1(R) ∩ Lp0 (Xj) the norm

‖hj‖Hj
= sup |h′j(x)|+E [|hj (Xj)|p0 ]

1

p0 , and on the product spaceH1×· · ·×HJ , ‖h‖H =
∑J

j=1 ‖hj‖Hj

and assume that

Gj ⊂ Hj is compact for ‖ · ‖Hj
and sup

h∈Gj

∣

∣

∣h′(xhn)− h′(x)
∣

∣

∣ →
suph∈Gj

|xh
n−x|→0

0, (4.5)

and, finally, that for some r > max(4, p0),

E sup
h∈Gj

|h (Xj)|r <∞. (4.6)

We note that (4.6) is a slight strengthening of the uniform moment bound already contained
in (4.5) (we could take p0 > max( q

q−1 , 4) in (4.5) and (4.6) would follow). Our next result gives a

CLT for An(G) under the assumptions on the distributions and deformation classes described above.
The limit can be simply described in terms of a centered Gaussian process indexed by the set of
minimizers of the variation functional, namely,

U(ϕ) = V 2
2 (µ1(ϕ1), . . . , µJ(ϕJ)).

An elementary computation shows that (U1/2(ϕ)− U1/2(ϕ̃))2 ≤ 1
J

∑J
j=1 E(ϕj(Xj)− ϕ̃j(Xj))

2, from
which we conclude continuity of U with respect to ‖ · ‖H. In particular, the set

Γ =
{

ϕ ∈ G : U(ϕ) = inf
φ∈G

U(φ)
}

(4.7)

is a nonempty compact subset of G.
Theorem 4.1. Assume that (Bj)1≤j≤J are independent Brownian bridges. Set

cj(ϕ) = 2

∫ 1

0
ϕ′
j ◦ F−1

j (ϕj ◦ F−1
j − F−1

B (ϕ))
Bj

fj ◦ F−1
j

and C(ϕ) = 1
J

∑J
j=1 cj(ϕ), ϕ ∈ G. Then, under assumptions (4.2) to (4.6), C is a centered Gaussian

process on G with trajectories a.s. continuous with respect to ‖ · ‖H. Furthermore,
√
n(An(G) −A(G)) ⇀ min

ϕ∈Γ
C(ϕ).
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A proof of Theorem 4.1 is given in the Appendix below. The random variables
∫ 1
0 ϕ

′
j◦F−1

j
Bj

fj◦F−1

j

(ϕj◦
F−1
j − F−1

B (ϕ)) are centered Gaussian, with variance

∫

[0,1]2
(min(s, t)− st)

ϕ′
j(F

−1

j
(t))

fj(F−1

j (t))
(ϕj(F

−1
j (t))− F−1

B (ϕ)(t))

× ϕ′
j(F

−1

j (s))

fj(F−1

j (s))
(ϕj(F

−1
j (s))− F−1

B (ϕ)(s))dsdt.

In particular, if U has a unique minimizer the limiting distribution in Theorem 4.1 is normal. How-
ever, our result works in more generality, even without uniqueness assumptions.

We remark also that although we have focused for simplicity on the case of samples of equal size,
the case of different sample sizes, nj, j = 1, . . . , J , can also be handled with straightforward changes.
More precisely, let us write An1,...,nJ

(G) for the minimal alignment cost computed from the empirical
distribution of the samples and assume that nj → +∞ and

nj
n1 + · · ·+ nJ

→ (γj)
2 > 0,

then with straightforward changes in our proof we can see that
√

n1...nJ

(n1+···+nJ)
J−1 (An1,...,nJ

(G)−A(G)) ⇀ min
ϕ∈Γ

C̃(ϕ), (4.8)

where C̃(ϕ) = 1
J

∑J
j=1 c̃j(ϕ) and c̃j(ϕ) =

(

Πp 6=jγp
)

cj(ϕ).

If we try, as argued in section 2, to base our assessment of fit to the deformation model (2.1)
on An(G), we should note that the limiting distribution in Theorem 4.1 depends on the unknown
distributions µj and cannot be used for the computation of approximate critical values or p-values
without further adjustments. We show now how this can be done in the case of the testing problem
(2.7), namely, the test of

H0 : Ar(G) ≥ ∆0 vs. Ha : Ar(G) < ∆0,

for some fixed threshold ∆0 > 0, through the use of a bootstrap procedure.
Let us consider bootstrap samples X∗

1,j , . . . ,X
∗
mn,j of i.i.d. observations sampled from µn,j, the

empirical distribution on X1,j , . . . ,Xn,j . We write µ∗mn,j for the empirical measure on X∗
1,j , . . . ,X

∗
mn,j

and introduce
A∗

mn
(G) = inf

ϕ∈G
V 2
2 (µ

∗
mn,1(ϕ1), . . . , µ

∗
mn,J(ϕJ)).

Now, we base our testing procedure on the conditional α-quantiles (given theXi,j’s) of
√
mn(A

∗
mn

(G)−
∆0), which we denote ĉn(α;∆0). Our next result, which follows from Theorems 3.3 and 4.1, shows
that the test that rejects H0 when

√
n(An(G) −∆0) < ĉn(α;∆0)

is a consistent test of approximate level α for (2.7). We note that the bootstrap quantiles ĉn(α;∆0)
can be computed using Monte-Carlo simulation.

Corollary 4.2. If mn → ∞, and mn = O(
√
n), then under assumptions (4.2) to (4.6)

P
(√
n(An(G) −∆0) < ĉn(α;∆0)

)

→







0 if A(G) > ∆0

α if A(G) = ∆0

1 if A(G) < ∆0

(4.9)
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Rejection in the testing problem (2.7) would result, as noted in section 2, in statistical evidence
supporting that the deformation model holds approximately (hence, that related registration methods
can be safely applied). If, nevertheless, we were interested in gathering statistical evidence against
the deformation model then we should consider the classical goodness-of-fit problem (2.5). Some
technical difficulties arise then. Note that if the deformation model holds, that is, if A(G) = 0, then
we have ϕj ◦ F−1

j = F−1
B (ϕ) for each ϕ ∈ Γ, which implies that the result of Theorem 4.1 becomes

√
nAn(G)⇀ 0.

Hence, a nondegenerate limit law for An(G) in this case requires a more refined analysis, that we
handle in the next section.

5 Goodness-of-fit in semiparametric deformation models

In many cases, deformation functions can be made more specific in the sense that they follow a
known shape depending on parameters that may differ for sample to sample. In our approach to the
classical goodness-of-fit problem (2.5) we consider a parametric model in which ϕj = ϕθj for some
finite dimensional parameter θj that describes the warping effect within a fixed shape. Now, that the
deformation model holds means that there exist θ⋆ = (θ⋆1, . . . , θ

⋆
J) such that for 1 ≤ i ≤ n, 1 ≤ j ≤ J ,

Xi,j = ϕ−1
θ⋆j

(εi,j) .

Hence, from now on, we will consider the following family of deformations, indexed by a parameter
λ ∈ Λ ⊂ R

p:
ϕ : Λ× R → R

(λ, x) 7→ ϕλ (x)

The classes Gj become now {ϕθj : θj ∈ Λ}. We denote Θ = ΛJ and write An(Θ) and A(Θ)
instead of An(G) and A(G). We also use the simplified notation µj(θj) instead of µj

(

ϕθj

)

, FB (θ)
for FB (ϕθ1 , . . . , ϕθJ ) and similarly for the empirical versions. Our main goal is to prove a weak
limit theorem for An(Θ) under the null in (2.5). Therefore, throughout this section we assume
that model (2.1) holds. This means, in particular, that the quantile functions of the samples satisfy
F−1
j = ϕ−1

θ∗j
◦ G−1, with G the d.f. of the εi,j ’s. As before, we assume that the warping functions

are invertible and increasing, which now means that, for each λ ∈ Λ, ϕλ is an invertible, increasing
function. It is convenient at this point to introduce the notation

ψj(λ, x) = ϕλ(ϕ
−1
θ∗j

(x)), j = 1, . . . , J (5.1)

and ε for a random variable with the same distribution as the εi,j . Note that ψj(θ
∗
j , x) = x.

Now, under smoothness assumptions on the functions ψj that we present in detail below, if the
parameter space is compact then the function

Un(θ1, . . . , θJ) = V 2
2 (µn,1(θ1), . . . , µn,J(θJ))

admits a minimizer, that we will denote by θ̂n, that is

θ̂n ∈ argmin
θ∈Θ

Un(θ). (5.2)

Of course, since we are assuming that the deformation model holds, we know that θ∗ is a minimizer
of

U(θ1, . . . , θJ) = V 2
2 (µ1(θ1), . . . , µJ(θJ)).

9



For a closer analysis of the asymptotic behavior of An(Θ) under the deformation model we need to
make the following identifiability assumption

θ⋆ belongs to the interior of Λ and is the unique minimizer of U. (5.3)

Note that, equivalently, this means that θ∗ is the unique zero of U .
As in the case of nonparametric deformation models, we need to impose some conditions on

the class of warping functions and on the distribution of the errors, the εi,j. For the former, we
write D or Du for derivative operators with respect to parameters (hence, for instance, Dψj(λ, x) =
(D1ψj(λ, x), . . . ,Dpψj(λ, x))

T is the vector consisting of partial derivatives of ψj with respect to its
first p arguments evaluated at (λ, x); D2ψj(λ, x) = (Du,vψj(λ, x))u,v is the hessian matrix for fixed x
and so on). ψ′

j(λ, x) and similar notation will stand for derivatives with respect to x. Then we will
assume that for each j = 1, . . . , J , u, v = 1, . . . , p, and some r > 4

ψj(·, ·) is C2, (5.4)

E
[

sup
λ∈Λ

∣

∣ψj(λ, ε)
∣

∣

r]
<∞, E

[

sup
λ∈Λ

∣

∣Duψj(λ, ε)
∣

∣

r]
<∞, E

[

sup
λ∈Λ

∣

∣Du,vψj(λ, ε)
∣

∣

r]
<∞, (5.5)

and

ψ′
j(·, ·) is bounded on Λ× R and sup

λ∈Λ

∣

∣

∣
ψ′
j(λ, x

λ
n)− ψ′

j(λ, x)
∣

∣

∣

supλ∈Λ|xλ
n−x|→0

−−−−−−−−−−−→ 0. (5.6)

Turning to the distribution of the errors, we will assume that G is C2 with G′(x) = g(x) > 0 on
some interval and

sup
x

G(x) (1−G(x)) g′(x)
g(x)2

<∞. (5.7)

Additionally (but see the comments after Theorem 5.1 below) we make the assumption that
∫ 1

0

t(1− t)

g2 (G−1(t))
dt <∞. (5.8)

Finally, before stating the asymptotic result for An(Θ), we introduce the p× p matrices

Σi,i =
2(J − 1)

J2

∫ 1

0
Diψi(θ

∗
i , G

−1(t))ψi(θ
∗
i , G

−1(t))T dt,

Σi,j = − 2

J2

∫ 1

0
Diψi(θ

∗
i , G

−1(t))ψi(θ
∗
j , G

−1(t))T dt, i 6= j

and the (pJ)× (pJ) matrix

Σ =







Σ1,1 · · · Σ1,J
...

...
ΣJ,1 · · · ΣJ,J






. (5.9)

Σ is a symmetric, positive semidefinite matrix. To see this, consider x1, . . . , xJ ∈ R
p and xT =

[xT1 , . . . , x
T
J ] and note that

x′Σx =
2

J2

∫ 1

0

(

∑

i

(J − 1)(xi ·Diψi(θ
∗
i , G

−1(t)))2

− 2
∑

i<j

(xi ·Diψi(θ
∗
i , G

−1(t)))(xj ·Djψj(θ
∗
j , G

−1(t)))
)

dt

=
2

J2

∫ 1

0

∑

i<j

((xi ·Diψi(θ
∗
i , G

−1(t)))− (xj ·Djψj(θ
∗
j , G

−1(t))))2dt ≥ 0.
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In fact, Σ is positive definite, hence invertible, apart from some degenerate cases, For instance, if
p = 1, Σ is invertible unless all the functions Diψi(θ

∗
i , G

−1(t)) are proportional.
We are ready now for the announced distributional limit theorem.

Theorem 5.1. Assume that the deformation model holds. Under assumptions (5.3) to (5.7)

θ̂n → θ∗

in probability. If, in addition, Φ is invertible, then
√
n(θ̂n − θ⋆)⇀ Σ−1Y,

where Y = (Y T
1 , . . . , Y

T
J )T with

Yj =
2

J

∫ 1

0
Dψj(θ

∗
j , G

−1(t))
B̃j(t)

g(G−1(t))
dt,

B̃j = Bj − 1
J

∑J
k=1Bk and (Bj)1≤j≤J independent Brownian bridges. Furthermore, if (5.8) also

holds, then

nAn(Θ)⇀
1

J

J
∑

j=1

∫ 1

0

( B̃j

g ◦G−1

)2
− 1

2
Y TΣ−1Y.

We have to make a number of comments here. First, we note that, while, for simplicity, we have
formulated Theorem 5.1 assuming that the deformation model holds, the CLT for θ̂n still holds (with
some additional assumptions and changes in Φ) in the case when the model is false and θ∗ is not the
true parameter, but the one that gives the best (but imperfect) alignment. Since our focus here is
the assessment of the deformation models we refrain from pursuing this issue.

Our second comment is about the indentifiability condition (5.3). At first sight it can seem to be
too strong to be realistic. Actually, for some deformation models it could happen that ϕθ ◦ϕη = ϕθ∗η
for some θ ∗ η ∈ Θ. In this case, if Xi,j = ϕ−1

θ∗
j
(εi,j) with εi,j i.i.d., then, for any θ, Xi,j = ϕ−1

θ∗θ∗
j
(ε̃i,j)

with ε̃i,j = ϕθ(εi,j) which are also i.i.d. and, consequently, (θ ∗θ∗1, . . . , θ ∗θ∗J) is also a zero of U . This
applies, for instance, to location and scale models. A simple fix to this issue is to select one of the
signals as the reference, say the J-th signal, and assume that θ∗J is known (since it can be, in fact,
chosen arbitrarily). The criterion function becomes then Ũ(θ1, . . . , θJ−1) = U(θ1, . . . , θJ−1, θ

∗
J). One

could then make the (more realistic) assumption that θ̃∗ = (θ∗1, . . . , θ
∗
J−1) is the unique zero of Ũ and

base the analysis on Ũn(θ1, . . . , θJ−1) = Un(θ1, . . . , θJ−1, θ
∗
J) and ˆ̃θn = argminθ̃ Ũn(θ̃). The results

in this section can be adapted almost verbatim to this setup. In particular,
√
n(

ˆ̃
θn − θ̃∗) ⇀ Σ̃−1Ỹ ,

with Ỹ T = (Y T
1 , . . . , Y

T
J−1) and Σ̃ = [Σi,j]1≤i,j≤J−1. Again, the invertibility of Σ̃ is almost granted.

In fact, arguing as above, we see that and Σ̃ is positive definite if the functions Dψi(θ
∗
i , G

−1(t)),
i = 1, . . . , J − 1, are not null.

Next, we discuss about the smoothness and integrability conditions on the errors. As before, (5.7)
is a regularity condition that enables to use strong approximations for the quantile process. One
might be surprised that the moment condition (4.4) does not show up here, but in fact it is contained
in (5.5) (recall that ψj(θ

∗
j , x) = x). The integrability condition (5.8) is necessary and sufficient for

ensuring
∫ 1
0

B(t)2

g2(G−1(t))
dt <∞ (from which we see that the limiting random variable in the last claim

in Theorem 5.1 is an a.s. finite random variable) and implies that

nW 2
2 (Gn, G) ⇀

∫ 1

0

B(t)2

g2(G−1(t))
dt,
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with Gn the empirical d.f. on a sample of size n and d.f G. We refer to del Barrio, Giné and Utzet
(2005) and Samworth and Johnson (2004) for details. Condition (4.4) is a strong assumption on the
tails of G and does not include, for instance, normal distributions. On the other hand, under the
less stringent condition

∫ 1

0

∫ 1

0

(s ∧ t− st)2

g2(G−1(s))g2(G−1(t))
dsdt <∞, (5.10)

which is satisfied for normal laws, it can be shown that the limit as δ → 0
∫ 1−δ

δ

B(t)2 − t(1− t)

g2(G−1(t))
dt,

exists in probability and can be expressed as a weighted sum of independent, centered χ2
1 random

variables, see del Barrio, Giné and Utzet (2005) for details. Then, denoting that kind of limits as
∫ 1
0

B(t)2−t(1−t)
g2(G−1(t)) dt, under some additional tail conditions (still satisfied by normal laws; these are

conditions (2.10) and (2.22) to (2.24) in the cited reference) we have

nW 2
2 (Gn, G) − cn ⇀

∫ 1

0

B(t)2 − t(1− t)

g2(G−1(t))
dt,

with cn =
∫ 1−1/n
1/n

EB(t)2

g2(G−1(t))dt. A simple look at the proof of Theorem 5.1 shows that under these

conditions (instead of (5.8)) we can conclude that

nAn(Θ)− J−1
J2 cn ⇀

1
J

∑J
j=1

∫ 1
0

B̃2
j (t)−

J−1

J
t(1−t)

g2(G−1(t)) dt− 1
2Y

TΣ−1Y. (5.11)

Our last comment about the assumptions for Theorem 5.1 concerns the compactness assumption
on the parameter space. This may lead in some examples to artificial constraints on the parameter
space. On the other hand, under some conditions (see, e.g., Corollary 3.2.3 in Van der Vaart and Wellner
(1996)) it is possible to prove that the global minimizer of the empirical criterion lies in a compact
neighborhood of the true minimizer. In such cases the conclusion of Theorem 5.1 would extend
for the unconstrained deformation model. As a toy example consider the case of deformations by
changes in scale, with J = 2. As above we fix the parameters of, say, the first sample, and consider
the family of deformations ϕσ(x) = σx. We assume that the deformation model holds, with the first
sample having d.f. G and the second 1

σ
∗
G−1 (hence, σ∗ is the unique minimizer of U(σ)). We obtain

that Un(σ) = 1
4

∫ 1
0 (F

−1
n,1 − σF−1

n,2)
2, from which we see that σ̂n =

( ∫

F−1
n,1F

−1
n,2

)

/
( ∫

(F−1
n,2)

2
)

→ σ∗

a.s. and thus the conclusion of Theorem 5.1 remains valid if we take Θ = (0,∞). To avoid further
technicalities we prefer to think of this as a different problem that should be handled in an ad hoc
way for each particular example.

Turning back to our goal of assessment of the deformation model (2.1) based on the observed
value of An(Θ), Theorem 5.1 gives some insight into the threshold levels for rejection of the null in
the testing problem (2.5). However, the limiting distribution still depends on unknown objects and
designing a tractable test requires to estimate the quantiles of this distribution. This is the goal of
our next result.

We consider bootstrap samplesX∗
1,j , . . . ,X

∗
mn,j of i.i.d. observations sampled from µnj , write µ

∗
mn,j

for the empirical measure on X∗
1,j , . . . ,X

∗
mn,j and A

∗
mn

(Θ) for the minimal alignment cost computed
from the bootstrap samples. We also write ĉn(α) for the conditional α quantile of mnA

∗
mn

(Θ) given
the Xi,j.

Corollary 5.2. Assume that the semiparametric deformation models holds. If mn → ∞, and
mn/n→ 0, then under assumptions (5.3) to (5.8) we have that

P (nAn(Θ) > ĉn(1− α)) → α. (5.12)

12



Corollary 5.2 show that the test that rejects H0 : A(Θ) = 0 (which, as disussed in section 2,
is true if and only if the deformation model holds) when nAn(Θ) > ĉn(1 − α) is asymptotically of
level α. It is easy to check that the test is consistent against alternatives that satisfy regularity and
integrability assumptions as in Theorem 5.1.

The key to Corollary 5.2 is that under the assumptions a bootstrap CLT holds formnA
∗
mn

(Θ). As
with Theorem 5.1, the integrability conditions on the errors can be relaxed and still have a bootstrap
CLT. That would be the case if we replace (5.12) by (5.10) and the additional conditions mentioned
above under which (5.11) holds. Then, the further assumption that the errors have a log-concave
distribution and mn = O(nρ) for some ρ ∈ (0, 1) would be enough to prove a bootstrap CLT, see the
comments after the proof of Corollary 5.2 in the Appendix. In particular, a bootstrap CLT holds for
Gaussian tails.

6 Appendix

6.1 Proofs for section 3

Proof of Theorem 3.1. We set Tn = Wr(νn, η) and T ′
n = Wr(ν

′
n, η) and Πn(η) for the set of

probabilities on {1, . . . , n} × R
d with first marginal equal to the discrete uniform distribution on

{1, . . . , n} and second marginal equal to η and note that we have Tn = infπ∈Πn(η) a(π) if we denote

a(π) =

(

∫

{1,...,n}×Rd

‖Yi − z‖rdπ(i, z)
)1/r

.

We define similarly a′(π) from the Y ′
i sample to get T ′

n = infπ∈Πn(η) a
′(π). But then, using the

inequality |‖a‖ − ‖b‖| ≤ ‖a− b‖,

|a(π) − a′(π)| ≤
(

∫

{1,...,n}×Rd

‖Yi − Y ′
i ‖rdπ(i, z)

)1/r

=

(

1

n

n
∑

i=1

‖Yi − Y ′
i ‖r
)1/r

This implies that

|Tn − T ′
n|r ≤

1

n

n
∑

i=1

‖Yi − Y ′
i ‖r.

If we take now (Y, Y ′) to be an optimal coupling of ν and ν ′, so that E [‖Y − Y ′‖r] = W r
r (ν, ν

′)
and (Y1, Y

′
1), . . . , (Yn, Y

′
n) to be i.i.d. copies of (Y, Y ′) we see that for the corresponding realizations

of Tn and T ′
n we have

E
[

|Tn − T ′
n|r
]

≤ 1

n

n
∑

i=1

E
[

‖Yi − Y ′
i ‖r
]

=Wr(ν, ν
′)r.

But this shows that Wr(L(Tn),L(T ′
n)) ≤Wr(ν, ν

′), as claimed.
�

Proof of Theorem 3.2. We write Vr,n = Vr(νn1,1, . . . , νnJ ,J) and V
′
r,n = Vr(ν

′
n1,1

, . . . , ν ′nJ ,J
). We

note that

V r
r,n = inf

π∈Π(U1,...,UJ)

∫

T (i1, . . . , iJ )dπ(i1, . . . , iJ ),
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where Uj is the discrete uniform distribution on {1, . . . , nj} and T (i1, . . . , iJ) = minz∈Rd
1
J

∑J
j=1 ‖Yij ,j

−z‖r. We write T ′(i1, . . . , iJ ) for the equivalent function computed from the Y ′
i,j’s. Hence we have

|T (i1, . . . , iJ )1/r − T ′(i1, . . . , iJ)
1/r|r ≤ 1

J

J
∑

j=1

‖Yij ,j − Y ′
ij ,j‖

r,

which implies
∣

∣

∣

∣

∣

(∫

T (i1, . . . , iJ )dπ(i1, . . . , iJ )

)1/r

−
(∫

T (i1, . . . , iJ )dπ(i1, . . . , iJ)

)1/r
∣

∣

∣

∣

∣

r

≤
∫

1

J

J
∑

j=1

‖Yij ,j − Y ′
ij ,j‖

rdπ(i1, . . . , iJ )

=
1

J

J
∑

j=1

∫

‖Yij ,j − Y ′
ij ,j‖

rdπ(i1, . . . , iJ ) =
1

J

J
∑

j=1

(

1

nj

nj
∑

i=1

‖Yi,j − Y ′
i,j‖r

)

So,

|Vr,n − V ′
r,n|r ≤

1

J

J
∑

j=1

(

1

nj

nj
∑

i=1

‖Yi,j − Y ′
i,j‖r

)

.

If we take (Yj, Y
′
j ) to be an optimal coupling of νj and ν

′
j and (Y1,j , Y

′
1,j), . . . , (Ynj ,j, Y

′
nj ,j

) to be i.i.d.

copies of (Yj, Y
′
j ), for j = 1, . . . , J , then we obtain

E
[

|Vr,n − V ′
r,n|r

]

≤ 1

J

J
∑

j=1

(

1

nj

nj
∑

i=1

E
[

‖Yi,j − Y ′
i,j‖r

]

)

=
1

J

J
∑

j=1

W r
r (νj, ν

′
j).

The conclusion follows.
�

Proof of Theorem 3.3. We argue as in the proof of Theorem 3.2 and write

An,r(G) = inf
ϕ∈G

[

inf
π∈Π(U1,...,UJ)

∫

T (ϕ; i1, . . . , iJ )dπ(i1, . . . , iJ )

]

,

where T (ϕ; i1, . . . , iJ ) = miny∈R 1
J

∑J
j=1 ‖Zij ,j(ϕj) − y‖r. We write T ′(ϕ; i1, . . . , iJ) for the same

function computed on the Z ′
i,j(ϕj)’s. Now, from the fact ‖Zi,j(ϕj) − Z ′

i,j(ϕj)‖r ≤ Lr‖Xi,j −X ′
i,j‖r

we see that

|T (ϕ; i1, . . . , iJ )1/r − T ′(ϕ; i1, . . . , iJ)
1/r|r ≤ Lr 1

J

J
∑

j=1

‖Xij ,j −X ′
ij ,j‖

r

and, as a consequence, that

|Vr(µn,1(ϕ1), . . . , µn,J(ϕJ ))− Vr(µ
′
n,1(ϕ1), . . . , µ

′
n,J(ϕJ))|r ≤

Lr

J

J
∑

j=1

nj
∑

ij=1

1

nj
‖Xij ,j −X ′

ij ,j‖
r

which implies

|(An,r(G))1/r − (A′
n,r(G))1/r |r ≤

Lr

J

J
∑

j=1

(

1
nj

∑nj

i=1 ‖Xi,j −X ′
i,j‖r

)

.
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If, as in the proof of Theorem 3.2, we assume that (Xi,j ,X
′
i,j), i = 1, . . . , nj are i.i.d. copies of an

optimal coupling for µj and µ′j , with different samples independent from each other we obtain that

E

[

|(An,r(G))1/r − (A′
n,r(G))1/r |r

]

≤ Lr

J

J
∑

j=1

W r
r (µj, µ

′
j).

�

6.2 Proofs for sections 4 and 5

We provide here proofs of the main results in sections 4 and 5. Our approach relies on the consider-
ation the processes

Cn(ϕ) =
√
n(Un(ϕ) − U(ϕ)) and C(ϕ) =

1

J

J
∑

j=1

cj(ϕ), ϕ ∈ G, (6.1)

where Un(ϕ) = V 2
2 (µn,1(ϕ1), . . . , µn,J(ϕJ)), U(ϕ) = V 2

2 (µ1(ϕ1), . . . , µJ(ϕJ)),

cj(ϕ) = 2

∫ 1

0
ϕ′
j ◦ F−1

j (ϕj ◦ F−1
j − F−1

B (ϕ))
Bj

fj ◦ F−1
j

and (Bj)1≤j≤J are independent standard Brownian bridges on (0, 1). We prove below that the
empirical deformation cost process Cn converges weakly to C as random elements in L∞(G), the
space of bounded, real valued functions on G. Theorem 4.1 will follow as a corollary of this result.

We will make frequent use in this section of the following technical Lemma, which follows easily
from the triangle and Holder’s inequalities. We omit the proof.

Lemma 6.1. Under Assumption (4.6)

i) supϕj∈Gj

√
n
∫

1

n

0 (ϕj ◦ F−1
j )2 → 0, supϕj∈Gj

√
n
∫ 1
1− 1

n

(ϕj ◦ F−1
j )2 → 0.

ii) supϕj∈Gj

√
n
∫

1

n

0 (ϕj ◦ F−1
n,j )

2 → 0, supϕj∈Gj

√
n
∫ 1
1− 1

n

(ϕj ◦ F−1
n,j )

2 → 0 in probability.

iii) If moreover (4.3) holds then for all 1 ≤ j, k ≤ J

∫ 1

0

√

t(1− t)

fk(F
−1
k (t))

sup
ϕj∈Gj

∣

∣

∣
ϕj(F

−1
j (t))

∣

∣

∣
dt <∞ (6.2)

Theorem 6.2. Under assumptions (4.2) to(4.6) Cn and C have a.s. trajectories in L∞(G). Fur-
thermore, C is a tight Gaussian random elemnt and Cn converges weakly to C in L∞(G).

Proof. We start noting that Un(ϕ) =
1
J

∑J
j=1

∫ 1
0 (ϕj ◦F−1

n,j −F−1
n,B(ϕ))

2 and U(ϕ) = 1
J

∑J
j=1

∫ 1
0 (ϕj ◦

F−1
j −F−1

B (ϕ))2 with F−1
n,B(ϕ) =

1
J

∑J
j=1 ϕj◦F−1

n,j , F
−1
B (ϕ) = 1

J

∑J
j=1 ϕj◦F−1

j . Now, (4.6) implies that

supϕj∈Gj

∫ 1
0 (ϕj◦F−1

j )2 <∞. Similarly, assumption (4.5) impliesKj := supϕj∈Gj ,x∈(cj ,dj) |ϕ′
j(x)| <∞.

Noting that
∫ 1
0 (ϕj ◦ F−1

n,j )
2 ≤ 2

∫ 1
0 (ϕj ◦ F−1

j )2 + 2K2
j

∫ 1
0 (F

−1
n,j − F−1

j )2, we see that supϕj∈Gj

∫ 1
0 (ϕj ◦
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F−1
n,j )

2 < ∞ a.s. and, with little additional effort, conclude that Cn has a.s. bounded trajectories.

On the other hand, writing dj,k(ϕ) =
∫ 1
0 ϕ

′
j ◦ F−1

j
Bj

fj◦F−1

j

ϕk ◦ F−1
k we see that for ϕ, ρ ∈ G

|dj,k(ϕ)− dj,k(ρ)| ≤ ‖ϕ′
j − ρ′j‖∞

∣

∣

∣

∫ 1

0

Bk

fk ◦ F−1
k

ϕk ◦ F−1
k

∣

∣

∣

+
∣

∣

∣

∫ 1

0
ρ′j ◦ F−1

j

Bk

fk ◦ F−1
k

(ϕk ◦ F−1
k − ρk ◦ F−1

k )
∣

∣

∣

≤ ‖ϕ′
j − ρ′j‖∞ sup

ϕk∈Gk

∣

∣

∣

∫ 1

0

Bk

fk ◦ F−1
k

ϕk ◦ F−1
k

∣

∣

∣

+ sup
(cj ,dj)

|ρ′j |
(

∫ 1
0

∣

∣

Bk

fk◦F−1

k

∣

∣

q
)1/q(

∫ 1
0 |ϕk ◦ F−1

k − ρk ◦ F−1
k |p0

)1/p0

But using iii) of Lemma 6.1

E

[

sup
ϕk∈Gk

∣

∣

∣

∫ 1

0

Bk

fk ◦ F−1
k

ϕk ◦ F−1
k

∣

∣

∣

]

≤
∫ 1

0

√

t(1− t)

fk(F
−1
k (t))

sup
ϕj∈Gj

|ϕj(F
−1
j (t))|dt <∞.

Hence, almost surely, supϕ∈G

∣

∣

∣

∫ 1
0

Bj

fj◦F−1

j

ϕj ◦F−1
j

∣

∣

∣
<∞. Furthermore, from assumption (4.3), we get

that, a.s.,
∫ 1
0

( Bj

fj◦F−1

j

)q
< ∞ and thus, for some a.s. finite random variable T , |dj,k (ϕ)− dj,k (ρ)| ≤

T ‖ϕ− ρ‖G for ϕ, ρ ∈ G. From this conclude that the trajectories of C are a.s. bounded, uniformly
continuous functions on G, endowed with the norm ‖·‖G introduced in (4.5). In particular, C is a
tight random element in L∞(G), see, e.g., p. 39-41 in Van der Vaart and Wellner (1996).

From this point we pay attention to the quantile processes, namely,

ρn,j(t) =
√
nfj(F

−1
j (t))(F−1

n,j (t)− F−1
j (t)), 0 < t < 1, j = 1, . . . , J.

A trivial adaptation of Theorem 2.1, p. 381 in Csörgő and Horváth (1993) shows that, under (4.2),
there exist, on a rich enough probability space, independent versions of ρn,j and independent families
of Brownian bridges {Bn,j}n=1∞, j = 1, . . . , J , satisfying

n1/2−ν sup
1/n≤t≤1−1/n

|ρn,j(t)−Bn,j(t)|
(t(1− t))ν

=

{

Op(log(n)) if ν = 0
Op(1) if 0 < ν ≤ 1/2

(6.3)

We work, without loss of generality, with these versions of ρn,j and Bn,j. We show now that

sup
ϕ∈G

∣

∣

∣Cn(ϕ)− Ĉn(ϕ)
∣

∣

∣→ 0 in probability (6.4)

with Ĉn(ϕ) =
1
J

∑J
j=1 cn,j (ϕ) and cn,j(ϕ) = 2

∫ 1
0 ϕ

′
j ◦ F−1

j (ϕj ◦ F−1
j − F−1

B (ϕ))
Bn,j

fj◦F−1

j

. To check this

we note that some simple algebra yields Cn(ϕ) =
2
J

∑J
j=1 c̃n,j +

1
J

∑J
j=1 r̃n,j with

c̃n,j =
√
n

∫ 1

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )(ϕj ◦ F−1

j − F−1
B (ϕ)),

r̃n,j =
√
n

∫ 1

0
[(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )− (F−1

n,B(ϕ) − F−1
B (ϕ))]2.
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From the elementary inequality (a1 + · · ·+ aJ)
2 ≤ Ja21 + · · ·+ Ja2J we get that

1

J

J
∑

j=1

r̃n,j ≤
4
√
n

J

J
∑

j=1

∫ 1

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )2 ≤ 4

√
n

J

J
∑

j=1

Kj

∫ 1

0
(F−1

n,j − F−1
j )2,

with Kj := supϕj∈Gj ,x∈(cj ,dj) |ϕ′
j(x)| < ∞, as above. Now we can use (4.4) and argue as in the

proof of Theorem 2 in Álvarez-Esteban et al. (2008) to conclude that
√
n
∫ 1
0 (F

−1
n,j − F−1

j )2 → 0 in
probability and, as a consequence, that

sup
ϕ∈G

∣

∣

∣Cn(ϕ)−
1

J

J
∑

j=1

c̃n,j (ϕ)
∣

∣

∣→ 0 in probability. (6.5)

On the other hand, the Cauchy-Schwarz’s inequality shows that

n
(

∫ 1

n

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )(ϕj ◦ F−1

j − F−1
B (ϕ))

)2

≤
√
n

∫ 1

n

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )2

√
n

∫ 1

n

0
(ϕj ◦ F−1

j − F−1
B (ϕ))2

and using i) and ii) of Lemma 6.1, the two factors converge to zero uniformly in ϕ. A similar
argument works for the upper tail and allows to conclude that we can replace in (6.5) c̃n,j(ϕ) with

˜̃cn,j(ϕ) := 2
√
n
∫ 1− 1

n
1

n

(ϕj ◦ F−1
n,j − ϕj ◦ F−1

j )(ϕj ◦ F−1
j − F−1

B (ϕ)). Moreover,

sup
ϕ∈G

∣

∣

∣

∫ 1

n

0
ϕ′
j ◦ F−1

j

Bn,j

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣

∣

∣
≤ Kj

∫ 1

n

0

∣

∣

∣

Bn,j

fj ◦ F−1
j

∣

∣

∣
sup
ϕ∈G

∣

∣(ϕj ◦ F−1
j − F−1

B (ϕ))
∣

∣

and by iii) of Lemma 6.1 and Cauchy-Schwarz’s inequality

E

[

∫ 1

n

0

∣

∣

∣

Bn,j

fj ◦ F−1
j

∣

∣

∣
sup
ϕ∈G

∣

∣(ϕj ◦F−1
j −F−1

B (ϕ))
∣

∣

]

≤
∫ 1

n

0

√

t(1− t)

fj(F
−1
j (t))

sup
ϕ∈G

∣

∣ϕj(F
−1
j (t))−F−1

B (ϕ)(t)
∣

∣dt→ 0.

Hence, supϕ∈G

∣

∣

∣

∫
1

n

0 ϕ′
j ◦F−1

j
Bn,j

fj◦F−1

j

(ϕj ◦F−1
j −F−1

B (ϕ))
∣

∣

∣
→ 0 in probability and similarly for the right

tail. Now, for every t ∈ (0, 1) we have

ϕj ◦ F−1
n,j (t)− ϕj ◦ F−1

j (t) = ϕ′
j(Kn,ϕj

(t))(F−1
n,j (t)− F−1

j (t)) (6.6)

for some Kn,ϕj
(t) between F−1

n,j (t) and F
−1(t). Therefore, (recall (6.6)), to prove (6.4) it suffices to

show that

sup
ϕ∈G

∣

∣

∣

∫ 1− 1

n

1

n

ϕ′
j(F

−1
j (t))

Bn,j(t)

fj(F
−1
j (t))

(ϕj(F
−1
j (t))− F−1

B (ϕ)(t))dt (6.7)

−
∫ 1− 1

n

1

n

ϕ′
j(Kn,ϕj

(t))
ρn,j(t)

fj(F
−1
j (t))

(ϕj(F
−1
j (t)) − F−1

B (ϕ)(t))dt
∣

∣

∣
→ 0

in probability. To check it we take ν ∈ (0, 1/2) in (6.3) to get

∫ 1− 1

n

1

n

|ρn,j(t)−Bn,j(t)|
fj(F

−1
j (t))

sup
ϕ∈G

∣

∣ϕj(F
−1
j (t))− F−1

B (ϕ)(t)
∣

∣dt

≤ nν−
1

2OP (1)

∫ 1− 1

n

1

n

(t(1− t))ν

fk(F
−1
k (t))

sup
ϕ∈G

∣

∣ϕj(F
−1
j (t))− F−1

B (ϕ)(t)
∣

∣dt→ 0 (6.8)
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in probability (using dominated convergence and iii) of Lemma 6.1). We observe next that, for each
t ∈ (0, 1), supϕj∈Gj

|Kn,ϕj
(t) − F−1

j (t)| → 0 a.s., since Kn,ϕj
(t) lies between F−1

n,j (t) and F−1
j (t).

Therefore, using (4.5) we see that supϕj∈Gj
|ϕ′

j(Kn,ϕj
(t)) − ϕ′

j(F
−1
j (t)| → 0 a.s. while, on the other

hand, supϕj∈Gj
|ϕ′

j(Kn,ϕj
(t))−ϕ′

j(F
−1
j (t))| ≤ 2Kj . But then, by dominated convergence we get that

E

[

sup
ϕj∈Gj

|ϕ′
j(Kn,ϕj

(t))− ϕ′
j(F

−1
j (t))|2

]

→ 0.

Since by iii) of Lemma 6.1 we have that t 7→
√

t(1−t)

fj(F
−1

j (t))
supϕ∈G |ϕj(F

−1
j (t))− F−1

B (ϕ)(t)| is integrable
we conclude that

E sup
ϕ∈G

∫ 1− 1

n

1

n

|ϕ′
j(Kn,ϕj

(t))− ϕ′
j(F

−1
j (t))| |Bn,j(t)|

fj(F
−1
j (t))

|ϕj(F
−1
j (t))− F−1

B (ϕ)(t)|dt

tends to 0 as n→ ∞ and, consequently,

sup
ϕ∈G

∫ 1− 1

n

1

n

|ϕ′
j(Kn,ϕj

(t))− ϕ′
j(F

−1
j (t))| |Bn,j(t)|

fj(F
−1
j (t))

|ϕj(F
−1
j (t))− F−1

B (ϕ)(t)|dt

vanishes in probability. Combining this fact with (6.8) we prove (6.7) and, as a consequence, (6.4).
Finally, observe that for all n ≥ 1, C has the same law as Ĉn. This completes the proof.

�

Proof of Theorem 4.1. From Skohorod Theorem (see, e.g., Theorem 1.10.4 in Van der Vaart and Wellner
(1996)) we know that there exists on some probability space versions of Cn and C for which con-
vergence of Cn to C holds almost surely. From now on, we place us on this space and observe
that √

n(An(G)−A(G)) ≤
√
n inf

Γ
Un −

√
n inf

Γ
U = inf

ϕ∈Γ
Cn(ϕ). (6.9)

On the other hand, if we consider the (a.s.) compact set Γn = {ϕ ∈ G : U (ϕ) ≤ infG U+ 2√
n
‖Cn‖∞},

then, if ϕ /∈ Γn, Un (ϕ) ≥ infG U + 1√
n
‖Cn‖∞ , while if ϕ ∈ Γ, then, Un (ϕ) ≤ infG U + 1√

n
‖Cn‖∞.

Thus, necessarily, infG Un = infΓn Un = infΓn(Un − U + U) ≥ infΓn(Un − U) + infΓn U = infΓn(Un −
U) + infΓ U . Together with (6.9) this entails

inf
ϕ∈Γn

Cn(ϕ) ≤
√
n(An(G)−A(G)) ≤ inf

ϕ∈Γ
Cn(ϕ) (6.10)

Note that for the versions that we are considering ‖Cn − C‖∞ → 0 a.s.. In particular, this implies
that infΓCn → infΓC a.s.. Hence, the proof will be complete if we show that a.s.

inf
Γn

Cn → inf
Γ
C. (6.11)

To check this last point, consider a sequence ϕn ∈ Γn such that Cn(ϕn) ≤ infΓn Cn + 1
n . By

compactness of G, taking subsequences if necessary, ϕn → ϕ0 for some ϕ0 ∈ G. Continuity of U
yields U(ϕn) → U(ϕ0) and as a consequence, that U(ϕ0) ≤ infG U , that is, ϕ0 ∈ Γ a.s.. Furthermore,

∣

∣Cn(ϕn)−C(ϕ0)
∣

∣ ≤ ‖Cn − C‖∞ + |C (ϕn)−C (ϕ0)| → 0.

This shows that
lim inf inf

Γn

Cn ≥ C (ϕ0) > inf
Γ
C (6.12)
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and yields (6.11). This completes the proof.
�

Proof of Corollary 4.2. In Theorem 3.3, take µ′j = µn,j. Then, writing L∗ for the conditional
law given the Xi,j , the result of Theorem 3.3 reads

W 2
2 (L((Amn(G))1/2),L∗((A∗

mn
(G))1/2)) ≤ L2 1

J

J
∑

j=1

W 2
2 (µj, µn,j),

with L = supϕ∈G

∥

∥

∥ϕ′
j

∥

∥

∥

∞
<∞. SinceWr(L(aX+b),L(aY +b)) = aWr(L(X),L(Y )) for a > 0, b ∈ R,

the last bound gives

W 2
2 (L

(√
mn

(

(Amn(G))1/2 − (A(G))1/2
))

,L∗(√mn

(

(A∗
mn

(G))1/2 − (A(G))1/2
))

)

≤ L2mn√
n

1

J

J
∑

j=1

√
nW 2

2 (µj , µn,j).

As noted in the proof of Theorem 4.1, the assumptions imply that
√
nW 2

2 (µj, µn,j) vanishes in
probability. Also, Theorem 4.1 and the delta method yield that

√
mn

(

(Amn(G))1/2 − (A(G))1/2
)

⇀
1

2(A(G))1/2 γ,

with γ the limiting law there, which, combined to the above bound, shows that

√
mn

(

(A∗
mn

(G))1/2 − (A(G))1/2
)

⇀
1

2(A(G))1/2 γ

in probability. A further use of the delta method yields

√
mn

(

A∗
mn

(G) −A(G)
)

⇀ γ

in probability. The result follows now from Lemma 1 in Janssen and Pauls (2003). �

Proof of Theorem 5.1. We assume for simplicity that p = 1. The general case follows with
straightforward changes. Let us observe that

Un(θ) =
1

J

∑

j=1

∫ 1

0
(ψj(θj , G

−1
n,j)− 1

J

∑J
k=1ψk(θk, G

−1
n,k))

2,

with Gn,j the empirical d.f. on the εi,j ’s (which are i.i.d. G). A similar expression, replacing Gn,j

with G is valid for U(θ). Then (5.6) implies that supθ |Un(θ)− U(θ)| → 0, from which (recall (5.3)
it follows that θ̂n → θ∗ in probability.

From (5.4) we have that Un is a C2 function whose derivatives can be computed by differentiation
under the integral sign. This implies that

DjUn (θ) =
2

J

∫ 1

0
Dψj(θj , G

−1
n,j)(ψj(θj , G

−1
n,j)− 1

J

∑J
k=1ψk(θk, G

−1
n,k)),

Dp,qUn(θ) = − 2

J2

∫ 1

0
Dψp(θp, G

−1
n,p)Dψq(θq, G

−1
n,q), p 6= q (6.13)
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and

Dp,pUn(θ) =
2

J

∫ 1

0
D2ψp(θp, G

−1
n,p)(ψj(θj , G

−1
n,j)− 1

J

∑J
k=1ψk(θk, G

−1
n,k))

+
2(J − 1)

J2

∫ 1

0
(Dψp(θp, G

−1
n,p))

2.

Using also (5.5) we obtain similar expressions for the derivatives of U(θ), replacing everywhere G−1
n,j

with G−1. We write DUn(θ) = (DjUn(θ))1≤j≤J , DU(θ) = (DjU(θ))1≤j≤J for the gradients and
Σn(θ) = [Dp,qUn(θ)]1≤p,q≤J , Σ(θ) = [Dp,qU(θ)]1≤p,q≤J for the Hessians of Un and U . Note that
Σ∗ = Σ(θ∗) is assumed to be invertible.

We write now ρn,j for the quantile process based on the εi,j’s. Observe that (5.7) ensures that
we can assume, without loss of generality, that there exist independent Brownian bridges, Bn,j,
satisfying (6.3). Now, recalling that ψj(θ

∗
j , x) = x we see that

√
nDjUn(θ

⋆) =
2

J

∫ 1

0
Dψj(θ

∗
j , G

−1
n,j(t))

ρn,j(t)− 1
J

∑J
k=1 ρn,k(t)

g(G−1(t))
dt. (6.14)

Now, using (5.5) and arguing as in the proof of Theorem 4.1 we conclude that

∣

∣

∣

∣

∣

∫ 1

0
Dψj(θ

∗
j , G

−1
n,j(t))

ρn,k(t)

g (G−1(t))
dt−

∫ 1

0
Dψj(θ

∗
j , G

−1(t))
Bn,k(t)

g (G−1(t))
dt

∣

∣

∣

∣

∣

→ 0

in probability and, consequently,

∣

∣

∣

∣

∣

√
nDjUn(θ

⋆)− 2

J

∫ 1

0
Dψj(θ

∗
j , G

−1(t))
Bn,j(t)− 1

J

∑J
k=1Bn,k(t)

g (G−1(t))
dt

∣

∣

∣

∣

∣

→ 0 (6.15)

in probability.
A further Taylor expansion of DjUn around θ∗ shows that for some θ̃nj between θ̂n and θ⋆ we

have
DjUn(θ̂n) = DjUn(θ

⋆) + (D1jUn(θ̃
n
j ), . . . ,D

2
JjUn(θ̃

n
j )) · (θ̂n − θ⋆)

and because θ̂n is a zero of DUn, we obtain

−DjUn(θ
⋆) = (D1jUn(θ̃

n
j ), . . . ,DJjUn(θ̃

n
j )) · (θ̂n − θ⋆).

Writing Σ̃n for the J × J matrix whose J-th row equals (D1jUn(θ̃
n
j ), . . . ,DJjUn(θ̃

n
j )), j = 1, . . . , J ,

we can rewrite the last expansion as

−
√
nDUn(θ

∗) = Σ̃n

√
n(θ̂n − θ⋆). (6.16)

Now, recalling (6.13), assumptions (5.4) and (5.5) yield that Σ̃n → Σ∗ = Σ(θ∗) in probability. As
a consequence, (6.16) and (6.15) together with Slutsky’s Theorem complete the proof of the second
claim.

Finally, for the proof of the last claim, since DUn(θ̂n) = 0, a Taylor expansion around θ̂n shows
that

nUn(θ
∗)− nUn(θ̂n) =

1

2
(
√
n(θ̂n − θ∗))′Σ(θ̃n)(

√
n(θ̂n − θ∗)) (6.17)
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for some θ̃n between θ̂n and θ∗. Arguing as above we see that Σ(θ̃n) → Σ∗ in probability. Hence, to
complete the proof if suffices to show that

nUn(θ
∗)− 1

J

k
∑

j=1

∫ 1

0

(

Bn,j(t)− 1
J

∑J
k=1Bn,k(t)

)2

g(G−1(t))2
dt→ 0

in probability. Since

nUn(θ
∗) =

1

J

k
∑

j=1

∫ 1

0

(

ρn,j(t)− 1
J

∑J
k=1 ρn,k(t)

)2

g(G−1(t))2
dt,

this amounts to proving that
∫ 1

0

(

ρn,j(t)−Bn,j(t)
)2

g(G−1(t))2
dt→ 0

in probability. Taking ν ∈ (0, 12) in (6.3) we see that

∫ 1− 1

n

1

n

(

ρn,j(t)−Bn,j(t))
)2

g(G−1(t))2
dt ≤ OP (1)

1

n1−2ν

∫ 1− 1

n

1

n

(t(1 − t))2ν

g(G−1(t))2
→ 0,

using condition (5.8) and dominated convergence. From (5.8) we also see that
∫ 1
1− 1

n

Bn,j(t)2

g(G−1(t))2
dt→ 0 in

probability. Condition (5.8) implies also that
∫ 1
1− 1

n

ρn,j(t)2

g(G−1(t))2
dt→ 0 in probability, see Samworth and Johnson

(2004). Similar considerations apply to the left tail and complete the proof.
�

Proof of Corollary 5.2. Writing L∗ for the conditional law given theXi,j’s, we see from Theorem
3.3 that

W 2
2 (L(

√
mn(Amn(Θ))1/2),L∗(

√
mn(A

∗
mn

(Θ))1/2) ≤ L
mn

n

1

J

J
∑

j=1

nW 2
2 (µ, µ̃n,j),

where L = supλ,x,j ψ
′
j(λ, x), µ denotes the law of the errors, εi,j , and µ̃n,j the empirical d.f. on

ε1,j , . . . , εn,j . Note that L < ∞ by (5.6), while nW 2
2 (µ, µ̃n,j) = OP (1) as in the proof of Theorem

5.1. Hence, we conclude that

mnA
∗
mn

(Θ)⇀
1

J

J
∑

j=1

∫ 1

0

( B̃j

g ◦G−1

)2
− 1

2
Y TΣ−1Y

in probability. The conclusion now follows from Lemma 1 in Janssen and Pauls (2003).
�

If centering were necessary and we had (5.11) rather than the limit in Theorem 5.1 we could adapt
the last argument as follows. If A and B are positive random variables then E|A − B| ≤ E(A1/2 −
B1/2)2+2(EAE(A1/2−B1/2)2)1/2. We can apply this bound to (an optimal coupling of) mnAmn(Θ)
and mnA

∗
mn

(Θ). Now if the errors have a log-concave distribution then nEW 2
2 (µ, µ̃n,j) = O(log n),

see Corollary 6.12 in Bobkov and Ledoux (2014) and we conclude that

W1(L(mnAmn(Θ)− cmn),L∗(mnA
∗
mn

(Θ)− cmn)) =W1(L(mnAmn(Θ)),L∗(mnA
∗
mn

(Θ)))

vanishes in probability if mn = O(nρ) for some ρ ∈ (0, 1) . As a consequence,

mnA
∗
mn

(Θ)− cmn ⇀
1

J

J
∑

j=1

∫ 1

0

B̃2
j − EB̃2

j

(g ◦G−1)2
− 1

2
Y TΣ−1Y

in probability.
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