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Abstract: Wasserstein barycenters and variance-like criterion using Wasser-
stein distance are used in many problems to analyze the homogeneity of
collections of distributions and structural relationships between the obser-
vations. We propose the estimation of the quantiles of the empirical process
of the Wasserstein’s variation using a bootstrap procedure. Then we use
these results for statistical inference on a distribution registration model
for general deformation functions. The tests are based on the variance of
the distributions with respect to their Wasserstein’s barycenters for which
we prove a central limit theorem.
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1. Introduction

Analyzing the variability of large data sets is a difficult task when the infor-
mation conveyed by the observations possesses an inner geometry far from the
Euclidean one. Indeed, deformations on the data such as translations, scale lo-
cation models for instance or more general warping procedures prevent the use
of the usual methods in statistics. Looking for a way to measure structural re-
lationships between data is of high importance. This kind of issues arises when
considering the estimation of distribution functions observed with deformations.
This situation occurs often in biology, for example when considering gene expres-
sion. However, when dealing with the registration of warped distributions, the
literature is scarce. We mention here the method provided for biological com-
putational issues known as quantile normalization in Gallén, Loubes and Maza
(2013) and references therein. Very recently using optimal transport methodolo-
gies, comparisons of distributions have been studied using a notion of Fréchet
mean for distributions, see for instance in Agueh and Carlier (2011) or a no-
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tion of depth as in Chernozhukov et al. (2014). In Czado and Munk (1998) and
Munk and Czado (1998), a pioneer work in this framework enables to compare
distributions in a scale location deformation model.

Actually assume we observe J samples of n i.i.d random variables X; ; with
distribution p;. We define a notion of variation for such collection of distribu-
tions using the Wasserstein distance Wy which generalizes the notion of empirical
variance. For this we consider

1/2

J
1
V(pr,...,puy) = inf =N W2 (u;,
(1,5 ) oo | 7 ; )
We show how this quantity can be bootstrapped in order to build confidence
tests with such criterion.

A good model for application is given when the observations come from a
deformation model. More precisely it is the case when they can be written as

Xij= (Sﬁ’;)_l (€i4),

for j =1,...,J where (g; ;) defined for all 1 <i< n,1<j<J areiid. ran-

dom variables with unknown distribution p and for deformation functions ¢3.

This model is the natural extension of the functional deformation models stud-

ied in the statistical literature for which estimation procedures are provided in

Gamboa, Loubes and Maza (2007) while testing issues are tackled in Collier and Dalalyan
(2015). Within this framework, statistical inference on deformation models for
distributions have been studied first in Czado and Munk (1998), Munk and Czado

(1998) and Freitag and Munk (2005), where tests are provided in the case of

parametric functions, while the estimation of the parameters is studied in Agull6-Antolin et al.
(2015).

In this work, after recalling the model we use in Section 2, we tackle the prob-
lem of the estimation of the quantiles of the empirical process of the Wasser-
stein’s variation which is obtained using a bootstrap procedure proved in Sec-
tion 3. We use these results to provide a goodness of fit test in a general non
parametric deformation model. For this, we will use an alignment criterion with
respect to the Wasserstein’s barycenter of a deformation of the observed distribu-
tions. This requires an equivalent of a central limit theorem for the Wasserstein
variation of a barycenter of measures in both the general case in Section 4 and
under the null assumption (observations are drawn from the deformation model)
in Section 5. We obtain the asymptotic distribution of the matching criterion in
both cases, with a different normalization under the null assumption (only for
the parametric case). Finally proofs are postponed to Section 6.

2. Wasserstein variation and a deformation model for distributions

Assume we observe J samples of n i.i.d random variables X; ; with distribution
Wi, associated to a distribution function F; : (¢j,d;) — (0,1) with density with
2



respect to the Lebesgue measure f;. Let yu, ; and F), ; be the empirical measure
and empirical distribution function associated to the sample (Xi ;) c;c,,-

Many recent work has been conducted to measure the spread or the inner
structure of collection of distributions. In this paper we define a notion of vari-
ability which relies on the notion of Fréchet mean for the space of probability
endowed with the Wasserstein metrics, which we will recall the definition here-
after. First, for d > 1, consider the following set

Wy (Rd) = {P probability on R¢ with finite second moment} .

For two probabilities 1 and v in Wy (R?) , we denote by II(u,v) the set of
all probability measures 7 over the product set R? x R? with first (resp. second)
marginal p (resp. v).

The transportation cost with quadratic cost function, or quadratic trans-
portation cost, between these two measures u and v is defined as

Tauw) = ot [ o=yl dn(a,y).
mell(p,v)

The quadratic transportation cost allows to endow the set W, (Rd) with a

metric by defining the 2-Wasserstein distance between p and v as Wa(u,v) =

T2 (i, v)'/2. More details on Wasserstein distances and their links with optimal

transport problems can be found in Rachev (1984) or Villani (2009) for instance.
When we will consider probabilities in Wa (R), the Wasserstein distance can

be written in a simpler expression as

2 _ ' —1py _ -1 2
W2 (o) = / (F(t) - G (1) dr, (1)
0

where F' (resp. G) is the distribution function associated with p (resp. v).

Within this framework, we can define a global measure of separation of a
collection of measures j1;, j = 1,...,n as follows. Given probabilities p1,..., ps
on R? with finite 2-th moment let

1/2
1
V(p,...,uy) = inf = W2(us,
(1ssps) = nf | 5 ; 5 (1g,m)
be the Wasserstein 2-variation of p, ...,y or the variance of the mu;’s.

In Agueh and Carlier (2011) this minimizer of n — %ijl W3 (uj,m) is
proved to exist. This measure pp is called the barycenter or Fréchet mean

1/2
of pi,...,py. Hence V (u1,...,p5) = (% Z;’Zl W;(uj,u3)> . The authors

prove properties of existence and uniqueness for barycenters of measures in
Wo (Rd), while the properties of the empirical version are provided in Boissard, Le Gouic and Loubes
(2015).

This quantity which is an extension of the variance for probability distribu-
tions is a good candidate to evaluate the concentration of a collection of measures
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around its Fréchet mean. In particular it can be used to test the existence of
a distribution’s deformation model, in the sense that all the distributions fx;
would be warped from an unknown distribution template u by a deformation
function ¢} which can be parametric or non parametric. More precisely, consider
a family of warping functions G = G; X --- x G such that

(ij dj) - (a7 b)
x> h(x)

and s.t. —oco<a<b< 400, —oco<c<e <dj <d< +oo.

For all h € G, h is invertible, increasing, (A1)

We would like to build a goodness-of-fit testing procedure for the following
model

There exist (¢7,...¢%) € G and (&;;)1<ign 1.1.d. such that
N

o\ —1 )
Xij = (903‘) (eij) VI<ji<J (H)

Denote by G the distribution function of € with law g with support (a,b), while
G, ; is the corresponding empirical version.

We propose to use this Wasserstein 2-variation as a goodness of fit criterion
for model (H). Since the true distribution g is unknown, we first try to invert
the warping operator and thus compute for each observation its image through
a candidate deformation ¢;,

Zij(pj) =9 (Xij) 1<i<n, 1<j<J

Note that
F;o <pj =
of (11;(¢5)),

5.5 (©5) ~ pj(p;) with distribution function (under Assumption A1)
F,,. Now, if we set ¢ = (¢1,...,97) € G, then the Fréchet mean
<j<J I8 the probability pp(¢) with quantile function

1 J
FB jz kOF
k=1

see for instance Agueh and Carlier (2011). We will write py, j(p;) for the empir-
ical measure on Z; ;(¢;),1 < i <n and u, g(¢) for the corresponding Fréchet
mean. It is important to remark that

under (H)  pp(¢*) = p=pi(¢;), V1< j < J.

Hence, a natural idea to test whether H holds, is to consider the Wasserstein 2-
variation of the (u;(¢;)),1 < j < J, that is to say the minimum alignment of the
candidate warped distributions (1;(¢;)), ¢ ;< ; With respect to their barycenter,
namely pp(p). This optimization program corresponds to the minimization in
@ € G of the following theoretical criterion

J
U(p) = V5 (malpr), -, pa(er)) = %wa(ﬂj(%)aﬂB(@))-

j=1
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Its empirical version is given by U, (¢) = 2WZ(1n,j(¢;), tin,5()). Inference
about model H can be based on the statistic inf,eg U, (¢) which is equal to
zero if the distributions can be warped from a common distribution and different
otherwise. In the next sections we analyze the behavior of this statistics under
different setups.

3. Bootstrap with Wasserstein distance

In this section we present general results on Wasserstein distances that we will
apply to estimate the asymptotic distribution of a statistic test based on an
alignment with respect to the Wasserstein’s barycenter More precisely, here we
consider distributions on R? with a moment of order r > 1, that is, distributions
in W, ( ) W, will denote Wasserstein distance with L, cost, namely,

wr f —2||I"d
(1,m) = egbm)/lly z||"dr(y, 2),

where [|-|| is any norm on R?. Finally, we write £(Z) for the law of any random
variable Z. We note the abuse of notation in the following, in which W, is used
both for Wasserstein distance on R and on R?, but this should not cause much
confusion.

The next result shows that the laws of empirical transportation costs are
continuous (and even Lipschitz) functions of the underlying distributions.

Theorem 3.1. Set v,v',n probability measures in W, (Rd), Yi,...,Y, iid.
random vectors with common law v, Y{,..., Y. i.i.d. with law V' and write vy,

n’

vl for the corresponding empirical measures. Then
W (LW, (vn,n)), LW (v,,m))) < Wi (v, ).

Our deformation assessment criterion concerns a particular version of the
Wasserstein r-variation of distributions vq,...,v; in W, (Rd), that is denoted
in its general form by

Vi(ve, ... vg) = 1nf ( ZWT vi,n )UT.

neEW,(

V.. is just the average distance to the r-barycenter of the set.

It is convenient to note that V" (v1,...,v) can also be expressed as
M‘T(Vlv"'aVJ): inf /T(ylv'-'ayJ)dﬂ-(yla-'-ayJ)a (2)
ne€ll(vy,...,vg)
where II(vy, . . ., v;) denotes the set of probability measures on R? with marginals
. 1 J T
Vi,..., Vg and T(yla o ayJ) = M ,cRrd 7 Z_j:l ||yJ - Z” .

Here we are interested in empirical Wasserstein r-variations, namely, the r-
variations computed from the empirical measures v,,; ; coming from independent
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samples Y1 j,...,Y,, ; of i.i.d. random variables with distribution v;. Note that
in this case problem (2) is a linear optimisation problem for which a minimizer
always exists.

As before, we consider the continuity of the law of empirical Wasserstein r-
variations with respect to the underlying probabilities. This is covered in the
next result.

Theorem 3.2. With the above notation
J
T / / 1 T !
W’I" (‘C(‘/T(Vnhlv ceey Vﬂ.lnj))v‘c(‘/?“(ynl,lv R Vn‘],J))) < j Z W’I" (Vja Vj)'
j=1

A useful consequence of the above results is that empirical Wasserstein dis-
tances or r-variations can be bootstrapped under rather general conditions. To
be more precise, we take in Theorem 3.1 v/ = v, the empirical measure on
Y1,...,Y, and consider a bootstrap sample Y7*,..., Y of i.i.d. (conditionally
given Y7, ...,Y,,) observations with common law v,,. We write Vh for the em-
pirical measure on Y7*,..., Y and £*(Z) for the conditional law of Z given
Y1,...,Y,. Proposition 3.1 now reads

W (LW (vr, v), LW (Ui, v))) < Wi (Vn, v).

Hence, if W,.(vp,,v) = Op(1/r,) for some sequence r,, > 0 such that r,,, /r, — 0
as n — oo, then, using that W,.(£(aX), L(aY)) = aW,.(L(X), L(Y)) for a > 0,
we see that

WT(‘C*(TmnWT(Vr*nnvV))a‘c(rmn WT(anvV))) < D THWT(VmV) —0 (3)

Tn

in probability.

If in addition r,W,.(v,v) — v (v) for a distribution + () then
T We Vi, v) = (V) (4)

which entails that if é,(«) denotes the « quantile of the conditional distribution
L* (1, Wr (v, ,v)) then under some regularity conditions on the distribution
v(v)

P (roWy(vn,v) < ép(a)) = o asn — oc. (5)

We conclude in this case that the quantiles of r,,W,.(v,, V) can be consistently
estimated by the bootstrap quantiles, that is, the conditional quantiles of the
quantity r.,, Wy (vy, ,v) (which, in turn, can be approximated through Monte-
Carlo simulation).
As an example, if d = 1 and r = 2, under integrability and smoothness assump-
1/2

tions on v we have \/nWa(v,,v) — (fol Pf;%dt) / , where f and F~! are
the density and the quantile function of v.

In the same way the Wasserstein r-variation can also be bootstrapped as soon
as a limit theorem exists as in (4). This is the purpose of the following sections
in the framework of a deformation model.
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4. Non parametric model for deformations

Recall that we consider p;’s that may be warped from a common unknown tem-
plate by deformations ¢}’s. We consider the Wasserstein 2-variation for a given
set of candidate deformation function o, namely U (o) := V2 (u1(¢1), - - -, (1))
and its empirical version U, (¢). We prove a Central Limit Theorem for this
quantity in order to design a goodness of fit test for the deformation model.

.1. Central Limit Theorem for Wasserstein’s barycenter variations
Y

We provide in the section a CLT for inf,eg U, () under the following set of
assumptions.

For all j, F; is C? on (c;;d;), fi(xz) > 0if z € (¢j;d;) and (A2)
Fj(2)(1-F; (2)) f; (=)

sup e < Q.
cj<z<d; fi@)?
For some ¢ > 1 and all 1 < j < J, fo %dt < +00 (A3)

For g as in A3, we set pg = max (#,2) and define on H; = C'(cj;d;) N
LPo (X;) the norm ||h; HH = SUp(c,,a,) |75+ E[|h; (X j)|p°]ﬁ , and on the prod-

uct space Hy x --- x Hy, ||h|l,, = ijl 175114, - The we make the following
J
additional assumptions.

G; C H; is compact for || - |3, and sup |n'(z})) — h'(z)]
heg;

subeg, |2 2|0

(A4)

forsomer >4and 1 <j<J, E[X;]"] <o0 (A5)

for some r > max(4,pp) and 1 <j < J, E
heg;

sup Ih(Xj)V] <oo  (A6)

Under A1l to A6, we are able to provide the asymptotic distribution of
inf,eg /Uy (). It is convenient at this point to give some explanation about
the meaning of these assumptions. A2 is a is a regularity condition on the distri-
butions of the X?s (it holds, for instance, for Gaussian or Pareto distributions)
required for strong approximation of the quantile process, see Csorgs (1983) for
details. The integrability condition A3 is satisfied by the Gaussian distribution
if ¢ < 2, see, e.g., Rajput (1972). A4 is related to the regularity of the deforma-
tion functions. Finally, A5 and A6 are moment assumptions on the (possibly
warped) observations.



Theorem 4.1. Under Assumptions Al to A6

Vi ( inf Ua(o) = inf U())

J 1
2 B.
— inf — E # Filij . Ffl_Ffl

;Iéf‘ J j—l/o <pJ °© J fj ° ijl (wJ ° J B (<P))a

where I' = {¢ € G : U(p) = infyegU(@)} and (B)), ¢, are independent
Brownian bridges.

A proof of Theorem 4.1 is given in the Appendix below. We note that con-
tinuity of U is follows easily from the choice of the norm on G. Recall that G
is compact and, consecuently, inf,cg U(y) is attained. Hence, I' is a nonempty
closed subset of G (in particular, it is also a compact set). We note further

that the random variables fol @} o Ffl %(cpj o F{l — F5'(p)) are centered
1oLy

Gaussian, with covariance

/[0 i) = st) S B (4 (F () = Fi (9)(0)

B (i (F 1 (5)) — Fi () (s))dsdt.

In particular, if U has a unique minimizer the limiting distribution in Theo-
rem 4.1 is normal. However, our result works in more generality, even without
uniqueness assumptions.

We remark also that although we have focused for simplicity on the case of
samples of equal size, the case of different sample sizes, n;, j = 1,...,J, can
also be handled with straightforward changes. If we assume

Vj:n; = 400 and ———

then the result can be restated as

J
ny...ny . . . 2 .
\/ ),]71 (lgf Un1 ..... ny — lgf U) — lgszsj,

(ng+-+ny

where Uy, ... », denotes the empirical Wasserstein variation computed from the
= 1 1 B, _ _
samples and S;(¢) = (Hp;,,gjyp) fo (p;- o F} ! fjol;_,l (pjo F; 1o FBl(gp)).
J
As a final remark in this section we note that in the case where H holds,

we have ¢; o Ffl = F5'(p) for each ¢ € T. Thus, the result of Theorem 4.1
becomes

inf U, — 0.
;fgg\/ﬁ (¥)

Hence, in this case we have to refine our study to understand well the behavior
of infg U,, when n tends to infinity. This is what we consider in the next section.
In this case we restrict ourselves to a to a semiparametric warping model where
1 is unknown but where the deformations are indexed by a parametric family.

8



4.2. A testing procedure

In the non parametric deformation model, statistical inference is based on the
minimal Wasserstein variation

2 .

v = inf U, ,

n e n(@)
where i, ;(¢p) denotes the empirical measure on Zy ;(¢), ..., Zn,;(p), where
Zi j(p) = (Pj_l(Xi,j) and X1 j,...,Xp,; are independent i.i.d. samples from p;.
Consider v/,, the corresponding version obtained from samples with underlying
distributions u, and denote by L (v,) (reps. £(v;,)) the law of the random
variable vy, (resp. v},).

Then, the following result holds, setting [¢;|| . = supze(c,:a,) l¢j ()|

Theorem 4.2. Under Assumption AL, if for all j G; C C! (cj;d;) and SUP,eg Hgog HOO <
oo, then

1 J
W3 (L (o), £(05)) < sup [l |2, 5 D7 W3 (oo ).
weG j=1

Now consider bootstrap samples X7 ;,..., X7 . of i.i.d. observations sam-
: :
o o ) X .
pled from p,, j, write j;,  for the empirical measure on Xy ;,..., X} . (condi

tionally to the X1 j,..., Xy ;) and denote Vi (s, 1 (), -+, i, () = U, ().
Then we get

Corollary 4.3. If m, — oo, and my/+/n — 0, then under Assumptions Al to
A6, and if infg U > 0, writing v for the limit distribution in Theorem 4.1, we
have that

L* (\/mn (irglf Un. — iréf U)) — oy
in probability. In particular, if é,(c) denotes the conditional (given the X; ;’s)
a-quantile of \/mn, (infg U, —infg U) then
P (\/ﬁ (iréf " — iIglf U) < én(a)> - a. (7)

Since under H we get inf,eg /nUy(p) — 0, we can not obtain a goodness of
fit test in the non parametric model. Yet a test can be designed switching the
null hypothesis. Hence set for Ay > 0 set

inf U =A Hi
;Iég (%’) 0 ( O)
inf Ul(p A H1
ql:eg ( )< 0 ( 1)

The test statistic in this case is U, (Ag) := /n (infg U, — Ag). Then, under
assumptions of Corollary 4.3 (A1 to A6), if é,(«) denotes the conditional (given
the X; ;’s) a-quantile of the bootstrap version \/m,, (infg Un. — AO), under H}
P (U, (Ag) < én(@)) — ay
which gives the asymptotic level of the reject region {U, (A¢) < é,(a)}, where
én(a) can be computed using a Monte-Carlo method.
9



5. A parametric model for deformations
5.1. Estimation of the deformation model

In many cases, deformation functions can be made more specific in the sense
that they follow a known shape depending on parameters that are different for
each sample. So consider the parametric model 6* = (67, ..., 0%) such that ¢} =
©or, for all j =1,...,J. Each 07 represents the warping effect that undergoes

the jt sample, which must be removed to recover the unknown distribution by
inverting the warping operator. So Assumption H becomes

X, ;= %*]3 (gij), forall1 <i<n,1 <5< J.

Hence, from now on, we will consider the following family of deformations,
indexed by a parameter A € A C RP:

p:Ax(¢d) — (a,b)
(A 2) = o (x)

Thus, the functions U and U,, are now defined on © = A”, and the criterion
of interest becomes infyece U(X). We also use the simplified notation u;(6;)
instead of p; (g, ), Fi (0) for Fi (g, ,...,¢e,) and similarly for the empirical
versions. Throughout this section we assume that model H holds. This means,
in particular, that the d.f.’s of the samples, F}, satisfy F; = G o ©or, with G the
d.f. of the g; ;’s.

For the analysis of this setup, we adapt Assumptions A1 to A6, replacing
them by the following versions.

For all A € A, ) : (Czlzid»le((aa;)b) is invertible, increasing, (A1)
and s.t. —oo<a<b< +oo, —oco<c<c <dj <d< oo

We replace A2 by: G is C? with G’(z) = g(x) > 0 on (a,b) and

sup Gl)(1-G@)g'(@) _ (A2)

a<z<b g(x)?

Now, instead of A3 to A5 we assume

¢ is continuous w.r.t. x and A (A3)

VA € A, gy is C! with respect to z, A is compact

dy is bounded on A X [c;;d;] and continuous with respect to A

A
sup/\eA|mn71|~>O
—>

and sup |dpx (z) — dex (z)] 0. (A4)
AEA

10



Vi<j<J E[X;|'] < oo for some r >4 (A5)

Here d is the derivation operator w.r.t. , while 0 will be the derivation operator
w.r.t. A. Finally .46 becomes

Vi<j<J E [sup lox (Xj)@ < oo for some r > 4 (A6)
AEA

Note that Assumption A6 implies that £ has a moment of order r > 4 and also
that Assumption A3 becomes simpler in a parametric model which does not
require a particular topology.

We impose as identifiability condition,

U has a unique minimizer, 6*, that belongs to the interior of A. (A7)

Note that, equivalently, this means that 6* is the unique zero of U, since we are
assuming that H holds.

Now, to get sharper result about the convergence of infgee U™ (), one has
to add the following assumptions, first on the deformation functions.

V1< j<J ¢yt is CF wrt. x and dy,.' is bounded on [a, b] (A8)

@ is C? wr.t. z and A

2

Vi<j<J E [sup D*pn (goe_*_l (5))‘ ] < oo (A9)
AEA J

As said for Assumption .43, the following one is more restrictive on the tail

of the distribution of &, excluding the Gaussian case. Examples of such variables

with unbounded support are given in del Barrio, Deheuvels and van de Geer

(2007) p.76. Note that distributions with compact support and strictly posi-
tive, continuous density satisfy this assumption.

Lot —t) -
/0 e < (A10)

Set Un(0) = Un(pa) = Vi (1tn.1(¢0,), - - - » tin,s(pa,)) and consider the estima-
tor
0" e al“ggélélU (0).

The results in this section are stated in the case where A is a subset of
R. However they are still true if A C R? with corresponding changes. The
following result implies that 8™ is a good candidate to estimate 6*. It is a simple
consequence of the continuity of U and the uniform convergence in probability
of U, to U, as shown in the proof of Theorem 4.1.

Proposition 5.1. Under A1 to A7, then
0" — 0* in probability.
11



We can refine this result by making the following additional assumption,
R;j = Opgr 0 ¢, is continuous and bounded on [a,b], 1 < j <J. (TCL)

Define now ® = [®; ;]1<; j<s with

2

C 2(J -1
(I)i’j - J2 <Ri7Rj>#7 g 7£ Js (I)i,i = g

I Rill )

where [-|| , and (-, ), denote norm and inner product, respectively, in L?(u). @

is a symmetric, positive semidefinite matrix. To see this, consider z € R’ and
note that

'dr = %/(Z(J—1)x?Rf—2inijiRj)du
i i<j
= % / Z(mle — LL‘jRj)2d/J, Z 0.

i<j

In fact, ® is positive definite, hence invertible, unless all the R; are proportional
p-a.s.. Now, we can state the following Central limit Theorem.

Proposition 5.2. Under Assumptions A1l to A9 and TCL, if, in addition, ®
is invertible, then .
Vo™ —0*) — 7Y,

where Y £ (Y1,...,Yy) with

1
L= . -1 j
Y, J/o Ry oGl

=4 J
Bj = Bj — %Y i Br and (B))

1<j<] independent Brownian bridges.

We note that, while, for simplicity, we have formulated Proposition 5.1 as-
suming that the deformation model holds, a similar version can be proved (with
some additional assumptions and changes in ®) in the case when the model is
false and 6* is not the true parameter, but the one that gives the best (but
imperfect) alignment.

Remark 1. The indentifiability condition A7 can be too strong to be realis-
tic. Actually, for some deformation models it could happen that vg o @y = Qs
for some 0 xn € ©. In this case, if X;; = <p9}1(5i7j) with €; 5 i.i.d., then, for
any 0, X; j = ¢y (8i ;) with & ; = pg(ci ;) which are also i.i.d. and, conse-
quently, (0 % 07, .. .J,G * 0%) is also a zero of U. This applies, for instance, to
location and scale models. A simple fix to this issue is to select one of the
signals as the reference, say the J-th signal, and assume that 0% is known
(since it can be, in fact, chosen arbitrarily). The criterion function becomes
then [7(91, oo 850)=U(01,...,05-1,0%). One could then make the (more re-
alistic) assumption that 6* = (0%,. .., 0%_1) is the unique zero of U and base the
12



analysis on Un(t?l, v b521) = Un(br,...,05-1,6%) and on = arg ming 0n(é)
The results in this section can be adapted almost verbatim to this setup. Propo-
sition 5.2 holds, namely, \/5(67" - é*) —~ Y, with Y % Y1,...,Y;_1) and
@ = [®; j]1<ij<s—1. We note further that invertibility of ® is almost granted.
In fact, arguing as above, we see that

2 x = % / ( Z (z;R; — arjRj)2 + Z fof)d,u >0

1<i<j<J—1 1<i<J—1

and ® is positive definite unless R; = 0 p-c.s. fori=1,...,J—1.

5.2. Asymptotic behavior of Wasserstein’s variation under the null
assumption

Here we are able to specify the rate of convergence of infyecgo U, (0) to zero when
‘H holds, and to provide the asymptotic distribution of this statistic.

Theorem 5.3. Under assumptions A1l to A10, TCL and invertibility of @,
I Yy B L
inf U,(0) = = (4) ——Y'd7ly
neuel@U() J;/O goG—1 2

with Y = (Yi,...,Y)), ¥; = 2 [[ Rjo G2, By = B; — 3 Y/, By and

(Bj)i<j<s independent Brownian bridges.

Turning back to our goal of assessment of the deformation model H based
on the observed value of infgce U™ (f), Theorem 5.3 gives some insight into
the threshold levels for rejection of H. However, the limiting distribution still
depends on unknown objects and designing a tractable test requires to estimate
the quantiles of this distribution. This will be achieved in the next subsection.

5.3. Goodness of fit test for parametric deformation model

Now consider the parametric deformation model and note that the inference
about it is based on the minimal Wasserstein variation indexed by 6 € ©

2 . 2 _
Up = 9122)‘/2 (Mn,l(e)a s nufn,J(e)) - Héf Un7

where p,, ;(6) denotes the empirical measure on Z1 ;(9),..., 2, ;(8), Z;;(0) =
gpe_jl (X;,;)and X1 j,..., X, ; are independent 1.i.d. samples from ;. We consider
vl, the corresponding version obtained from samples with underlying distribu-
tions p;, and denote by £ (vy) (resp. £ (v;,)) the law of the random variable v,
(resp. vl,).

Then, mimicking the proof of Theorem 4.2 ,we are able to prove the following
result.

13



Theorem 5.4. Under Assumptions A1, A3 and A4

J
1
WE(L(n), L) < sup Jdpr (@) 5 0 WE (18,
j=1

z€(c;d),AeA
Now consider bootstrap samples X7 ;,..., X7 . of i.i.d. observations sam-
pled from 7, write py, . for the empirical measure on X7 ;,..., X}, (condi-

tionally to the X1 j,..., Xp ;) and denote Vi (uss, 1 (6), ..., 5, ;(0)) = U, ().

Corollary 5.5. If m,, — oo, and m,/n — 0, then under Assumptions Al to
A10, TCL and writing v (G;0%) for the limit distribution in Theorem 5.3, we
have that

Vo (mn inf U;;n) oy (G107)

in probability. In particular, if é,(a) denotes the conditional (given the X; ;’s)
a-quantile of my, infg U}y, then if the quantile function of v (G;0*) is continuous
w.r.t o

P (n igf U" < én(a)) - a. 9)

In the semi parametric model, we can now provide a goodness of fit procedure.
Under Assumptions of Theorem 5.3 (A1 to A10 and TCL) one can test the
null assumption

inf U(6) =0 (Ho)

versus its complementary denoted by ;.

In this case the test statistic is ninfg U, and one can get the asymptotic level
of a reject region of the form {ninfg U, > \,} by using Corollary 5.5.

More precisely, consider bootstrap samples X7 ;,..., X} . of ii.d. obser-
vations sampled from p, j, and write U, (6) for the corresponding criterion.
Then, if é,(a) denotes the conditional (given the X, ;’s) (1 — a)-quantile of

my infe Uy,

P (n 912({) U,(0) > én(a)) — a.

Thus {ninfgee Un(0) > é,(a)} will be a reject region of asymptotic level «,
and ¢é,(a) can be computed using a Monte-Carlo method.

6. Appendix
6.1. Proofs of goodness of fit and bootstrap results

PROOF OF THEOREM 3.1. We set T,, = W,.(vy,n) and T), = W, (v),,n) and
I1,,(n) for the set of probabilities on {1,...,n} x R? with first marginal equal
to the discrete uniform distribution on {1,...,n} and second marginal equal to
n and note that we have T}, = inf ¢, () a(7) if we denote

1/r
a(m) = (/ 1Y — z||Td7r(i,z)> .
{1,..n}xRd

14



We define similarly a'(7) from the Y sample to get T}, = inf e, () @' (7). But
then, using the inequality || a|| — ||b]|] < ||a — b]],

1/r n
r : 1 r
la(m) —a'(m)| < </ 1Y; = Y/l dﬂ(w)> = <—Z|Yi—yf” )
{1,...,n}xR4 n i=1

This implies that

1/r

0 = Tl ZHY vy

If we take now (Y, Y”) to be an optimal coupling of v and v/, so that E [||Y — Y'||"] =

Wi (v,v') and (Y1,Y]),...,(Yy,Y,) to be i.i.d. copies of (Y,Y”) we see that for
the corresponding realizations of T,, and T/, we have

T 1 <
E(T, - T" < = Y E[IYi = Y/|"] = Wa (v, )"
i=1
But this shows that W,.(L(T,), £L(T})) < W,(v,v'), as claimed.
O
PROOF OF THEOREM 3.2. We write V., = Vi(Vny 15+, Vn,,7) and V), =
Vi(Upy a5+ -5V, 7). We note that
V', = inf T(i1, ... ig)dm(is, ..., 1),
fom ot [T i)
where U is the discrete uniform distribution on {1,...,n;} and T'(i1,...,i5) =
min, cga ZJ 1Y, 5 —2||". We write T7(i1, ..., i) for the equivalent function

computed from the Y’ ’s. Hence we have

T (ir,..yig)V" =T, ..., ig) V" < ZHYW v

which implies

< 3 ZHYW i, ...is)
J n;
- JZ/H b = Y (i) = Z( 31 - ntjnT)

So,

|Vr,n_Vr/,n|T Z ( ZHY;]

] 1

15



If we take (Y},Y]) to be an optimal coupling of v; and v} and (Y1;,Y7 ), .-

(Yn, .5, Yy, ;) to be iid. copies of (Y},Y]), for j =1,...,J, then we obtain

1 J
’”]) =52 Wiv)).
j=1

9

& |

E([|[Vin — V..l i( nZ E[|Y:, -

The conclusion follows.
O

PROOF OF THEOREM 4.2. We can mimic the argument in the proof of The-
orem 3.2 to get an upper bound on the Wasserstein distance between the laws
of v, and v}, the corresponding version obtained from samples with underlying
distributions ,u;-. In fact, arguing as above, we can write

2 . . . . . .
= inf f T(p;i1,...,15)d ey ,
Un = Jeg [wen(lljlll ,,,,, U‘,>/ (i1, d)dmlin, .o 0)

where T(¢;i1,...,i7) = mingep + ijl(Zijyj(ga)—y)Q. We write T'(¢; 41, ..., 1)
for the same function computed on the Z] ;(¢)’s and set

¢l := sup |@}(z)]-
z€(c;d)
wEG

Now, from the fact (Z; ;(¢) — Z] ;(¢))* < [|¢'[|2(Xi; — X[ ;) we see that

. . . . 1
IT(p;i1, ..., i) = T (p3in, ..., i) 1> < l¢'l|% —Z(Xz‘j,g X )

j=1

and, as a consequence, that

Va (11 () - -, 15 (0)) = Va (u ’"(sa),---,u’]"(w))l2
S J Z Z ”90 15 (X ij,J lej g)
j=11i;=1 nj
and then ;
1 ",
(0 =042 < 925 D (3 T (g — X1,0?).
j=1

If, as in the proof of Theorem 3.2, we assume that (X;;, X/ ), i = 1,...,n;
are i.i.d. copies of an optimal coupling for p; and u;-, with different samples
independent from each other we obtain that

E [(vn —v)?] < ll¢l% ZWQ s 1)

16



PROOF OF COROLLARY 4.3. In Theorem 4.2, take y; = i, j, and set vy, =
infoeg Va (i, 1(#)s -+ ., 7 (). Then, conditionally to the X1 j,..., Xy j,
the result of Theorem 4.2 reads now

J

WE(L(vm, ), L(v5,,)) < sup |||, Z (1 fhnj)-
weg j=1
Now, let v? := inf,eg M (¢). Then,
W3 (L(vm,,), L(vy,,) = W3 (L(Um, —v),L(v,,, —v)) (10)

N

2 1<
itéchp}HoonWf(uj,un,j)-

j=1
Now, recall that in the proof of Theorem 4.1 one gets that W3 (u;, tin,j) =
Op(ﬁ). Then, using that W,.(L(aX), L(aY)) = aW,.(L(X), L(Y)) for a > 0,
(10) gives
W3 (£ (Vo (vm,, = 0)), £ (Vi (07, = v))) (11)
Mp

J
2 1
< %ilgg) ||<P;HOO j;”M@Q(NLUmJ’) —0

Moreover, under Assumptions 41 to A6, Theorem 4.1 gives \/m ( — U2) —
~. If v > 0, the classical Delta Method (see for instance in Van der Vaart (2000)
p.25) gives

1
\% Mn (Umn - U) %’7
Hence (11) enables to say that that
. 1
Vin (vmn o v) %7
Applying again a Delta Method leads to
Vi (v9)2,, —v°) = /my, (iléf Un, — iIglf U> —

(7) is obtained by using Glivenko Cantelli Theorem and convergence of the

empirical quantiles.
O

6.2. Proofs for the deformation model

We provide here proofs of the main results in Sections 3 and 4. Our approach
relies on the consideration of quantile processes, namely,

png(t) = Vufi(F7 O)(F () — F7H (), 0<j<l,j=1,...,J
17



and on strong approximations of quantile processes, as in the following result
that we adapt from Csorgs and Horvath (1993) (Theorem 2.1, p. 381 there).

Theorem 6.1. Under A2, there exist, on a rich enough probability space, in-
ependent versions of py ; and independent families of Brownian bridges { By, j }n=100,
j=1,...,J satisfying

. o) = Bay(0] _{ Oulla(r) i =0

su -
1/n<t<lf—1/n (t(1 —1)) Op(1) if 0<v <1/2

We will make frequent use in this section of the following technical Lemma
which generalizes a result in Alvarez-Esteban et al. (2008).

Lemma 6.2. Under Assumption A6

i) supneg, Vi i ; (1)2dt 0, suppeg, v [i o (h(E;(6)%dt = 0.

i) SUPpeg, \/_fo (h(F, )))2dt — 0, suppeg, \/—fl an( )))%dt — 0
in probability.

1) If moreover A3 holds
V)] e -
Vk,j/o W ilég ‘30] (Fj (t)) ) (t)‘ dt < oo (12)

i) In the parametric case, under Assumptions A3, A6 and if Vk, Fy is C*
with Flé = fk >0 on (Ck,dk)

VD) Sy et -
i [ iy slen (@) - rt @@l < 1)

Our next proof is inspired by Alvarez-Esteban et al. (2008). The main part
concerns the study of \/nU,(¢) uniformly in ¢ in probability by using strong
approximations of the quantile process with Brownian bridges.

Proor or THEOREM 4.1. We will work with the versions of p, ; and B, ;
given by Theorem 6.1. We show first that

J
su;g) ’\/ﬁ(Un () = U (p)) - %Z Sn.j () ’ — 0 in probability (14)
S -

. 1 — — — B,
WlthSnJ( :2f0@;OF1( OFl_FBl(w))f F*

note that the fact that % Z —1pj o Fy ' = F;'(p) and simple algebra yield
V(Un(p) —U(p)) = T Zj:l Sn,] + 3 Zj:l Rn,j with

. To check this we

1
Sn,j = \/ﬁ/o (90] OFn_,gl — ¥ OFj_l)(sDj OFj_l _FB_l(SD))v

18



Roj =i / (g5 0 Byt — gy 0 i) — (Fib(9) — Fi ()2

From the elementary inequality (a1 + -+ +ay)? < Ja? + -+ Ja? we get that
J

J 1
1 - 4\/n _ _
jZRnJ < TZ/O (%‘OFn,gl‘ —joF; h?
j=1 j=1
Now, for every ¢ € (0,1) we have
) =

i (t 0 BN (1) = @ (Ko, (0)(Fy () = Ff (1)) (15)

for some K,w,j (t) between Fn_J1 (t) and F~1(t). Assumption A4 implies C; :=
SUPy,, e, we(c; dy) |5 (2)] < oo. Hence, we have

1 1
/0 (¢, OF;,;‘ — ;o ijl)Q < Cjz/o (FJJ1 — FJ71)2.

Now we can use A5 and argue as in the proof of Theorem 2 in Alvarez-Esteban et al.
(2008) to conclude that /n fol (F, Jl - Fj_l)2 — 0 in probability and, as a con-
sequence, that

J
1 _
Slég ‘\/ﬁ (Un (p) = -7 Z Shn,j ‘ — 0 in probability. (16)
LP :

On the other hand, the Cauchy-Schwarz’s inequality shows that

2

1
”(/O (pjoFy i —pjoF ) (pjoFjt — Fél(@))

L 1
< VA [T@roFil — e o BT [Tl B - Byl
0 0

and using i) and ii) of Lemma 6.2, the two factors converge to zero uniformly in
. A similar argument works for the upper tail and allows to conclude that we

can replace in (16) S, () with S’ () == 2\/—f QDJOF —pjoF; Y(pjo
Ffl — F5'(¢)). Moreover,

1
" — Bn,' — —
SUP}/ ‘PS‘OFJ‘ 1f7J_1(<PjOFj1_FBl(@))}
0 jolrl

wEeG
< C/

and by iii) of Lemma 6.2 and Cauchy—Schwarz’s inequality

E{/j

sup! o Fi = Fgt(9))]
f] weg

Bn,j 1 -1
o rT|sle o B - Pl )]

/f l_t 3p|% () = Fgl(e)(0)]dt — 0.
19



1
w oA —1_ Bn,j
Hence, sup,,cg } Jo @0 F; fjoF_il
' J

similarly for the right tail. Thus (recall (15)), to prove (14) it suffices to show
that

(pjo0 Fj_1 — F5'())| — 0 in probability and

1-1 _
SUP‘ /7 P (1)) Bri(£) (i (F; (1) — Fg(o)(t))dt (17)

0€g Fi(F7H ()

[ R ) s ) - 0] 0

in probability. To check it we take v € (0,1/2) and use Theorem 6.1 to get

1-1 . _ )
/ |pn,}§t(>F j%; s iy 5570 - £ )0t

. 17% 1— v _ _
<wton(r) [ % sup iy (1)) = Fig (9)(0)| dt = 0

(18)
in probability (using dominated convergence and iii) of Lemma 6.2).

We observe next that, for all ¢ € (0,1), sup, cg, [Kn,p,(t) — Fj_l(t)| -0
almost surely, since Ky, ,, (t) lies between F, - Jl (t) and F j_l(t). Therefore, using
Assumption A4 we see that sup, g, |¢}(Kn,q, () — ¢} (Fj_l(t)| — 0 almost
surely while, on the other hand sup,, cg, [¢}(Kn,p; (1)) — ¥} (ijl(t))| < 2C;.
But then, by dominated convergence we get that

E| sup [ (Kn, (8) = ¢j(F] ()] = 0.
©j€Y;

Since by iii) of Lemma 6.2 we have that ¢t — ﬂiv(;i,ll_(?)) SUP,eg ;) (ijl(t)) _

F5'(¢)(t)] is integrable we conclude that

|Bn,j(t)|

mm(l’{l(ﬂ) — Fz (o) (t)|at

-4
E sup / 10 (Ko, (8)) — @ (1 (0))]
peg

1
n

tends to 0 as n — oo and, consequently,

sup [ 1 (o, (0) = 95 (5 OV 0 (7 0) ~ P o)

vanishes in probability. Combining this fact with (18) we prove (17) and, as a
consequence, (14).

Observe now that for alln € N, (S, ;(¢))1<;<s has the same law as (S} (¢))

. 1<i<J
with

1
B,
_ / —1 —1 —1 J
Si(e) —2/0 o F; (pjo k" — Fp (sﬂ))ifjonfl

20



and (Bj), ;¢ ; independent standard Brownian bridges. Set S = %Z] 155
Now, (14) implies that

VU™ ()=U() = 5() (19)

in the space L*° (G) (we denote by [|-||,, the norm on this space). From Sko-
horod Theorem we know that there exists some probability space on which the
convergence (19) holds almost surely. From now on, we place us on this space.
Then, for p,p € G

j / -1 -1 -1
—|—2‘/0 ijon ((pjon —pjon )’

1S; () = Sj(p )|<2(Sup ¢ — ]

<2 sup |} pj|sup\/ oo = 1)
J

(cj)dj)

_ _ 1/po
+2 sw 17}] (Jy |72 (W hes o Bt = g0 F)

¢j,dj)
But using iii) of Lemma 6.2

o [ ot

wEG

1—t . . N
</0 I (F,;l(t) igy%( j (t)) Fg (90)(15)|dt<

1 B —1_ -1
Hence, almost surely, sup,,¢g ‘ Jo W(%OFj -Fy (cp))‘ < oo. Furthermore,
from Assumption 43, we get that a.s.

1 B q
J
/0 (fjoF[l) =

and thus, for some random variable T a.s. finite , and ¢, p € G, we get

1S5 (0) =S (DI < Tl —plg-

Thus, we deduce that (55), ;¢ ; are almost surely continuous functions on g,

endowed with the norm ||-[|5.
Observe now that

\/ﬁ(lngn—lng) S\/ﬁl?fUn—\/ﬁHFlfUzlgf\/ﬁ(Un—U). (20)

On the other hand, if we consider the (a.s.) compact set I')y, = {p € G: U (p) <
infg U + 2 |/ (Un — U)].}, then, if ¢ ™

Un (¢) 2 mfU +2[|(Un = U)o = [(Un = U)lles
21



which implies
Un (p) 2 f U+ [|(Un — V)]

while if ¢ € T, then,

Un(p) =inf U +U" () = U (p) U+ [|(Un = U)c -
Thus, necessarily, infg U,, = infr, U,, = infr, (U, — U + U) > infr, (U, — U) +
infr, U = infr, (U, — U) + infr U. Together with (20) this entails

ilpf\/ﬁ(Un—U)gx/—(lnfU —1nfU) 1nf\/_(U -U). (21)

Note that for the versions that we are considering ||\/n(U, — U) — S|jec — 0
a.s.. In particular, this implies that infr v/n (U, — U) — infr S a.s.. Hence, the
proof will be complete if we show that a.s.

inf /1 (U, = U) = inf 5. (22)

To check this last point, consider a sequence ¢, € T, such that /n(U, (¢n) —
U(pn)) < infp, v/n(U, —U) + +. By compactness of G, taking subsequences if
necessary, @, — ¢o for some G. Continuity of U yields U(y,) — U(po) and as
a consequence, that U(ypg) < infg U, that is, ¢¢ € T a.s.. Furthermore,

’\/E(Un - U)((pn) - S(QPO)‘
<|[[Vn(Un = U) = S| + 18 (#n) = S (@0)] = 0.

This shows that

lim inf ilpf Vn (U, —U) > S (o) = hllfS (23)

and yields (22). This completes the proof.
([

PROOF OF PROPOSITION 5.2. We denote by 0; the derivative operator w.r.t.
0;, 1 < j < J and 0; for second order partial derivatives. We note that H
entails that the empirical d.f. on the j-th sample, F, ;(f), satisfies F, ;(t) =
Gh,j(e: (1)) with Gy, ; the empirical d.f. on the ¢; ;’s (which are iid. p, with
d.f. G). We write now p,, ; for the quantile process based on the ¢; ;’s. We write
B, ; for independent Brownian bridges as given by Theorem 6.1 (observe that
(A2) grants the existence of such B, ;’s).

Assumption TCL implies that 8<p9; € L*(X;). Moreover, with Assumptions
A8, A9 and compactness of ©, we deduce that sup,c, Opx € L?(X;). On the
other hand, since £ has a moment of order » > 4, arguing as in the proof of
point 3 in Lemma 6.2 we have that

/ v 1_tdt<oo (24)
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From A8 and A9 we have that U, is a C? function and derivatives can be
omputed by differentiation under the integral sign. This implies that

=2 [ om0 (v (EO) - LS o) )i

2 00) =~ [ 0u, (B 000, (B0, pF g (9
0

and

J
&2 Un) — /a%pe o)™ 0) (0, (30 = 5 2 o1 0)

Similar expressions are obtained for the derivatives of U(6) (replacing every-
where Fn_; with Fj_1 = 309_;1 o G71). We write DU, (0) = (0;Un(0))1<j<J,
DU(0) = (9;U(0))1<j<s for the gradients and ®,(0) = [0 ,Un(0)]1<p,q<s.
®(0) = [92 ,U(0)]1<p,q<sfor the Hessians of U,, and U. Note that ®* = ®(0*) is
assumed to be invertible.

Recalling that R; = 0ypp: o gpg;_l, from the fact DU(8*) = 0 we see that

1 _ Y
Vo, U (0°) = / Ry(G (1) L) = _21:&_); pui(t)

Now, using Assumption TCL and arguing as in the proof of Theorem 4.1 we
conclude that

dt.  (26)

puge®) [ n.k (t)
SRl e / B (67 0) sy ™

in probability and, consequently,

B j(t) = 235 Bus(t)

)

—0 (27)

1
|\/53jUn(9*)— %/O R; (G7H (1))

in probability. ~ R
A Taylor expansion of 9;U, around 6* shows that for some 67 between 6"
and 60* we have

0;Un(07) = ;U™ (6%) + (97,Un(07), ..., 03;Un(67)) - (6" — 67)
and because 0" is a zero of DU,,, we obtain

—0;U™(0%) = (01;Un(87), ..., 05,U
23

W(07)) - (6" —67).

J



J

Writing @, for the (J—1)x (J—1) matrix whose J—1-th row equals (03, U,,(07), . .., 93,Un (07

7 =2,...,J, we can rewrite the last expansion as
—/nDU,(0%) = &,/n(0" — 6%). (28)
We show next that ®, — ®* = ®(*) in probability. Recalling (25), we
consider first fol (8@52 (F, 5(t)))?dt. We have

1/2

1
(] (@, (Frp(o) = 0y (01 at)

1/2

< (/01(3<ﬂ§g (Frp(t)) — Opos (Frf,zla(t)))zdt)

1 1/2
([ @esEbo) - 0y )Par)

IN

(/1su |02 (F*l(t))|2dt)l/2|én_o*|
o SRy P =%

+(/01(Rp(Gn;(t)) - Rp(szl(t)))zdt)l/2 =0

in probability, where we have used assumptions A9, TCL and Proposition 5.1.

A similar argument shows that fol (@gn (F 3 (t))— o= (F, 1 (t)))?dt in probability.
P ? P

As a consequence, we conclude

®, — ®*, in probability. (29)

Now, (28), (27) (29) together with Slutsky’s Theorem complete the proof.
O

ProOF OoF THEOREM 5.3. We consider the same notation and setup as in

the proof of Proposition 5.2. Since DUn(é") = 0, a Taylor expansion around o
shows that

1 . .

nUn (") — nUy(0") = 5(Vn(0" - 6"))'®(0.)(Vn(6" - 67)) (30)

for some 6,, between 6" and 6*. Arguing as in the proof of Proposition 5.2 we

see that ®(f,,) — ®* in probability. Hence, to complete the proof if suffices to
show that

o L [ (Bug() = 35 Bas)’

in probability. Since

nU,(0") =

dt,

k J 2
! (pn,j (t) — % Zkzl pn,k(t))
Z/ g(G (D)2
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this amounts to proving that

U (g () — Buj(t))”
A oGz 0

in probability.
Taking v € (0, 3) in Theorem 6.1 we see that

1 2 1 .
[0 B0 o 1 R0,
1 9(G=1(1))? = i fy (G1(1)?
using condition (A10) and dominated convergence. From (A10) we also see
that fl %dt — 0 in probability. Condition (A10) implies also that

fl_ N %dt — 0 in probability, see Samworth and Johnson (2004). Similar

considerations apply to the left tail and complete the proof.
O

References

AGUEH, M. and CARLIER, G. (2011). Barycenters in the Wasserstein space.
SIAM J. Math. Anal. 43 904-924. MR2801182 (2012¢:49090)

AGULLO-ANTOLIN, M., CUESTA-ALBERTOS, J. A., LESCORNEL, H. and
LouBEes, J.-M. (2015). A parametric registration model for warped dis-
tributions with Wasserstein’s distance. J. Multivariate Anal. 135 117-130.
MR3306430

A1vArREzZ-ESTEBAN, P. C., DEL BARRIO, E., CUESTA-ALBERTOS, J. A. and
MATRAN, C. (2008). Trimmed comparison of distributions. J. Amer. Statist.
Assoc. 103 697-704. MR2435470 (2009i:62036)

Boissarp, E., LE Gouic, T. and LoUBEs, J.-M. (2015). Distribution’s tem-
plate estimate with Wasserstein metrics. Bernoulli 21 740-759. MR3338645

CHERNOZHUKOV, V., GALICHON, A., HALLIN, M. and HENRY, M. (2014).
Monge-Kantorovich Depth, Quantiles, Ranks, and Signs. ArXiv e-prints.

COLLIER, O. and DALALYAN, A. S. (2015). Curve registration by nonparamet-
ric goodness-of-fit testing. J. Statist. Plann. Inference 162 20—42. MR3323102

CsORGO, M. (1983). Quantile processes with statistical applications. CBMS-
NSF  Regional Conference Series in Applied Mathematics 42. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
MR745130 (86g:60045)

CsOraO, M. and HORVATH, L. (1993). Weighted approzimations in probability
and statistics. Wiley Series in Probability and Mathematical Statistics: Proba-
bility and Mathematical Statistics. John Wiley & Sons Ltd., Chichester. With
a foreword by David Kendall. MR1215046 (94¢:60060)

Czapo, C. and MUNK, A. (1998). Assessing the similarity of distributions—
finite sample performance of the empirical Mallows distance. J. Statist. Com-
put. Simulation 60 319-346. MR1704844

25


http://www.ams.org/mathscinet-getitem?mr=2801182
http://www.ams.org/mathscinet-getitem?mr=3306430
http://www.ams.org/mathscinet-getitem?mr=2435470
http://www.ams.org/mathscinet-getitem?mr=3338645
http://www.ams.org/mathscinet-getitem?mr=3323102
http://www.ams.org/mathscinet-getitem?mr=745130
http://www.ams.org/mathscinet-getitem?mr=1215046
http://www.ams.org/mathscinet-getitem?mr=1704844

DEL BARRIO, E., DEHEUVELS, P. and VAN DE GEER, S. (2007). Lectures on
Empirical Processes: Theory and Statistical Applications. European Mathe-
matical Society.

FREITAG, G. and MUNK, A. (2005). On Hadamard differentiability in k-sample
semiparametric models—with applications to the assessment of structural re-
lationships. Journal of Multivariate Analysis 94 123-158.

GALLON, S., LOUBES, J.-M. and Maza, E. (2013). Statistical properties of
the quantile normalization method for density curve alignment. Mathematical
Biosciences 242 129-142.

GAMBOA, F., LOUBES, J.-M. and MAza, E. (2007). Semi-parametric Estima-
tion of Shifts. Electronic Journal of Statistics 1 616-640.

MUNK, A. and Czapo, C. (1998). Nonparametric validation of similar distribu-
tions and assessment of goodness of fit. J. R. Stat. Soc. Ser. B Stat. Methodol.
60 223-241. MR1625620 (99d:62052)

RAcCHEV, S. T. (1984). The Monge-Kantorovich problem on mass transfer and
its applications in stochastics. Teor. Veroyatnost. i Primenen. 29 625-653.
MR773434 (86m:60026)

RajpuT, B. S. (1972). Gaussian measures on L, spaces, 1 < p < oo. J. Multi-
variate Anal. 2 382-403. MR0345157 (49 #+#9896)

SAMWORTH, R. and JOHNSON, O. (2004). Convergence of the empirical process
in Mallows distance, with an application to bootstrap performance. ArXiv e-
prints.

VAN DER VAART, A. W. (2000). Asymptotic statistics 3. Cambridge Univ Pr.

ViLLANI, C. (2009). Optimal transport: old and new 338. Springer Verlag.

26


http://www.ams.org/mathscinet-getitem?mr=1625620
http://www.ams.org/mathscinet-getitem?mr=773434
http://www.ams.org/mathscinet-getitem?mr=0345157

	Introduction
	Wasserstein variation and a deformation model for distributions
	Bootstrap with Wasserstein distance
	Non parametric model for deformations
	Central Limit Theorem for Wasserstein's barycenter variations
	A testing procedure

	A parametric model for deformations
	Estimation of the deformation model
	Asymptotic behavior of Wasserstein's variation under the null assumption
	Goodness of fit test for parametric deformation model

	Appendix
	Proofs of goodness of fit and bootstrap results
	Proofs for the deformation model

	References

