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Abstract: Wasserstein barycenters and variance-like criterion using

Wasserstein distance are used in many problems to analyze the homo-

geneity of collections of distributions and structural relationships be-

tween the observations. We propose the estimation of the quantiles of the

empirical process of the Wasserstein’s variation using a bootstrap proce-

dure. Then we use these results for statistical inference on a distribution

registration model for general deformation functions. The tests are based

on the variance of the distributions with respect to their Wasserstein’s

barycenters for which we prove a central limit theorem.
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1. Introduction

Analyzing the variability of large data sets is a difficult task when the infor-
mation conveyed by the observations possesses an inner geometry far from
the Euclidean one. Indeed, deformations on the data such as translations,
scale location models for instance or more general warping procedures pre-
vent the use of the usual methods in statistics. Looking for a way to measure
structural relationships between data is of high importance. This kind of is-
sues arises when considering the estimation of probability measures observed
with deformations. This situation occurs often in biology, for example when
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considering gene expression. However, when dealing with the registration of
warped distributions, the literature is scarce. We mention here the method
provided for biological computational issues known as quantile normalization
in Gallón, Loubes and Maza (2013) and references therein. Very recently us-
ing optimal transport methodologies, comparisons of distributions have been
studied using a notion of Fréchet mean for distributions, see for instance in
Agueh and Carlier (2011) or a notion of depth as in Chernozhukov et al.
(2014).

In Czado and Munk (1998) and Munk and Czado (1998), a pioneer work
study the existence of relationships between distributions F and G by us-
ing a discrepancy measure between the distribution ∆(F,G) built using the
Wasserstein distance. The authors consider the assumption ∆(F,G) > ∆0

versus ∆(F,G) ≤ ∆0 for ∆0 a chosen threshold. Thus when the test is
rejected, this implies that there is a statistical evidence that the two distri-
butions are similar with respect to the chosen criterion. In this direction, we
build a test for a collection of J distributions µ1, . . . , µJ . For this we define a
notion of variation of distributions using the Wasserstein distances Wr over
probabilities with r ≥ 1 finite moments Wr, which generalizes the notion of
variance for random distributions over R

d. This quantity can be defined as

Vr (µ1, . . . , µJ) = inf
η∈Wr(Rd)


 1

J

J∑

j=1

W r
r (µj, η)




1/r

which measures the spread of the distributions. We will provide a criterion to
measure the similarities between the distributions by using this Wasserstein
variation. Further, we will show how this quantity can be bootstrapped in
order to build confidence tests.

The natural frame for application is given by observations drawn from a
deformation model in the sense that we observe j = 1, . . . , J independent
samples of random variables in R

d following the distribution µj such that

Xi,j =
(
ϕ⋆
j

)−1
(εi,j) ,

for i = 1, . . . , n where (εi,j) defined for all 1 6 i 6 n, 1 6 j 6 J are i.i.d.
random variables with unknown distribution µ. The functions ϕ⋆

j belong
to a class of deformation G, which models how the distributions µj’s can be
warped one to another by function in the chosen class. This model is the nat-
ural extension of the functional deformation models studied in the statistical
literature for which estimation procedures are provided in Gamboa, Loubes and Maza
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(2007) while testing issues are tackled in Collier and Dalalyan (2015). Within
this framework, statistical inference on deformation models for distributions
have been studied first in Freitag and Munk (2005), where tests are provided
in the case of parametric functions, while the estimation of the parameters
is studied in Agulló-Antolín et al. (2015).

This work introduces a general bootstrap approach based on the consider-
ation of Wasserstein variation for the assessment of deformation models. The
main facts about Wasserstein variation are presented in Section 2, together
with the key idea that fit to a deformation model can be recast in terms
of the minimal Wasserstein variation among warped versions of the distri-
butions. Later, in Section 3 we prove a Lipsichtz bound (Theorem 3.1) for
the law of empirical Wasserstein variations on Rd. The implications of this
result include that quantiles of the minimal warped variation criterion can
be consistently estimated by some suitable bootstrap quantiles, which can be
approximated by simulation, yielding some consistent tests of fit to deforma-
tion models provided that the empirical criterion has some regular limiting
distribution. This issue, namely, Central Limit Theorems for empirical min-
imal Wasserstein variation is further explored for univariate distributions
in Sections 4, covering non parametric deformation models, and 5, with a
sharper analysis for the case of parametric deformation models. This sections
propose consistent tests for deformation models in the corresponding setups.
Finally, proofs are postponed to Section 6.

2. Wasserstein variation and deformation models for distributions

Assume we observe J samples of n i.i.d random variables Xi,j ∈ R
d with

d ≥ 1, with distribution µj and empirical measure µn,j. Much recent work has
been conducted to measure the spread or the inner structure of a collection
of distributions. In this paper we define a notion of variability which relies
on the notion of Fréchet mean for the space of probability endowed with the
Wasserstein metrics, which we will recall the definition hereafter. First, for
d > 1, consider the following set

Wr

(
R
d
)
=
{
P probability on R

d with r finite moment
}
.

For two probabilities µ and ν in Wr

(
R
d
)

, we denote by Π(µ, ν) the set
of all probability measures π over the product set R

d × R
d with first (resp.

second) marginal µ (resp. ν).
The transportation cost with quadratic cost function, or quadratic trans-

portation cost, between these two measures µ and ν is defined as
3



Tr(µ, ν) = inf
π∈Π(µ,ν)

∫
‖x− y‖r dπ(x, y).

This transportation cost allows to endow the set Wr

(
R
d
)

with a metric
by defining the r-Wasserstein distance between µ and ν as Wr(µ, ν) =
Tr(µ, ν)1/r. More details on Wasserstein distances and their links with opti-
mal transport problems can be found in Rachev (1984) or Villani (2009) for
instance.

Within this framework, we can define a global measure of separation of
a collection of measures µj, j = 1, . . . , n as follows. Given probabilities
µ1, . . . , µJ on R

d with finite r-th moment let for r ≥ 1

V (µ1, . . . , µJ) = inf
η∈Wr(Rd)


 1

J

J∑

j=1

W r
r (µj, η)




1/r

be the Wasserstein r-variation of µ1, . . . , µJ or the variance of the µj’s.
The special case r = 2 has been studied in the literature. In Agueh and Carlier

(2011) the minimizer of η 7→ 1
J

∑J
j=1W

2
2 (µj , η) is proved to exist. This

measure µB is called the barycenter or Fréchet mean of µ1, . . . , µJ . Hence

V (µ1, . . . , µJ) =
(

1
J

∑J
j=1W

2
2 (µj, µB)

)1/2
. The authors prove properties of

existence and uniqueness for barycenters of measures in W2

(
R
d
)
, while the

properties of the empirical version are provided in Boissard, Le Gouic and Loubes
(2015).

This quantity, which is an extension of the variance for probability distri-
butions is a good candidate to evaluate the concentration of a collection of
measures around its Fréchet mean. In particular it can be used to test the
existence of a distribution’s deformation model, in the sense that all the dis-
tributions µj would be warped from an unknown distribution template µ by
a deformation function ϕ⋆

j which can be parametric or non parametric. More
precisely, consider a family of invertible warping functions G = G1 × · · ·×GJ

We would like to build a goodness-of-fit testing procedure for the following
model

There exist (ϕ⋆
1, . . . ϕ

⋆
J ) ∈ G and (εi,j)16i6n

16j6J
i.i.d. such that

Xi,j =
(
ϕ⋆
j

)−1
(εi,j) ∀1 6 j 6 J (H)

Denote by G the distribution function of ε with law µ with support (a, b),
while Gn,j is the corresponding empirical version.
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We propose to use this Wasserstein 2-variation to build a goodness of fit
criterion for model (H). Since the true distribution µ is unknown, we first
try to invert the warping operator and thus compute for each observation its
image through a candidate deformation ϕj ,

Zi,j (ϕj) = ϕj (Xi,j) 1 6 i 6 n, 1 6 j 6 J.

Note that Zi,j (ϕj) ∼ µj(ϕj). Now, if we set ϕ = (ϕ1, . . . , ϕJ ) ∈ G, then
the Fréchet mean of (µj(ϕj))16j6J exists and can be written µB(ϕ) see for
instance Agueh and Carlier (2011). We will write µn,j(ϕj) for the empirical
measure on Zi,j(ϕj), 1 ≤ i ≤ n and µn,B(ϕ) for the corresponding Fréchet
mean. It is important to remark that under (H),

µB(ϕ
⋆) = µ = µj(ϕ

⋆
j ), ∀1 6 j 6 J.

Hence, a natural idea to test whether H holds, is to consider the Wasserstein
2-variation of the (µj(ϕj)) , 1 6 j 6 J , that is to say the minimum alignment
of the candidate warped distributions (µj(ϕj))16j6J with respect to their
barycenter, namely µB(ϕ). This optimization program corresponds to the
minimization in ϕ ∈ G of the following theoretical criterion

U (ϕ) := V 2
2 (µ1(ϕ1), . . . , µJ(ϕJ )) =

1

J

J∑

j=1

W 2
2 (µj(ϕj), µB(ϕ)).

Its empirical version is given by Un (ϕ) = 1
J

∑J
j=1W

2
2 (µn,j(ϕj), µn,B(ϕ)).

Inference about model H can be based on the statistic

v2n = inf
ϕ∈G

Un(ϕ).

We will consider the following setting for testing a warping relationship be-
tween the distributions. Following Czado and Munk (1998) or Munk and Czado
(1998), for ∆0 > 0, consider

inf
ϕ∈G

U(ϕ) ≥ ∆0 (H1
0)

inf
ϕ∈G

U(ϕ) < ∆0. (H1
1)

Hence with these assumptions, the test decision of rejecting the null hypoth-
esis implies that there are statistical evidence that the deformation model is
approximately true.
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3. Bootstraping Wasserstein’s variations

In this section we present general results on Wasserstein distances that will
be applied to estimate the asymptotic distribution of a statistic test based on
an alignment with respect to the Wasserstein’s barycenter. More precisely,
here we consider distributions on R

d with a moment of order r > 1, that is,
distributions in Wr

(
R
d
)
. Recall that Wr will denote Wasserstein distance

with Lr cost, namely,

W r
r (µ, η) = inf

π∈Π(µ,η)

∫
‖y − z‖rdπ(y, z),

where ‖·‖ is any norm on R
d. Finally, we write L(Z) for the law of any

random variable Z. We note the abuse of notation in the following, in which
Wr is used both for Wasserstein distance on R and on R

d, but this should
not cause much confusion.

The next result shows that the laws of empirical transportation costs are
continuous (and even Lipschitz) functions of the underlying distributions.

Theorem 3.1. Set ν, ν ′, η probability measures in Wr

(
R
d
)
, Y1, . . . , Yn i.i.d.

random vectors with common law ν, Y ′
1 , . . . , Y

′
n, i.i.d. with law ν ′ and write

νn, ν
′
n for the corresponding empirical measures. Then

Wr(L(Wr(νn, η)),L(Wr(ν
′
n, η))) 6 Wr(ν, ν

′).

Our deformation assessment criterion concerns a particular version of the
Wasserstein r-variation of distributions ν1, . . . , νJ in Wr

(
R
d
)
, that is de-

noted in its general form by

Vr(ν1, . . . , νJ) := inf
η∈Wr(Rd)

( 1
J

J∑

j=1

W r
r (νj , η)

)1/r
.

Vr is just the average distance to the r-barycenter of the set.
It is convenient to note that V r

r (ν1, . . . , νJ) can also be expressed as

V r
r (ν1, . . . , νJ) = inf

π∈Π(ν1,...,νJ)

∫
T (y1, . . . , yJ)dπ(y1, . . . , yJ), (1)

where Π(ν1, . . . , νJ) denotes the set of probability measures on R
d with

marginals ν1, . . . , νJ and T (y1, . . . , yJ) = minz∈Rd
1
J

∑J
j=1 ‖yj − z‖r.

Here we are interested in empirical Wasserstein r-variations, namely, the
r-variations computed from the empirical measures νnj ,j coming from inde-
pendent samples Y1,j, . . . , Ynj ,j of i.i.d. random variables with distribution
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νj . Note that in this case problem (1) is a linear optimisation problem for
which a minimizer always exists.

As before, we consider the continuity of the law of empirical Wasserstein
r-variations with respect to the underlying probabilities. This is covered in
the next result.

Theorem 3.2. With the above notation

W r
r (L(Vr(νn1,1, . . . , νnJ ,J)),L(Vr(ν

′
n1,1, . . . , ν

′
nJ ,J))) 6

1

J

J∑

j=1

W r
r (νj, ν

′
j).

A useful consequence of the above results is that empirical Wasserstein
distances or r-variations can be bootstrapped under rather general condi-
tions. To be more precise, we take in Theorem 3.1 ν ′ = νn, the empirical
measure on Y1, . . . , Yn and consider a bootstrap sample Y ∗

1 , . . . , Y
∗
mn

of i.i.d.
(conditionally given Y1, . . . , Yn) observations with common law νn. We write
ν∗mn

for the empirical measure on Y ∗
1 , . . . , Y

∗
mn

and L∗(Z) for the conditional
law of Z given Y1, . . . , Yn. Theorem 3.1 now reads

Wr(L∗(Wr(ν
∗
mn

, ν)),L(Wr(νmn , ν))) 6 Wr(νn, ν).

Hence, if Wr(νn, ν) = OP(1/rn) for some sequence rn > 0 such that rmn/rn →
0 as n → ∞, then, using that Wr(L(aX),L(aY )) = aWr(L(X),L(Y )) for
a > 0, we see that

Wr(L∗(rmnWr(ν
∗
mn

, ν)),L(rmnWr(νmn , ν))) 6
rmn

rn
rnWr(νn, ν) → 0 (2)

in probability.

If in addition rnWr(νn, ν) ⇀ γ (ν) for a distribution γ (ν) then

rmnWr(νmn , ν) ⇀ γ(ν)

which entails that if ĉn(α) denotes the α quantile of the conditional dis-
tribution L∗(rmnWr(ν

∗
mn

, ν)) then under some regularity conditions on the
distribution γ(ν)

P (rnWr(νn, ν) 6 ĉn(α)) → α as n → ∞. (3)

We conclude in this case that the quantiles of rnWr(νn, ν) can be consistently
estimated by the bootstrap quantiles, that is, the conditional quantiles of
the quantity rmnWr(ν

∗
mn

, ν) (which, in turn, can be approximated through
7



Monte-Carlo simulation).
As an example, if d = 1 and r = 2, under integrability and smoothness as-

sumptions on ν we have
√
nW2(νn, ν) ⇀

(∫ 1
0

B2(t)
f2(F−1(t))

dt
)1/2

, where f and

F−1 are the density and the quantile function of ν as shown in del Barrio, Deheuvels and van de Geer
(2007).

For the deformation model described in (H), statistical inference is based
on v2n with r = 2 defined as the minimal quadratic Wasserstein variation

v2n = inf
ϕ∈G

1

J

J∑

j=1

W 2
2 (µn,j(ϕj), µn,B(ϕ)).

where µn,j(ϕ) denotes the empirical measure of Z1,j(ϕ), . . . , Zn,j(ϕ) defined
by Zi,j(ϕ) = ϕ−1

j (Xi,j). Now consider v′n, the corresponding version obtained
from samples with underlying distributions µ′

j, and denote by L (vn) (reps.
L (v′n)) the law of the random variable vn (resp. v′n). Then, the following
result holds, setting and assuming that ‖ϕj‖∞ := supx ‖ϕj(x)‖ < +∞ and
that the deformation functions are continuously differentiable.

Theorem 3.3. Under Assumption A1, if for all j, supϕ∈G

∥∥∥ϕ′
j

∥∥∥
∞

< ∞,

then

W 2
2 (L(vn),L(v′n)) 6 sup

ϕ∈G

∥∥ϕ′
j

∥∥2
∞

1

J

J∑

j=1

W 2
2 (µj, µ

′
j).

Hence the Wasserstein distance of the variance of two collection of distri-
butions can be controlled using the distance between the distributions.

In the same way the Wasserstein r-variation can also be bootstrapped as
soon as a limit theorem exists as in (3). This is the purpose of the following
sections in the framework of a deformation model for distributions on R. So
from now on consider d = 1.

4. A non-parametric deformation model for distributions

Recall that we consider µj ’s distribution on R that may be warped from a
common unknown template by deformations ϕ⋆

j ’s that belong to a set G =
G1×· · ·×GJ . We assume some regularity on the general class of deformations,
namely that

For all h ∈ Gj, h :
(cj , dj) → (a, b)

x 7→ h (x)
is invertible, increasing, (A1)

and s.t. −∞ 6 a < b 6 +∞, −∞ 6 c 6 cj < dj 6 d 6 +∞.

8



For each µj set its distribution function Fj : (cj , dj) 7→ (0, 1) with density
with respect to the Lebesgue measure fj. Let µn,j be the empirical measure
and empirical distribution function associated to the sample (Xi,j)16i6n.

We consider the Wasserstein 2-variation for a given set of candidate de-
formation function ϕ, namely U (ϕ) := V 2

2 (µ1(ϕ1), . . . , µJ(ϕJ )) and its em-
pirical version Un (ϕ). We prove a Central Limit Theorem for this quantity
in order to design a goodness of fit test for the deformation model.

4.1. Central Limit Theorem for Wasserstein’s variations

We provide in the section a CLT for infϕ∈G Un (ϕ) under the following set of
assumptions.

For all j, Fj is C2 on (cj ; dj), fj(x) > 0 if x ∈ (cj ; dj) and (A2)

sup
cj<x<dj

Fj(x)(1−Fj(x))f ′
j(x)

fj(x)2
< ∞.

For some q > 1 and all 1 6 j 6 J,
∫ 1
0

(t(1−t))
q
2

(fj(F−1

j (t)))
q dt < +∞ (A3)

For q as in A3, we set p0 = max
(

q
q−1 , 2

)
and define on Hj = C1(cj ; dj)∩

Lp0 (Xj) the norm ‖hj‖Hj
= sup(cj ;dj) |h′j | + E [|hj (Xj)|p0 ]

1

p0 , and on the

product space H1 × · · · × HJ , ‖h‖H =
∑J

j=1 ‖hj‖Hj
. The we make the

following additional assumptions.

Gj ⊂ Hj is compact for ‖ · ‖Hj
and sup

h∈Gj

∣∣∣h′(xhn)− h′(x)
∣∣∣ →
suph∈Gj

|xh
n−x|→0

0.

(A4)

for some r > 4 and 1 6 j 6 J, E [|Xj |r] < ∞ (A5)

for some r > max(4, p0) and 1 6 j 6 J, E

[
sup
h∈Gj

|h (Xj)|r
]
< ∞ (A6)

Under A1 to A6, we are able to provide the asymptotic distribution of
infϕ∈G

√
nUn(ϕ). It is convenient at this point to give some explanation about

the meaning of these assumptions. A2 is a is a regularity condition on the
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distributions of the X ′
js (it holds, for instance, for Gaussian or Pareto dis-

tributions) required for strong approximation of the quantile process, see
Csörgő (1983) for details. The integrability condition A3 is satisfied by the
Gaussian distribution if q < 2, see, e.g., Rajput (1972). A4 is related to
the regularity of the deformation functions. Finally, A5 and A6 are moment
assumptions on the (possibly warped) observations.

Theorem 4.1. Under Assumptions A1 to A6

√
n
(
inf
ϕ∈G

Un(ϕ) − inf
ϕ∈G

U(ϕ)
)

⇀ inf
ϕ∈Γ

2

J

J∑

j=1

∫ 1

0
ϕ′
j ◦ F−1

j

Bj

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ)),

where Γ = {ϕ ∈ G : U(ϕ) = infφ∈G U(φ)} and (Bj)16j6J are independent
Brownian bridges.

A proof of Theorem 4.1 is given in the Appendix below. We note that
continuity of U is follows easily from the choice of the norm on G. Recall
that G is compact and, consecuently, infϕ∈G U(ϕ) is attained. Hence, Γ is a
nonempty closed subset of G (in particular, it is also a compact set). We note
further that the random variables

∫ 1
0 ϕ′

j ◦F−1
j

Bj

fj◦F−1

j

(ϕj ◦F−1
j −F−1

B (ϕ)) are

centered Gaussian, with covariance
∫

[0,1]2
(min(s, t)− st)

ϕ′
j(F

−1

j (t))

fj(F−1

j (t))
(ϕj(F

−1
j (t))− F−1

B (ϕ)(t))

× ϕ′
j(F

−1

j (s))

fj(F−1

j (s))
(ϕj(F

−1
j (s))− F−1

B (ϕ)(s))dsdt.

In particular, if U has a unique minimizer the limiting distribution in Theo-
rem 4.1 is normal. However, our result works in more generality, even without
uniqueness assumptions.

We remark also that although we have focused for simplicity on the case
of samples of equal size, the case of different sample sizes, nj, j = 1, . . . , J ,
can also be handled with straightforward changes. If we assume

∀j : nj → +∞ and
nj

n1 + · · ·+ nJ
→ (γj)

2 > 0, (4)

then the result can be restated as

√
n1 . . . nJ

(n1 + · · ·+ nJ)
J−1

(
inf
G

Un1,...,nJ
− inf

G
U
)
⇀ inf

Γ

2

J

J∑

j=1

S̃j,

10



where Un1,...,nJ
denotes the empirical Wasserstein variation computed from

the samples and S̃j(ϕ) =
(
Πp 6=jγp

) ∫ 1
0 ϕ′

j ◦ F−1
j

Bj

fj◦F−1

j

(ϕj ◦ F−1
j − F−1

B (ϕ)).

4.2. A testing procedure

In this setting, Theorem 3.3 can be written as follows. Set ‖ϕj‖∞ = supx∈(cj ;dj) |ϕj(x)|.
then

W 2
2 (L(vn),L(v′n)) 6 sup

ϕ∈G

∥∥ϕ′
j

∥∥2
∞

1

J

J∑

j=1

W 2
2 (µj, µ

′
j).

Now consider bootstrap samples X∗
1,j , . . . ,X

∗
mn,j of i.i.d. observations sam-

pled from µn,j, write µ∗
mn,j for the empirical measure on X∗

1,j, . . . ,X
∗
mn,j (con-

ditionally to the X1,j , . . . ,Xn,j) and denote V 2
2 (µ

∗
mn,1(ϕ), . . . , µ

∗
mn,J

(ϕ)) =
U∗
mn

(ϕ). Then we get

Corollary 4.2. If mn → ∞, and mn/
√
n → 0, then under Assumptions A1

to A6, and if infG U > 0, writing γ for the limit distribution in Theorem 4.1,
we have that

L∗
(√

mn

(
inf
G

U∗
mn

− inf
G

U

))
⇀ γ

in probability. In particular, if ĉn(α) denotes the conditional (given the Xi,j ’s)
α-quantile of

√
mn

(
infG U∗

mn
− infG U

)
then

P

(√
n

(
inf
G

Un − inf
G

U

)
6 ĉn(α)

)
→ α. (5)

This corollary enables to build a test H1
0 versus H1

1 as follows. The test
statistic in this case is Un (∆0) :=

√
n (infG Un −∆0). Then, under assump-

tions of Corollary 4.2 (A1 to A6), if ĉn(α) denotes the conditional (given
the Xi,j’s) α-quantile of the bootstrap version

√
mn

(
infG U∗

mn
−∆0

)
, under

H1
0

P (Un (∆0) 6 ĉn(α)) → α,

which gives the asymptotic level of the reject region {Un (∆0) 6 ĉn(α)},
where ĉn(α) can be computed using a Monte-Carlo method.

5. A parametric model for deformations

We have built a test where the null hypothesis is not that the deformation
model holds, but rather that the distributions are in a suitable neighborhood

11



of it. The more usual null of exact fit to the deformation model can be here
written as

inf
ϕ∈G

U(ϕ) = 0 (H0)

inf
ϕ∈G

U(ϕ) > 0. (H1)

In the case where H holds (when the data are actually drawn from the
deformation model), we have ϕj ◦ F−1

j = F−1
B (ϕ) for each ϕ ∈ Γ, hence

µB(ϕ
⋆) = µ = µj(ϕ

⋆
j ). Hence we are under the assumption H0. Then, the

result of Theorem 4.1 becomes

inf
ϕ∈G

√
nUn(ϕ) ⇀ 0.

Hence, in this case we have to refine our study to understand well the behav-
ior of infϕ∈G Un(ϕ) when n tends to infinity. This is achieved by restricting
the non parametric class of deformation to a parametric class of deforma-
tions. So we consider in this section a semiparametric warping model where µ
is unknown but where the deformations are indexed by a parametric family.

5.1. Estimation of the deformation model

In many cases, deformation functions can be made more specific in the sense
that they follow a known shape depending on parameters that are different
for each sample. So consider the parametric model θ⋆ = (θ⋆1, . . . , θ

⋆
J) such that

ϕ⋆
j = ϕθ⋆j

, for all j = 1, . . . , J. Each θ⋆j represents the warping effect that

undergoes the jth sample, which must be removed to recover the unknown
distribution by inverting the warping operator. So Assumption H becomes

Xi,j = ϕ−1
θ⋆j

(εi,j) , for all 1 6 i 6 n, 1 6 j 6 J.

Hence, from now on, we will consider the following family of deformations,
indexed by a parameter λ ∈ Λ ⊂ R

p:

ϕ : Λ× (c; d) → (a, b)
(λ, x) 7→ ϕλ (x)

Thus, the functions U and Un are now defined on Θ = ΛJ , and the criterion
of interest becomes infλ∈Θ U(λ). We also use the simplified notation µj(θj)
instead of µj

(
ϕθj

)
, FB (θ) for FB (ϕθ1 , . . . , ϕθJ ) and similarly for the empir-

ical versions. Throughout this section we assume that model H holds. This

12



means, in particular, that the d.f.’s of the samples, Fj , satisfy Fj = G ◦ ϕθ∗j
,

with G the d.f. of the εi,j ’s.
For the analysis of this setup, we adapt Assumptions A1 to A6, replacing

them by the following versions.

For all λ ∈ Λ, ϕλ :
(c; d) → (a; b)
x 7→ ϕλ (x)

is invertible, increasing, (A1)

and s.t. −∞ 6 a < b 6 +∞, −∞ 6 c 6 cj < dj 6 d 6 +∞.

We replace A2 by: G is C2 with G′(x) = g(x) > 0 on (a, b) and

sup
a<x<b

G(x) (1−G(x)) g′(x)
g(x)2

< ∞ (A2)

Now, instead of A3 to A5 we assume

ϕ is continuous w.r.t. x and λ (A3)

∀λ ∈ Λ, ϕλ is C1 with respect to x, Λ is compact

dϕ is bounded on Λ× [cj ; dj ] and continuous with respect to λ

and sup
λ∈Λ

∣∣∣dϕλ

(
xλn

)
− dϕλ (x)

∣∣∣
supλ∈Λ|xλ

n−x|→0
−−−−−−−−−−−→ 0. (A4)

∀1 6 j 6 J E [|Xj |r] < ∞ for some r > 4 (A5)

Here d is the derivation operator w.r.t. x, while ∂ will be the derivation
operator w.r.t. λ. Finally A6 becomes

∀1 6 j 6 J E

[
sup
λ∈Λ

|ϕλ (Xj)|r
]
< ∞ for some r > 4 (A6)

Note that Assumption A6 implies that ε has a moment of order r > 4 and
also that Assumption A3 becomes simpler in a parametric model which does
not require a particular topology.

We impose as identifiability condition,

U has a unique minimizer, θ⋆, that belongs to the interior of Λ. (A7)

Note that, equivalently, this means that θ∗ is the unique zero of U , since we
are assuming that H holds.

13



Now, to get sharper result about the convergence of infθ∈Θ Un (θ), one has
to add the following assumptions, first on the deformation functions.

∀1 6 j 6 J ϕ−1
θ⋆j

is C1 w.r.t. x and dϕ−1
θ⋆j

is bounded on [a, b] (A8)

ϕ is C2 w.r.t. x and λ

∀1 6 j 6 J E

[
sup
λ∈Λ

∣∣∣∂2ϕλ

(
ϕ−1
θ⋆
j
(ε)
)∣∣∣

2
]
< ∞ (A9)

As said for Assumption A3, the following one is more restrictive on the tail
of the distribution of ε, excluding the Gaussian case. Examples of such vari-
ables with unbounded support are given in del Barrio, Deheuvels and van de Geer
(2007) p.76. Note that distributions with compact support and strictly pos-
itive, continuous density satisfy this assumption.

∫ 1

0

t(1− t)

g2 (G−1(t))
dt < ∞ (A10)

Set Un(θ) = Un(ϕθ) = V 2
2 (µn,1(ϕθ1), . . . , µn,J(ϕθJ )) and consider the esti-

mator
θ̂n ∈ argmin

θ∈Θ
Un(θ).

The results in this section are stated in the case where Λ is a subset of
R. However they are still true if Λ ⊂ R

p with corresponding changes. The
following result implies that θ̂n is a good candidate to estimate θ⋆. It is a
simple consequence of the continuity of U and the uniform convergence in
probability of Un to U , as shown in the proof of Theorem 4.1.

Proposition 5.1. Under A1 to A7, then

θ̂n → θ⋆ in probability.

We can refine this result by making the following additional assumption,

Rj := ∂ϕθ⋆j
◦ ϕ−1

θ⋆j
is continuous and bounded on [a, b], 1 ≤ j ≤ J. (TCL)

Define now Φ = [Φi,j]1≤i,j≤J with

Φi,j = − 2

J2
〈Ri, Rj〉µ, i 6= j; Φi,i =

2(J − 1)

J2
‖Ri‖µ, (6)

where ‖·‖µ and 〈·, ·〉µ denote norm and inner product, respectively, in L2(µ).
Φ is a symmetric, positive semidefinite matrix. To see this, consider x ∈ R

J

14



and note that

x′Φx =
2

J2

∫ (∑

i

(J − 1)x2iR
2
i − 2

∑

i<j

xixjRiRj

)
dµ

=
2

J2

∫ ∑

i<j

(xiRi − xjRj)
2dµ ≥ 0.

In fact, Φ is positive definite, hence invertible, unless all the Ri are propor-
tional µ-a.s.. Now, we can state the following Central limit Theorem.

Proposition 5.2. Under Assumptions A1 to A9 and TCL, if, in addition,
Φ is invertible, then √

n(θ̂n − θ⋆) ⇀ Φ−1Y,

where Y
d
= (Y1, . . . , YJ ) with

Yj =
2

J

∫ 1

0
Rj ◦G−1 B̃j

g ◦G−1
,

B̃j = Bj − 1
J

∑J
k=1Bk and (Bj)16j6J independent Brownian bridges.

We note that, while, for simplicity, we have formulated Proposition 5.1
assuming that the deformation model holds, a similar version can be proved
(with some additional assumptions and changes in Φ) in the case when the
model is false and θ∗ is not the true parameter, but the one that gives the
best (but imperfect) alignment.

Remark 1. The indentifiability condition A7 can be too strong to be realis-
tic. Actually, for some deformation models it could happen that ϕθ◦ϕη = ϕθ∗η
for some θ ∗ η ∈ Θ. In this case, if Xi,j = ϕ−1

θ∗j
(εi,j) with εi,j i.i.d., then,

for any θ, Xi,j = ϕ−1
θ∗θ∗j

(ε̃i,j) with ε̃i,j = ϕθ(εi,j) which are also i.i.d. and,

consequently, (θ ∗ θ∗1, . . . , θ ∗ θ∗J) is also a zero of U . This applies, for in-
stance, to location and scale models. A simple fix to this issue is to select
one of the signals as the reference, say the J-th signal, and assume that θ∗J
is known (since it can be, in fact, chosen arbitrarily). The criterion function
becomes then Ũ(θ1, . . . , θJ−1) = U(θ1, . . . , θJ−1, θ

∗
J). One could then make

the (more realistic) assumption that θ̃∗ = (θ∗1, . . . , θ
∗
J−1) is the unique zero

of Ũ and base the analysis on Ũn(θ1, . . . , θJ−1) = Un(θ1, . . . , θJ−1, θ
∗
J) and

ˆ̃θn = argminθ̃ Ũn(θ̃). The results in this section can be adapted almost verba-

tim to this setup. Proposition 5.2 holds, namely,
√
n(

ˆ̃
θn− θ̃∗) ⇀ Φ̃−1Ỹ , with
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Ỹ
d
= (Y1, . . . , YJ−1) and Φ̃ = [Φi,j]1≤i,j≤J−1. We note further that invertibil-

ity of Φ̃ is almost granted. In fact, arguing as above, we see that

x′Φ̃x =
2

J2

∫ ( ∑

1≤i<j≤J−1

(xiRi − xjRj)
2 +

∑

1≤i≤J−1

x2iR
2
i

)
dµ ≥ 0

and Φ̃ is positive definite unless Ri = 0 µ-c.s. for i = 1, . . . , J − 1.

5.2. Asymptotic behavior of Wasserstein’s variation under the

null assumption

Here we are able to specify the rate of convergence of infθ∈Θ Un (θ) to zero
when H holds, and to provide the asymptotic distribution of this statistic.

Theorem 5.3. Under assumptions A1 to A10, TCL and invertibility of Φ,

n inf
θ∈Θ

Un(θ) ⇀
1

J

J∑

j=1

∫ 1

0

( B̃j

g ◦G−1

)2
− 1

2
Y ′Φ−1Y

with Y = (Y1, . . . , YJ), Yj =
2
J

∫ 1
0 Rj ◦G−1 B̃j

g◦G−1 , B̃j = Bj − 1
J

∑J
k=1Bk and

(Bj)16j6J independent Brownian bridges.

Turning back to our goal of assessment of the deformation model H based
on the observed value of infθ∈Θ Un (θ), Theorem 5.3 gives some insight into
the threshold levels for rejection of H. However, the limiting distribution
still depends on unknown objects and designing a tractable test requires to
estimate the quantiles of this distribution. This will be achieved in the next
subsection.

5.3. Goodness of fit test for parametric deformation model

Now consider the parametric deformation model and note that the inference
about it is based on the minimal Wasserstein variation indexed by θ ∈ Θ

v2n := inf
θ∈Θ

V 2
2 (µn,1(θ), . . . , µn,J(θ)) = inf

Θ
Un(θ),

where µn,j(θ) denotes the empirical measure on Z1,j(θ), . . . , Zn,j(θ), Zi,j(θ) =
ϕ−1
θj

(Xi,j) and X1,j , . . . ,Xn,j are independent i.i.d. samples from µj. We con-

sider v′n, the corresponding version obtained from samples with underlying
distributions µ′

j , and denote by L (vn) (resp. L (v′n)) the law of the random
variable vn (resp. v′n).
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Then, mimicking the proof of Theorem 3.3 ,we are able to prove the fol-
lowing result.

Theorem 5.4. Under Assumptions A1, A3 and A4

W 2
2 (L(vn),L(v′n)) 6 sup

x∈(c;d),λ∈Λ
|dϕλ(x)|2

1

J

J∑

j=1

W 2
2 (µj , µ

′
j).

Now consider bootstrap samples X∗
1,j , . . . ,X

∗
mn,j of i.i.d. observations sam-

pled from µn
j , write µ∗

mn,j for the empirical measure on X∗
1,j , . . . ,X

∗
mn,j (con-

ditionally to the X1,j , . . . ,Xn,j) and denote V 2
2 (µ

∗
mn,1(θ), . . . , µ

∗
mn,J

(θ)) =
U⋆
mn

(θ).

Corollary 5.5. If mn → ∞, and mn/n → 0, then under Assumptions A1

to A10, TCL and writing γ (G; θ∗) for the limit distribution in Theorem
5.3, we have that

L∗
(
mn inf

Θ
U∗
mn

(θ)

)
⇀ γ (G; θ∗)

in probability. In particular, if ĉn(α) denotes the conditional (given the Xi,j ’s)
α-quantile of mn infΘ U∗

mn
(θ) then if the quantile function of γ (G; θ∗) is

continuous w.r.t α

P

(
n inf

Θ
Un(θ) 6 ĉn(α)

)
→ α. (7)

In the semi parametric model, we can now provide a goodness of fit pro-
cedure. Under Assumptions of Theorem 5.3 (A1 to A10 and TCL) one can
test the null assumption

inf
θ∈Θ

U(θ) = 0 (H0)

versus its complementary denoted by H1.
In this case the test statistic is n infΘ Un(θ) and one can get the asymptotic

level of a reject region of the form {n infθ∈Θ Un(θ) > λn} by using Corollary
5.5.

More precisely, consider bootstrap samples X∗
1,j, . . . ,X

∗
mn,j

of i.i.d. obser-
vations sampled from µn,j, and write U∗

mn
(θ) for the corresponding criterion.

Then, if ĉn(α) denotes the conditional (given the Xi,j’s) (1− α)-quantile of
mn infΘ U∗

mn

P

(
n inf

θ∈Θ
Un(θ) > ĉn(α)

)
→ α.

Thus {n infθ∈Θ Un(θ) > ĉn(α)} will be a reject region of asymptotic level
α, and ĉn(α) can be computed using a Monte-Carlo method.
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6. Appendix

6.1. Proofs of goodness of fit and bootstrap results

Proof of Theorem 3.1. We set Tn = Wr(νn, η) and T ′
n = Wr(ν

′
n, η) and

Πn(η) for the set of probabilities on {1, . . . , n}×R
d with first marginal equal

to the discrete uniform distribution on {1, . . . , n} and second marginal equal
to η and note that we have Tn = infπ∈Πn(η) a(π) if we denote

a(π) =

(∫

{1,...,n}×Rd

‖Yi − z‖rdπ(i, z)
)1/r

.

We define similarly a′(π) from the Y ′
i sample to get T ′

n = infπ∈Πn(η) a
′(π).

But then, using the inequality |‖a‖ − ‖b‖| 6 ‖a− b‖,

|a(π)−a′(π)| 6
(∫

{1,...,n}×Rd

‖Yi − Y ′
i ‖rdπ(i, z)

)1/r

=

(
1

n

n∑

i=1

‖Yi − Y ′
i ‖r
)1/r

This implies that

|Tn − T ′
n|r 6

1

n

n∑

i=1

‖Yi − Y ′
i ‖r.

If we take now (Y, Y ′) to be an optimal coupling of ν and ν ′, so that
E [‖Y − Y ′‖r] = W r

r (ν, ν
′) and (Y1, Y

′
1), . . . , (Yn, Y

′
n) to be i.i.d. copies of

(Y, Y ′) we see that for the corresponding realizations of Tn and T ′
n we have

E
[
|Tn − T ′

n|r
]
6

1

n

n∑

i=1

E
[
‖Yi − Y ′

i ‖r
]
= Wr(ν, ν

′)r.

But this shows that Wr(L(Tn),L(T ′
n)) 6 Wr(ν, ν

′), as claimed.
�

Proof of Theorem 3.2. We write Vr,n = Vr(νn1,1, . . . , νnJ ,J) and V ′
r,n =

Vr(ν
′
n1,1, . . . , ν

′
nJ ,J

). We note that

V r
r,n = inf

π∈Π(U1,...,UJ)

∫
T (i1, . . . , iJ )dπ(i1, . . . , iJ ),

where Uj is the discrete uniform distribution on {1, . . . , nj} and T (i1, . . . , iJ ) =

minz∈Rd
1
J

∑J
j=1 ‖Yij ,j −z‖r. We write T ′(i1, . . . , iJ ) for the equivalent func-

tion computed from the Y ′
i,j’s. Hence we have

|T (i1, . . . , iJ )1/r − T ′(i1, . . . , iJ)
1/r|r 6 1

J

J∑

j=1

‖Yij ,j − Y ′
ij ,j‖

r,
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which implies
∣∣∣∣∣

(∫
T (i1, . . . , iJ )dπ(i1, . . . , iJ )

)1/r

−
(∫

T (i1, . . . , iJ )dπ(i1, . . . , iJ )

)1/r
∣∣∣∣∣

r

6

∫
1

J

J∑

j=1

‖Yij ,j − Y ′
ij ,j‖

rdπ(i1, . . . , iJ )

=
1

J

J∑

j=1

∫
‖Yij ,j − Y ′

ij ,j‖
rdπ(i1, . . . , iJ ) =

1

J

J∑

j=1

(
1

nj

nj∑

i=1

‖Yi,j − Y ′
i,j‖r

)

So,

|Vr,n − V ′
r,n|r 6

1

J

J∑

j=1

(
1

nj

nj∑

i=1

‖Yi,j − Y ′
i,j‖r

)
.

If we take (Yj , Y
′
j ) to be an optimal coupling of νj and ν ′j and (Y1,j, Y

′
1,j), . . . ,

(Ynj ,j, Y
′
nj ,j

) to be i.i.d. copies of (Yj , Y
′
j ), for j = 1, . . . , J , then we obtain

E
[
|Vr,n − V ′

r,n|r
]
6

1

J

J∑

j=1

(
1

nj

nj∑

i=1

E
[
‖Yi,j − Y ′

i,j‖r
]
)

=
1

J

J∑

j=1

W r
r (νj , ν

′
j).

The conclusion follows.
�

Proof of Theorem 3.3. We can mimic the argument in the proof of
Theorem 3.2 to get an upper bound on the Wasserstein distance between
the laws of vn and v′n, the corresponding version obtained from samples with
underlying distributions µ′

j. In fact, arguing as above, we can write

v2n = inf
ϕ∈G

[
inf

π∈Π(U1,...,UJ)

∫
T (ϕ; i1, . . . , iJ )dπ(i1, . . . , iJ )

]
,

where T (ϕ; i1, . . . , iJ ) = miny∈R
1
J

∑J
j=1 ‖Zij ,j(ϕ) − y‖2. We write T ′(ϕ; i1,

. . . , iJ) for the same function computed on the Z ′
i,j(ϕ)’s and set

‖ϕ′‖∞ := sup
x,

ϕ∈G

‖ϕ′
j(x)‖.

Now, from the fact ‖Zi,j(ϕ) − Z ′
i,j(ϕ)‖2 6 ‖ϕ′‖2∞‖Xi,j −X ′

i,j‖2 we see that

|T (ϕ; i1, . . . , iJ )1/2 − T ′(ϕ; i1, . . . , iJ)
1/2|2 6 ‖ϕ′‖2∞

1

J

J∑

j=1

‖Xij ,j −X ′
ij ,j‖

2
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and, as a consequence, that

|V2 (µ
n
1 (ϕ), . . . , µ

n
J(ϕ)) − V2

(
µ′ n
1 (ϕ), . . . , µ′ n

J (ϕ)
)
|2

6
1

J

J∑

j=1

nj∑

ij=1

1

nj
‖ϕ′‖2∞‖Xij ,j −X ′

ij ,j‖
2

and then

(vn − v′n)
2 6 ‖ϕ′‖2∞

1

J

J∑

j=1

(
1
nj

∑nj

i=1 ‖Xi,j −X ′
i,j‖2

)
.

If, as in the proof of Theorem 3.2, we assume that (Xi,j ,X
′
i,j), i = 1, . . . , nj

are i.i.d. copies of an optimal coupling for µj and µ′
j, with different samples

independent from each other we obtain that

E
[
(vn − v′n)

2
]
6 ‖ϕ′‖2∞

1

J

J∑

j=1

W 2
2 (µj , µ

′
j).

�

Proof of Corollary 4.2. In Theorem 3.3, take µ′
j = µn,j, and set

v∗mn
:= infϕ∈G V2(µ

∗
mn,1(ϕ), . . . , µ

∗
mn,J

(ϕ)). Then, conditionally to the X1,j, . . . ,Xn,j ,
the result of Theorem 3.3 reads now

W 2
2 (L(vmn),L(v∗mn

)) 6 sup
ϕ∈G

∥∥ϕ′
j

∥∥2
∞

1

J

J∑

j=1

W 2
2 (µj, µn,j).

Now, let v2 := infϕ∈G M (ϕ). Then,

W 2
2 (L(vmn),L(v∗mn

)) = W 2
2 (L(vmn − v),L(v∗mn

− v)) (8)

6 sup
ϕ∈G

∥∥ϕ′
j

∥∥2
∞

1

J

J∑

j=1

W 2
2 (µj , µn,j).

Now, recall that in the proof of Theorem 4.1 one gets that W 2
2 (µj, µn,j) =

OP(
1√
n
). Then, using that Wr(L(aX),L(aY )) = aWr(L(X),L(Y )) for a > 0,

(8) gives

W 2
2

(
L (

√
mn (vmn − v)) ,L

(√
mn

(
v∗mn

− v
)))

(9)

6
mn√
n
sup
ϕ∈G

∥∥ϕ′
j

∥∥2
∞

1

J

J∑

j=1

nW 2
2 (µj , µn,j) → 0
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Moreover, under Assumptions A1 to A6, Theorem 4.1 gives
√
mn

(
v2mn

− v2
)
⇀

γ. If v > 0, the classical Delta Method (see for instance in Van der Vaart
(2000) p.25) gives

√
mn (vmn − v) ⇀

1

2v
γ.

Hence (9) enables to say that that

√
mn

(
v∗mn

− v
)
⇀

1

2v
γ.

Applying again a Delta Method leads to

√
mn

(
(v∗)2mn

− v2
)
=

√
mn

(
inf
G

U∗
mn

− inf
G

U

)
⇀ γ.

(5) is obtained by using Glivenko Cantelli Theorem and convergence of the
empirical quantiles.

�

6.2. Proofs for the deformation model

We provide here proofs of the main results in Sections 3 and 4. Our approach
relies on the consideration of quantile processes, namely,

ρn,j(t) =
√
nfj(F

−1
j (t))(F−1

n,j (t)− F−1
j (t)), 0 < j < 1, j = 1, . . . , J,

and on strong approximations of quantile processes, as in the following result
that we adapt from Csörgő and Horváth (1993) (Theorem 2.1, p. 381 there).

Theorem 6.1. Under A2, there exist, on a rich enough probability space,
inependent versions of ρn,j and independent families of Brownian bridges
{Bn,j}n=1∞, j = 1, . . . , J satisfying

n1/2−ν sup
1/n6t61−1/n

|ρn,j(t)−Bn,j(t)|
(t(1− t))ν

=

{
Op(log(n)) if ν = 0
Op(1) if 0 < ν 6 1/2

We will make frequent use in this section of the following technical Lemma
which generalizes a result in Álvarez-Esteban et al. (2008).

Lemma 6.2. Under Assumption A6

i) suph∈Gj

√
n
∫ 1

n

0 (h(F−1
j (t)))2dt → 0, suph∈Gj

√
n
∫ 1
1− 1

n

(h(F−1
j (t)))2dt →

0.
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ii) suph∈Gj

√
n
∫ 1

n

0 (h(F−1
n,j (t)))

2dt → 0, suph∈Gj

√
n
∫ 1
1− 1

n

(h(F−1
n,j (t)))

2dt →
0 in probability.

iii) If moreover A3 holds

∀k, j
∫ 1

0

√
t(1− t)

fk
(
F−1
k (t)

) sup
ϕ∈G

∣∣∣ϕj

(
F−1
j (t)

)
− F−1

B (ϕ) (t)
∣∣∣ dt < ∞ (10)

iv) In the parametric case, under Assumptions A3, A6 and if ∀k, Fk is
C1 with F ′

k = fk > 0 on (ck, dk)

∀k, j
∫ 1

0

√
t(1− t)

fk
(
F−1
k (t)

) sup
θ∈Θ

∣∣∣ϕ−1
θj

(
F−1
j (t)

)
− F−1

B (θ) (t)
∣∣∣ dt < ∞ (11)

Our next proof is inspired by Álvarez-Esteban et al. (2008). The main
part concerns the study of

√
nUn(ϕ) uniformly in ϕ in probability by using

strong approximations of the quantile process with Brownian bridges.

Proof of Theorem 4.1. We will work with the versions of ρn,j and
Bn,j given by Theorem 6.1. We show first that

sup
ϕ∈G

∣∣∣
√
n (Un (ϕ)− U (ϕ))− 1

J

J∑

j=1

Sn,j (ϕ)
∣∣∣→ 0 in probability (12)

with Sn,j(ϕ) = 2
∫ 1
0 ϕ′

j ◦ F−1
j (ϕj ◦ F−1

j − F−1
B (ϕ))

Bn,j

fj◦F−1

j

. To check this we

note that the fact that 1
J

∑J
j=1 ϕj ◦ F−1

j = F−1
B (ϕ) and simple algebra yield

√
n(Un(ϕ) − U(ϕ)) = 2

J

∑J
j=1 S̃n,j +

1
J

∑J
j=1 R̃n,j with

S̃n,j =
√
n

∫ 1

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )(ϕj ◦ F−1

j − F−1
B (ϕ)),

R̃n,j =
√
n

∫ 1

0
[(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )− (F−1

n,B(ϕ) − F−1
B (ϕ))]2.

From the elementary inequality (a1 + · · · + aJ)
2 ≤ Ja21 + · · · + Ja2J we get

that
1

J

J∑

j=1

R̃n,j ≤
4
√
n

J

J∑

j=1

∫ 1

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )2

Now, for every t ∈ (0, 1) we have

ϕj ◦ F−1
n,j (t)− ϕj ◦ F−1

j (t) = ϕ′
j(Kn,ϕj

(t))(F−1
n,j (t)− F−1

j (t)) (13)
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for some Kn,ϕj
(t) between F−1

n,j (t) and F−1(t). Assumption A4 implies Cj :=
supϕj∈Gj ,x∈(cj ,dj) |ϕ′

j(x)| < ∞. Hence, we have

∫ 1

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )2 ≤ C2

j

∫ 1

0
(F−1

n,j − F−1
j )2.

Now we can use A5 and argue as in the proof of Theorem 2 in Álvarez-Esteban et al.
(2008) to conclude that

√
n
∫ 1
0 (F

−1
n,j − F−1

j )2 → 0 in probability and, as a
consequence, that

sup
ϕ∈G

∣∣∣
√
n (Un (ϕ)− U (ϕ))− 1

J

J∑

j=1

S̃n,j (ϕ)
∣∣∣→ 0 in probability. (14)

On the other hand, the Cauchy-Schwarz’s inequality shows that

n
(∫ 1

n

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )(ϕj ◦ F−1

j − F−1
B (ϕ))

)2

≤
√
n

∫ 1

n

0
(ϕj ◦ F−1

n,j − ϕj ◦ F−1
j )2

√
n

∫ 1

n

0
(ϕj ◦ F−1

j − F−1
B (ϕ))2

and using i) and ii) of Lemma 6.2, the two factors converge to zero uniformly
in ϕ. A similar argument works for the upper tail and allows to conclude that

we can replace in (14) S̃n,j(ϕ) with ˜̃Sn,j(ϕ) := 2
√
n
∫ 1− 1

n
1

n

(ϕj ◦ F−1
n,j − ϕj ◦

F−1
j )(ϕj ◦ F−1

j − F−1
B (ϕ)). Moreover,

sup
ϕ∈G

∣∣∣
∫ 1

n

0
ϕ′
j ◦ F−1

j

Bn,j

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣∣

≤ Cj

∫ 1

n

0

∣∣∣ Bn,j

fj ◦ F−1
j

∣∣∣ sup
ϕ∈G

∣∣(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣

and by iii) of Lemma 6.2 and Cauchy-Schwarz’s inequality

E

[ ∫ 1

n

0

∣∣∣ Bn,j

fj ◦ F−1
j

∣∣∣ sup
ϕ∈G

∣∣(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣
]

≤
∫ 1

n

0

√
t(1− t)

fj(F
−1
j (t))

sup
ϕ∈G

∣∣ϕj(F
−1
j (t))− F−1

B (ϕ)(t)
∣∣dt → 0.

Hence, supϕ∈G
∣∣∣
∫ 1

n

0 ϕ′
j ◦ F−1

j
Bn,j

fj◦F−1

j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣∣ → 0 in probability

and similarly for the right tail. Thus (recall (13)), to prove (12) it suffices to
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show that

sup
ϕ∈G

∣∣∣
∫ 1− 1

n

1

n

ϕ′
j(F

−1
j (t))

Bn,j(t)

fj(F
−1
j (t))

(ϕj(F
−1
j (t))− F−1

B (ϕ)(t))dt (15)

−
∫ 1− 1

n

1

n

ϕ′
j(Kn,ϕj

(t))
ρn,j(t)

fj(F
−1
j (t))

(ϕj(F
−1
j (t)) − F−1

B (ϕ)(t))dt
∣∣∣ → 0

in probability. To check it we take ν ∈ (0, 1/2) and use Theorem 6.1 to get

∫ 1− 1

n

1

n

|ρn,j(t)−Bn,j(t)|
fj(F

−1
j (t))

sup
ϕ∈G

∣∣ϕj(F
−1
j (t))− F−1

B (ϕ)(t)
∣∣dt

6 nν− 1

2OP (1)

∫ 1− 1

n

1

n

(t(1− t))ν

fk(F
−1
k (t))

sup
ϕ∈G

∣∣ϕj(F
−1
j (t))− F−1

B (ϕ)(t)
∣∣dt → 0

(16)

in probability (using dominated convergence and iii) of Lemma 6.2).
We observe next that, for all t ∈ (0, 1), supϕj∈Gj

|Kn,ϕj
(t)−F−1

j (t)| → 0 al-

most surely, since Kn,ϕj
(t) lies between F−1

n,j (t) and F−1
j (t). Therefore, using

Assumption A4 we see that supϕj∈Gj
|ϕ′

j(Kn,ϕj
(t))−ϕ′

j(F
−1
j (t)| → 0 almost

surely while, on the other hand supϕj∈Gj
|ϕ′

j(Kn,ϕj
(t))−ϕ′

j(F
−1
j (t))| ≤ 2Cj .

But then, by dominated convergence we get that

E

[
sup
ϕj∈Gj

|ϕ′
j(Kn,ϕj

(t))− ϕ′
j(F

−1
j (t))|2

]
→ 0.

Since by iii) of Lemma 6.2 we have that t 7→
√

t(1−t)

fj(F
−1

j (t))
supϕ∈G |ϕj(F

−1
j (t))−

F−1
B (ϕ)(t)| is integrable we conclude that

E sup
ϕ∈G

∫ 1− 1

n

1

n

|ϕ′
j(Kn,ϕj

(t))−ϕ′
j(F

−1
j (t))| |Bn,j(t)|

fj(F
−1
j (t))

|ϕj(F
−1
j (t))−F−1

B (ϕ)(t)|dt

tends to 0 as n → ∞ and, consequently,

sup
ϕ∈G

∫ 1− 1

n

1

n

|ϕ′
j(Kn,ϕj

(t))−ϕ′
j(F

−1
j (t))| |Bn,j(t)|

fj(F
−1
j (t))

|ϕj(F
−1
j (t))−F−1

B (ϕ)(t)|dt

vanishes in probability. Combining this fact with (16) we prove (15) and, as
a consequence, (12).
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Observe now that for all n ∈ N, (Sn,j(ϕ))16j6J has the same law as
(Sj (ϕ))16j6J with

Sj(ϕ) = 2

∫ 1

0
ϕ′
j ◦ F−1

j (ϕj ◦ F−1
j − F−1

B (ϕ))
Bj

fj ◦ F−1
j

and (Bj)16j6J independent standard Brownian bridges. Set S = 1
J

∑J
j=1 Sj.

Now, (12) implies that
√
n (Un (·)− U (·)) ⇀ S (·) (17)

in the space L∞ (G) (we denote by ‖·‖∞ the norm on this space). From
Skohorod Theorem we know that there exists some probability space on
which the convergence (17) holds almost surely. From now on, we place us
on this space. Then, for ϕ, ρ ∈ G

|Sj(ϕ)− Sj(ρ)| ≤ 2 sup
(cj ,dj)

|ϕ′
j − ρ′j|

∣∣∣
∫ 1

0

Bj

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣∣

+2
∣∣∣
∫ 1

0

Bj

fj ◦ F−1
j

ρ′j ◦ F−1
j (ϕj ◦ F−1

j − ρj ◦ F−1
j )
∣∣∣

≤ 2 sup
(cj ,dj)

|ϕ′
j − ρ′j| sup

ϕ∈G

∣∣∣
∫ 1

0

Bj

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣∣

+2 sup
(cj ,dj)

|ρ′j |
(∫ 1

0

∣∣ Bj

fj◦F−1

j

∣∣q
)1/q(∫ 1

0 |ϕj ◦ F−1
j − ρj ◦ F−1

j |p0
)1/p0

But using iii) of Lemma 6.2

E

[
sup
ϕ∈G

∣∣∣
∫ 1

0

Bj

fj ◦ F−1
j

(ϕj ◦ F−1
j − F−1

B (ϕ))
∣∣∣
]

6

∫ 1

0

√
t(1− t)

fk
(
F−1
k (t)

) sup
ϕ∈G

∣∣∣ϕj

(
F−1
j (t)

)
− F−1

B (ϕ) (t)
∣∣∣ dt < ∞

Hence, almost surely, supϕ∈G
∣∣∣
∫ 1
0

Bj

fj◦F−1

j

(ϕj ◦F−1
j −F−1

B (ϕ))
∣∣∣ < ∞. Further-

more, from Assumption A3, we get that a.s.
∫ 1

0

(
Bj

fj◦F−1

j

)q
< ∞

and thus, for some random variable T a.s. finite , and ϕ, ρ ∈ G, we get

|Sj (ϕ)− Sj (ρ)| 6 T ‖ϕ− ρ‖G .
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Thus, we deduce that (Sj)16j6J are almost surely continuous functions on
G, endowed with the norm ‖·‖G .

Observe now that

√
n
(
inf
G

Un − inf
G

U
)
≤

√
n inf

Γ
Un −

√
n inf

Γ
U = inf

Γ

√
n (Un − U) . (18)

On the other hand, if we consider the (a.s.) compact set Γn = {ϕ ∈ G :
U (ϕ) 6 infG U + 2√

n
‖√n (Un − U)‖∞}, then, if ϕ /∈ Γn,

Un (ϕ) > inf
G

U + 2 ‖(Un − U)‖∞ − ‖(Un − U)‖∞ ,

which implies
Un (ϕ) > inf

G
U + ‖(Un − U)‖∞ ,

while if ϕ ∈ Γ, then,

Un (ϕ) = inf
G

U + Un (ϕ)− U (ϕ) 6 inf
G

U + ‖(Un − U)‖∞ .

Thus, necessarily, infG Un = infΓn Un = infΓn(Un − U + U) ≥ infΓn(Un −
U) + infΓn U = infΓn(Un − U) + infΓ U . Together with (18) this entails

inf
Γn

√
n(Un − U) 6

√
n
(
inf
G

Un − inf
G

U
)
6 inf

Γ

√
n (Un − U) . (19)

Note that for the versions that we are considering ‖√n(Un −U)−S‖∞ → 0
a.s.. In particular, this implies that infΓ

√
n (Un − U) → infΓ S a.s.. Hence,

the proof will be complete if we show that a.s.

inf
Γn

√
n (Un − U) → inf

Γ
S. (20)

To check this last point, consider a sequence ϕn ∈ Γn such that
√
n(Un(ϕn)−

U(ϕn)) ≤ infΓn

√
n(Un−U)+ 1

n . By compactness of G, taking subsequences if
necessary, ϕn → ϕ0 for some G. Continuity of U yields U(ϕn) → U(ϕ0) and
as a consequence, that U(ϕ0) ≤ infG U , that is, ϕ0 ∈ Γ a.s.. Furthermore,

∣∣√n(Un − U)(ϕn)− S(ϕ0)
∣∣

6
∥∥√n (Un − U)− S

∥∥
∞ + |S (ϕn)− S (ϕ0)| → 0.

This shows that

lim inf inf
Γn

√
n (Un − U) ≥ S (ϕ0) > inf

Γ
S (21)
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and yields (20). This completes the proof.
�

Proof of Proposition 5.2. We denote by ∂j the derivative operator
w.r.t. θj , 1 6 j 6 J and ∂j,k for second order partial derivatives. We note
that H entails that the empirical d.f. on the j-th sample, Fn,j(t), satisfies
Fn,j(t) = Gn,j(ϕθ∗j

(t)) with Gn,j the empirical d.f. on the εi,j’s (which are
i.i.d. µ, with d.f. G). We write now ρn,j for the quantile process based on the
εi,j ’s. We write Bn,j for independent Brownian bridges as given by Theorem
6.1 (observe that (A2) grants the existence of such Bn,j’s).

Assumption TCL implies that ∂ϕθ⋆j
∈ L2(Xj). Moreover, with Assump-

tions A8, A9 and compactness of Θ, we deduce that supλ∈Λ ∂ϕλ ∈ L2(Xj).
On the other hand, since ε has a moment of order r > 4, arguing as in the
proof of point 3 in Lemma 6.2 we have that

∫ 1

0

√
t(1− t)

g (G−1(t))
dt < ∞. (22)

From A8 and A9 we have that Un is a C2 function and derivatives can be
omputed by differentiation under the integral sign. This implies that

∂jUn (θ) =
2

J

∫ 1

0
∂ϕθj (F

−1
n,j (t))

(
ϕθj (F

−1
n,j (t))−

1

J

J∑

k=1

ϕθk(F
−1
n,k(t))

)
dt,

∂2
p,qUn(θ) = − 2

J2

∫ 1

0
∂ϕθp(F

−1
n,p(t))∂ϕθq (F

−1
n,q (t))dt, p 6= q (23)

and

∂2
p,pUn(θ) =

2

J

∫ 1

0
∂2ϕθp((Fn,p)

−1(t))
(
ϕθp(F

−1
n,p(t))−

1

J

J∑

k=1

ϕθk(F
−1
n,k(t))

)

+
2(J − 1)

J2

∫ 1

0
(∂ϕθp(F

−1
n,p(t))

2dt.

Similar expressions are obtained for the derivatives of U(θ) (replacing ev-
erywhere F−1

n,j with F−1
j = ϕ−1

θ∗j
◦G−1). We write DUn(θ) = (∂jUn(θ))1≤j≤J ,

DU(θ) = (∂jU(θ))1≤j≤J for the gradients and Φn(θ) = [∂2
p,qUn(θ)]1≤p,q≤J ,

Φ(θ) = [∂2
p,qU(θ)]1≤p,q≤J for the Hessians of Un and U . Note that Φ∗ = Φ(θ∗)

is assumed to be invertible.
Recalling that Rj = ∂ϕθ⋆j

◦ ϕ−1
θ⋆j

, from the fact DU(θ∗) = 0 we see that

√
n∂jUn(θ

⋆) =
2

J

∫ 1

0
Rj(G

−1
n,j(t))

ρn,j(t)− 1
J

∑J
k=1 ρn,k(t)

g(G−1(t))
dt. (24)
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Now, using Assumption TCL and arguing as in the proof of Theorem 4.1
we conclude that

∣∣∣∣∣

∫ 1

0
Rj(G

−1
n,j(t))

ρn,k(t)

g (G−1(t))
dt−

∫ 1

0
Rj

(
G−1 (t)

) Bn,k(t)

g (G−1(t))
dt

∣∣∣∣∣→ 0

in probability and, consequently,
∣∣∣∣∣
√
n∂jUn(θ

⋆)− 2

J

∫ 1

0
Rj

(
G−1 (t)

) Bn,j(t)− 1
J

∑J
k=1Bn,k(t)

g (G−1(t))
dt

∣∣∣∣∣→ 0 (25)

in probability.
A Taylor expansion of ∂jUn around θ∗ shows that for some θ̃nj between θ̂n

and θ⋆ we have

∂jUn(θ̂
n) = ∂jU

n(θ⋆) + (∂2
1jUn(θ̃

n
j ), . . . , ∂

2
JjUn(θ̃

n
j )) · (θ̂n − θ⋆)

and because θ̂n is a zero of DUn, we obtain

−∂jU
n(θ⋆) = (∂2

1jUn(θ̃
n
j ), . . . , ∂

2
JjUn(θ̃

n
j )) · (θ̂n − θ⋆).

Writing Φ̃n for the (J − 1) × (J − 1) matrix whose J − 1-th row equals
(∂2

1jUn(θ̃
n
j ), . . . , ∂

2
JjUn(θ̃

n
j )), j = 2, . . . , J , we can rewrite the last expansion

as
−

√
nDUn(θ

∗) = Φ̃n

√
n(θ̂n − θ⋆). (26)

We show next that Φ̃n → Φ∗ = Φ(θ∗) in probability. Recalling (23), we
consider first

∫ 1
0 (∂ϕθ̃np

(F−1
n,p(t)))

2dt. We have

( ∫ 1

0
(∂ϕθ̃np

(F−1
n,p(t))− ∂ϕθ∗p(F

−1
p (t)))2dt

)1/2

≤
( ∫ 1

0
(∂ϕθ̃np

(F−1
n,p(t))− ∂ϕθ∗p(F

−1
n,p(t)))

2dt
)1/2

+
(∫ 1

0
(∂ϕθ∗p (F

−1
n,p(t))− ∂ϕθ∗p (F

−1
p (t)))2dt

)1/2

≤
( ∫ 1

0
sup
λ∈Λ

∣∣∂2ϕλ(F
−1
n,p(t))

∣∣2dt
)1/2

|θ̃np − θ∗p|

+
(∫ 1

0
(Rp(G

−1
n,p(t))−Rp(G

−1
p (t)))2dt

)1/2
→ 0
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in probability, where we have used assumptions A9, TCL and Proposition
5.1. A similar argument shows that

∫ 1
0 (ϕθ̃np

(F−1
n,p(t)) − ϕθ∗p (F

−1
p (t)))2dt in

probability. As a consequence, we conclude

Φ̃n → Φ∗, in probability. (27)

Now, (26), (25) (27) together with Slutsky’s Theorem complete the proof.
�

Proof of Theorem 5.3. We consider the same notation and setup as in
the proof of Proposition 5.2. Since DUn(θ̂

n) = 0, a Taylor expansion around
θ̂n shows that

nUn(θ
∗)− nUn(θ̂

n) =
1

2
(
√
n(θ̂n − θ∗))′Φ(θ̃n)(

√
n(θ̂n − θ∗)) (28)

for some θ̃n between θ̂n and θ∗. Arguing as in the proof of Proposition 5.2 we
see that Φ(θ̃n) → Φ∗ in probability. Hence, to complete the proof if suffices
to show that

nUn(θ
∗)− 1

J

k∑

j=1

∫ 1

0

(
Bn,j(t)− 1

J

∑J
k=1Bn,k(t)

)2

g(G−1(t))2
dt → 0

in probability. Since

nUn(θ
∗) =

1

J

k∑

j=1

∫ 1

0

(
ρn,j(t)− 1

J

∑J
k=1 ρn,k(t)

)2

g(G−1(t))2
dt,

this amounts to proving that
∫ 1

0

(
ρn,j(t)−Bn,j(t)

)2

g(G−1(t))2
dt → 0

in probability.
Taking ν ∈ (0, 12) in Theorem 6.1 we see that

∫ 1− 1

n

1

n

(
ρn,j(t)−Bn,j(t))

)2

g(G−1(t))2
dt ≤ OP (1)

1

n1−2ν

∫ 1− 1

n

1

n

(t(1− t))2ν

g(G−1(t))2
→ 0,

using condition (A10) and dominated convergence. From (A10) we also

see that
∫ 1
1− 1

n

Bn,j(t)2

g(G−1(t))2
dt → 0 in probability. Condition (A10) implies also

that
∫ 1
1− 1

n

ρn,j(t)2

g(G−1(t))2
dt → 0 in probability, see Samworth and Johnson (2004).

Similar considerations apply to the left tail and complete the proof.
�
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