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MODULI SPACES OF BUNDLES OVER

NON-PROJECTIVE K3 SURFACES

ARVID PEREGO, MATEI TOMA

Abstract. We study moduli spaces of sheaves over non-
projective K3 surfaces. More precisely, if v = (r, ξ, a) is a Mukai
vector on a K3 surface S with r prime to ξ and ω is a ”generic”
Kähler class on S, we show that the moduli space M of µω−stable
sheaves on S with associated Mukai vector v is an irreducible holo-
morphic symplectic manifold which is deformation equivalent to a
Hilbert scheme of points on a K3 surface. If M parametrizes only
locally free sheaves, it is moreover hyperkähler. Finally, we show
that there is an isometry between v⊥ and H2(M,Z) and that M

is projective if and only if S is projective.
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1. Introduction

Moduli spaces of sheaves on projective K3 surfaces have been studied
since the ’80s. In [9] Fujiki considered the Hilbert scheme Hilb2(S) of 2
points on a K3 surface S; his result was widely generalized by Beauville
in [4], who studied Hilbn(S) for any n ∈ N, showing that it is an
irreducible hyperkähler manifold, i.e. a compact Kähler manifold which
is simply connected, holomorphically symplectic and has h2,0 = 1.
Moduli spaces of µ−stable sheaves are a generalization of Hilbert

schemes of points, and they have been extensively studied when the
base surface S is a projective K3 surface. In [28] Mukai showed that on
the moduli space M of simple sheaves of Mukai vector v = (r, c1(L), a)
(i.e. of rank r, determinant L and second Chern character a − r),
there is a natural holomorphic symplectic form associated to the one
on S. This moduli space M is a non-separated scheme containing as a
smooth open subset the moduli space Mµ

v (S,H) of µH−stable sheaves
(with respect to some ample line bundle H on S) of Mukai vector v;
Mukai’s construction thus produces a holomorphic symplectic form on
Mµ

v (S, ω).
If H is generic and r and L are prime to each other, then Mµ

v (S,H)
is a projective holomorphically symplectic manifold. Moreover, it is an
irreducible hyperkähler manifold deformation equivalent to a Hilbert
scheme of points on S (see [30] and [42]).
If S is a non-projective K3 surface and ω is a Kähler class on it, one

still defines the notion of µω−stable sheaf and constructs the moduli
space Mµ

v (S, ω) of µω−stable sheaves of Mukai vector v. In [36] it is
shown that Mµ

v (S, ω) is a smooth complex manifold carrying a holo-
morphic symplectic form. If ω is generic and r is prime with c1(L), then
Mµ

v (S, ω) is even compact (see subsection 2.2 for the precise notion of
genericity we use for Kähler classes, called v−genericity in analogy to
the projective case).
It is natural to ask if Mµ

v (S, ω) is irreducible symplectic, and in this
case what is its deformation class. We first show the following:

Theorem 1.1. Let S be a K3 surface, v = (r, ξ, a) ∈ H∗(S,Z) where
ξ ∈ NS(S), r > 1 prime with ξ and v2 ≥ 0. Suppose ω to be v−generic.
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(1) The moduli space Mµ
v (S, ω) is a compact, connected complex

manifold of dimension v2+2 which is holomorphically symplec-
tic and deformation equivalent to a Hilbert scheme of points on
a projective K3 surface.

(2) On H2(Mµ
v (S, ω),Z) there is a non-degenerate quadratic form,

and there is an isometry between H2(Mµ
v ,Z) and v⊥ if v2 > 0

(resp. v⊥/Zv if v2 = 0).

The condition v2 ≥ 0 implies that Mµ
v (S, ω) 6= ∅ (see [2], [33], [23]).

As recalled above, if S is projective and ω = c1(H) for a generic ample
line bundle H we even know thatMµ

v (S, ω) is an irreducible symplectic
manifold. To prove Theorem 1.1, we study the two remaining cases: S
is projective and ω /∈ NS(S); and S is non-projective.
When S is projective and ω is not the first Chern class of an ample

line bundle, we show that there is a v−generic ample line bundle H
such that Mµ

v (S, ω) = Mµ
v (S,H). This is done by showing that the

v−chamber in which ω lies intersects the ample cone, and that moving
the polarization inside a v−chamber does not affect the moduli space.
When S is non-projective, the strategy to prove Theorem 1.1 is to

deform Mµ
v (S, ω) along the twistor family X −→ P1 of (S, ω): even if

the sheaves in Mµ
v (S, ω) do not necessarily deform along such a twistor

family, we can still deform them as twisted sheaves.
We then provide a construction of a relative moduli space of sta-

ble twisted sheaves extending Yoshioka’s construction in [43] to non-
projective base manifolds and we show that we can connect the K3 sur-
face S to a projective K3 surface S ′ only by means of twistor lines, in
such a way thatMµ

v (S, ω) deforms toMµ
v (S

′, ω′) for some v−generic po-
larization ω′ on S ′. Theorem 1.1 holds true even if we replaceMµ

v (S, ω)
with a moduli space of stable twisted sheaves.
The non-degenerate quadratic form on H2(Mµ

v (S, ω),Z) is defined
as a quadratic form on the second complex cohomology using the same
definition of the Beauville form, the only difference being that we have
to fix one holomorphic symplectic form to define it as a priori we have
h2,0 ≥ 1. We then show that it is non-degenerate. The construction of
the isometry with v⊥ is standard, and uses the same strategy as in the
projective case.
As one might see from the statement on Theorem 1.1, there is only

one missing property for Mµ
v (S, ω) to be an irreducible symplectic

manifold; namely, we don’t know if Mµ
v (S, ω) is Kähler. This is a

longstanding problem: on the open subset Mµ−lf
v (S, ω) of Mµ

v (S, ω)
parametrizing locally free sheaves we have a natural Kähler metric, the
Weil-Petersson metric, cf. [19], [20], but at present nothing is known
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as to how this metric could extend to a Kähler metric on the whole
Mµ

v (S, ω).
The strategy to prove Theorem 1.1 together with [13, Theorem 3.3]

may be employed to obtain another proof of the existence of a Kähler
metric on Mµ−lf

v (S, ω) and of a description of a twistor family for such
a hyperkähler metric. But, as pointed to us by Daniel Huybrechts,
this strategy does not allow to show that Mµ

v (S, ω) carries a Kähler
metric too. Let us remark however that there are choices of Mukai
vectors for which Mµ

v (S, ω) coincides withM
µ−lf
v (S, ω) and is therefore

a compact irreducible hyperkähler manifold. Moreover such compact
moduli spaces of stable locally free sheaves may acquire any positive
even complex dimension; see Proposition 4.27.
As an application of the previous result, we will show the following

projectivity criterion for the moduli spaces of slope-stable sheaves on
a K3 surface:

Theorem 1.2. Let S be a K3 surface, v = (r, ξ, a) ∈ H2∗(S,Z) where
ξ ∈ NS(S), r ≥ 2, (r, ξ) = 1 and v2 ≥ 0. If ω is a v−generic
polarization, the moduli space Mµ

v (S, ω) is projective if and only if S is
projective.

Acknowledgements. We are grateful to Daniel Huybrechts for point-
ing out to us a mistake in a previous version of this paper. We also
thank the referee for his remarks and suggestions which significantly
contributed to improve the exposition.

2. Moduli spaces of stable sheaves

In the following S will be a K3 surface, possibly non-projective. If
F is a coherent sheaf on S, we let the Mukai vector of F be

v(F ) := ch(F ) ·
√
td(S) ∈ H2∗(S,Z).

If vi is the component of v(F ) in H2i(S,Z), we have v0 = rk(F ), v1 =
c1(F ) and v2 = ch2(F ) + rk(F ) = 1

2
c21(F ) − c2(F ) + rk(F ), which

will be viewed as an integer (i.e. we fix an isomorphism H4(S,Z) ≃ Z).
We recall that on H2∗(S,Z) we have a pure weight-two Hodge struc-

ture and a lattice structure with respect to the Mukai pairing (see Def-
initions 6.1.5 and 6.1.11 of [15]): the obtained lattice will be referred
to as Mukai lattice, and we will write v2 for the square of v ∈ H2∗(S,Z)
with respect to the Mukai pairing. Explicitly, v2 = v21 − 2v0v2.
When v0 6= 0 we define the discriminant of v, or respectively of F

in case v = v(F ), as

∆(v) :=
1

2v20
v2 + 1,
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This coincides with the definition of [2] for instance, where

∆(F ) = ∆(v(F )) =
1

rk(F )

(
c2(F )− rk(F )− 1

2rk(F )
c21(F )

)
.

2.1. The stability condition. Let g be a Kähler metric on S and ω
the associated Kähler class, that will be called a polarization on S. If
F ∈ Coh(S) has positive rank, the slope of F with respect to ω is

µω(F ) :=
c1(F ) · ω
rk(F )

.

Definition 2.1. A torsion-free coherent sheaf F is µω−stable if for
every coherent subsheaf E ⊆ F such that 0 < rk(E ) < rk(F ) we have
µω(E ) < µω(F ). If µω(E ) ≤ µω(F ) for all such subsheaves E , then
we say that F is µω−semistable.

The family of µω−stable sheaves of Mukai vector v admits a moduli
space Mµ

v (S, ω). If S is projective and ω is the first Chern class of an
ample line bundle H , then Mµ

v (S, ω) is the moduli space Mµ
v (S,H) of

µH−stable sheaves on S with Mukai vector v. We have the following
proposition dealing also with the non-projective case (see [36]).

Proposition 2.2. Let S be a K3 surface, v ∈ H2∗(S,Z) a Mukai vector
and ω a polarization on S. The moduli space Mµ

v (S, ω) is a smooth,
holomorphically symplectic manifold (possibly non-compact) and, if it
is not empty, its dimension is v2 + 2.

In the following we will restrict to the case of those Mµ
v (S, ω) which

are non-empty and compact. We introduce in the next section some
hypothesis on v and ω under which Mµ

v (S, ω) is compact. We now
present a condition which guarantees its non-emptyness, and even the
existence of a stable vector bundle with respect to any polarization.
Recall that over any non-algebraic surface there exist non-filtrable

holomorphic rank two vector bundles (see [2], [34] p.18). By definition
they do not admit coherent subsheaves of rank one, hence they are
stable with respect to any polarization.
We now extend this type of result to arbitrary rank in the case of

Kähler surfaces. Following [2] we say that a coherent sheaf on the
surface S is irreducible if its only coherent subsheaf of lower rank is the
zero sheaf. In particular, an irreducible sheaf is stable with respect to
any polarization. We have the following result, about the existence of
locally free irreducible vector bundles.

Proposition 2.3. Let S be a Kähler non-algebraic compact complex
surface, r a positive integer and ξ ∈ NS(S). Then there exists a bound
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b := b(r, ξ) ∈ Z depending on r and on ξ such that for any integer c ≥ b
there is on S an irreducible locally free sheaf F of rank r, c1(F ) = ξ
and c2(F ) = c.

Proof. If r = 2, a statement of this type is proved in [2] and in [34]
without the Kähler assumption. The idea there was to look at the
versal deformation space of a rather arbitrary coherent sheaf F and
show that if c2 ≫ 0 then F must contain irreducible objects. For r > 2
we shall this time consider deformations of suitably chosen coherent
sheaves and make essential use of the fact that S is Kähler. In this
way we shall reduce ourselves to the argument used by Bănică and
Le Potier in the case when the algebraic dimension of S is zero, [2,
Théorème 5.3].
We proceed by induction on r. The statement is trivial for r = 1

and already proven for r = 2. Let then r ≥ 3 and suppose that the
statement is true for rank r − 1. Take an irreducible locally free sheaf
E on S of rank r−1, c1(E ) = ξ and c2(E ) = c. Consider an irreducible
component B of the versal deformation space of F0 := OS ⊕E and the
corresponding family F of coherent sheaves over S × B.
We shall check that if c ≫ 0, the relative Douady space

D(X×B)/B(F , k) of flat quotients of rank k of F over B does not cover
B for 1 ≤ k ≤ r − 1. Let b : D(X×B)/B(F , k) → B be the natural
morphism and Q ⊂ B a relatively compact subdomain of B containing
the origin 0 ∈ B. Fujiki proved in [10] that any irreducible component
of b−1(Q) is proper over Q. By another result of Fujiki in [8], there are
countably many such components.
The idea is to show by a dimension count that very general neigh-

bours of F0 are not in the image of D(X×B)/B(F , k) for 2 ≤ k ≤ r− 2.
Remark that if Fb is such a neighbour sitting in a short exact sequence

0 → F ′ → Fb → F ′′ → 0

with F ′′ torsion-free, then F ′ and F ′′ are irreducible of different ranks,
hence Hom(F ′, F ′′) = 0 = Hom(F ′′, F ′). This remark makes the argu-
ments in the proof of [2, Théorème 5.3] work by replacing the corre-
sponding inequality in loc. cit. Lemme 5.12. Hence our statement. �

2.2. The v−genericity for Kähler forms. Let S be a K3 surface
and KS its Kähler cone, which is an open and convex cone in H1,1(S).
For v = (r, ξ, a) with r ≥ 2 and ξ ∈ NS(S), we define a system
of hyperplanes in H1,1(S), which is locally finite in KS and has the
property that for any ω ∈ KS not lying on such hyperplanes, a torsion
free sheaf F on S with v(F ) = v is µω-stable if and only if it is
µω-semistable. Polarizations verifying this will be called v−generic.
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2.2.1. The notion of v−genericity. To start, let S be any compact
Kähler surface and fix r, c2 ∈ Z, c1 ∈ NS(S) and suppose r > 0.
We let τ := (r, c1, c2), and if F ∈ Coh(S) of rank r and Chern classes
c1 and c2, we call τ the topological type of F . If S is a K3 surface
and F ∈ Coh(S) has Mukai vector v = (r, ξ, a), its topological type is
τv = (r, ξ, ξ2/2 + r − a).
Notice that the discriminant ∆(F ) only depends on the topological

type of F , hence we can talk about the discriminant ∆(τ) of τ : more
precisely, if τ = (r, c1, c2) then

∆(τ) =
1

r

(
c2 −

r − 1

2r
c21

)
.

We set

Wτ := {D ∈ NS(S) | − r4

2
∆(τ) ≤ D2 < 0}

and for every α ∈ H1,1(S) we write

α⊥ := {β ∈ H1,1(S) |α · β = 0}.

When α 6= 0, the set α⊥ is a hyperplane in H1,1(S). Using the same
argument of Lemma 4.C.2 of [15], one shows that if β ∈ H1,1(S), then
there is a open neighbourhood U of β in H1,1(S) such that U ∩D⊥ 6= ∅
for at most a finite number of D ∈ Wτ . If the surface S is K3, we will
use the notation Wv for Wτv .

Definition 2.4. For every D ∈ Wτ , the hyperplane D⊥ ∩ KS will
be called τ−wall in the Kähler cone of S. A connected component of
KS\

⋃
D∈Wτ

D⊥ is an open convex cone called τ−chamber in the Kähler
cone of S. A Kähler class in a τ−chamber of KS is called τ−generic
polarization.

If S is a K3 surface and v is a Mukai vector, we will call v−wall
in the Kähler cone (resp. v−chamber in the Kähler cone, v−generic
polarization) a τv−wall in the Kähler cone (resp. a τv−chamber in the
Kähler cone, a τv−generic polarization).
Recall that the ample cone of S is Amp(S) = KS ∩NSR(S) (where

NSR(S) = NS(S)⊗R): if S is a projective K3 surface and C ⊆ KS is a
v−chamber in the Kähler cone of S, then C ∩NSR(S) is a v−chamber
in the ample cone of S in the usual terminology: if H is an ample line
bundle on S, then c1(H) is a v−generic polarization if and only if H is
v−generic as in [15].
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2.2.2. Compactness of Mµ
v (S, ω) when ω is v−generic. Using the same

proof as in the projective case (see Theorem 4.C.3 of [15]), we show that
v−generic polarizations enjoy the above stated property concerning the
existence of properly semistable sheaves.

Lemma 2.5. Let ω be a Kähler class on a compact Kähler surface S,
and F a µω−semistable sheaf of topological type τ = (r, ξ, c2). Suppose
that there is E ⊆ F of rank 0 < s < r, first Chern class ζ and such
that µω(E ) = µω(F ). Then D := rζ − sξ is such that

−r
4

2
∆(τ) ≤ D2 ≤ 0,

and D2 = 0 if and only if D = 0.

Proof. We can suppose that E is saturated, so that G := F/E is
torsion free, µω−semistable and of rank r− s. Notice that as µω(E ) =
µω(F ), we have D · ω = 0. As ω is a Kähler class, from the Hodge
Index Theorem we then have D2 ≤ 0, and D2 = 0 if and only if D = 0.
We then just need to show that D2 ≥ − r4

2
∆(τ).

By definition of the discriminant, it follows that

∆(F )− s

r
∆(E )− r − s

r
∆(G ) = − D2

2s(r − s)r2
.

Now, recall that the Bogomolov inequality is surely satisfied by E and
G , so that ∆(E ),∆(G ) ≥ 0. But this implies that

−D2 ≤ 2s(r − s)r2∆(F ) = 2s(r − s)r2∆(τ) ≤ r4

2
∆(τ),

and we are done. �

Using the main result of [36] we then get the following:

Proposition 2.6. Let S be a K3 surface, r ≥ 2 an integer and
ξ ∈ NS(S) such that (r, ξ) = 1. Let a ∈ Z, v := (r, ξ, a) and ω a
v−generic polarization. If Mµ

v (S, ω) 6= ∅, then it is a smooth, compact,
holomorphically symplectic manifold.

Proof. The statement follows from the main result of [36] if S is non-
algebraic. When S is projective we shall show in section 3.1 that there
exists some integer ample class H in the same v-chamber as ω. The
(semi)stability with respect to ω or with respect to H will then come
down to the same thing and Mµ

v (S, ω) will coincide with the Gieseker
moduli space Mv(S,H) of H−semistable sheaves, which is known to
be smooth, projective and holomorphically symplectic (see [15]). �
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3. Projective K3 surfaces with non-ample polarizations

In this section we prove that if S is a projective K3 surface, v =
(r, ξ, a) is a Mukai vector with (r, ξ) = 1 and ω is a v−generic po-
larization, then Mµ

v (S, ω) is an irreducible holomorphically symplectic
manifold, deformation equivalent to a Hilbert scheme of points on S.

3.1. Changing polarization in a chamber. We first show that
changing polarization inside a chamber does not affect the moduli
space. The following adaptation of Lemma 4.C.5 from [15] to the case
of Kähler polarizations works also on Kähler manifolds; see [11] Lemma
6.2.

Lemma 3.1. Let ω, ω′ be two Kähler classes on a compact Kähler
manifold X and F be a torsion free sheaf on X which is µω−stable but
not µω′−stable. Denote by

[ω, ω′] := {ωt := tω′ + (1− t)ω | t ∈ [0, 1]}
the segment from ω to ω′.Then there is a Kähler class ωt ∈ [ω, ω′] such
that F is properly µωt

−semistable.

As a consequence of this, changing the polarization inside a chamber
does not affect the moduli space. This is well-known for v−generic
ample line bundles, and requires the same proof. We let Mµ

τ (S, ω) be
the moduli space of µω−stable sheaves whose topological type is τ . If
S is a K3 surface, then Mµ

τv(S, ω) =Mµ
v (S, ω)

Proposition 3.2. Let S be a smooth projective surface and τ =
(r, ξ, c2) such that r ≥ 2 and ξ ∈ NS(S). Let C be a τ−chamber
in the Kähler cone of S, and ω, ω′ ∈ C. Then Mµ

τ (S, ω) =Mµ
τ (S, ω

′).

Proof. We show that if F is a µω−stable sheaf of topological type τ ,
then it is µω′−stable as well. Indeed, suppose that F is not µω′−stable.
By Lemma 3.1 this implies that there is ωt ∈ [ω, ω′] such that F is
properly µωt

−semistable. Hence there is E ⊆ F of rank 0 < s < r and
first Chern class ζ , such that µωt

(E ) = µωt
(F ).

Let D := rζ − sξ: hence D · ωt = 0, and by Lemma 2.5 we have
D ∈ Wτ ∪ {0}. Notice that as F is µω−stable, we have D · ω < 0,
so that D ∈ Wτ . It follows that ωt /∈ C which is not possible as C is
convex. In conclusion, F is µω′−stable. �

3.2. Conclusion for projective K3 surfaces. We first introduce
some notations: if S is a projective surface, we let NSR(S) be the
real Néron-Severi space of S, which is a linear subspace of H1,1(S).
Recall that on H1,1(S) we have a non-degenerate intersection product
whose restriction to NSR(S) remains non-degenerate. Let TR(S) be the
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orthogonal of NSR(S) in H
1,1(S), so that we have H1,1(S) = NSR(S)⊕

TR(S).
Finally, for every α ∈ H1,1(S) we let pNS : H1,1(S) −→ NSR(S) and

pT : H1,1(S) −→ TR(S) be the two projections. Moreover, for every
α ∈ H1,1(S) we let αNS := pNS(α) and αT := pT (α).
The first result we show is the following:

Lemma 3.3. Let S be a projective surface and ω a Kähler class on S.

(1) The class ωNS is an ample class on S.
(2) For every ξ ∈ NSR(S) we have ξ · ω = ξ · ωNS.

Proof. Recall that ω = ωNS + ωT : it follows that for every non-zero
effective curve class C we have

ωNS · C = ω · C − ωT · C = ω · C > 0,

since ωT is orthogonal to NSR(S) (where C lies), and ω is a Kähler
class. This implies that ωNS is a nef class on S.
In particular, this means that ωNS is a class in the closure of the

ample cone of S. Now, recall that the projection pNS is an open map;
moreover, the previous part of the proof shows that the image of the
Kähler cone of S under pNS is contained in the nef cone of S.
As the Kähler cone is open in H1,1(S) and the interior of the nef

cone is the ample cone, it follows that the image of the Kähler cone by
projection is contained in the ample cone.
The last point of the statement is simply the fact that ωT is orthog-

onal to NSR(S). �

Using the previous Lemma, we can finally prove the following, which
shows part (1) of Theorem 1.1.

Theorem 3.4. Let S be a projective K3 surface and v = (r, ξ, a) ∈
H2∗(S,Z) such that r ≥ 2, ξ ∈ NS(S) and (r, ξ) = 1. If ω is v−generic
andMµ

v (S, ω) 6= ∅, thenMµ
v (S, ω) is a projective irreducible hyperkähler

manifold deformation equivalent to a Hilbert scheme of points on S.

Proof. The class ωNS is ample by Lemma 3.3, and ωNS · ξ = ω · ξ for
every ξ ∈ NSR(S). It follows that for every F ∈ Coh(S) we have
µω(F ) = µωNS

(F ). In particular, a coherent sheaf is µω−stable if and
only if it is µωNS

−stable, so that Mµ
v (S, ω) =Mµ

v (S, ωNS).
Moreover, if D ∈ Wv, then ωNS · D = ω · D: as ω is v−generic,

it follows that ωNS is v−generic. Let C be the v−chamber of the
ample cone where ωNS lies. As C is open in Amp(S), there is ǫ > 0
such that the ball Bǫ(ωNS) ⊆ Amp(S) of ray ǫ and centred at ωNS is
contained in C. Let ω′ ∈ Bǫ(ωNS) ∩ H2(S,Q): by Proposition 3.2 we
have Mµ

v (S, ωNS) =Mµ
v (S, ω

′).
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As ω′ ∈ H2(S,Q) ∩ H1,1(S), there are p ∈ N and H ∈ Pic(S) such
that pω′ = c1(H). As ω′ ∈ C and C is a cone, we have c1(H) ∈ C: hence
H is a v−generic ample line bundle, and Mµ

v (S, ω
′) = Mµ

v (S,H). By
[30] and [42] Mµ

v (S,H) is an irreducible hyperkähler manifold defor-
mation equivalent to a Hilbert scheme of points, and we are done. �

Remark 3.5. A useful corollary of Lemma 3.3 is that if C is a
v−chamber in the Kähler cone of S, then C intersects the ample cone
(and the intersection is clearly a v−chamber in the ample cone of S).
Indeed, consider the segment [ω, ωNS]: as the projection pNS is

a linear map, we have that [ω, ωNS] ∩ NSR(S) = {ωNS}, and that
pNS([ω, ωNS]) = {ωNS}.
We show that ωNS ∈ C (showing that C intersects the ample cone

by Lemma 3.3). Indeed, suppose that ωNS does not lie in C: it follows
that there is ω′ ∈ [ω, ωNS] lying on a v−wall. This means that there
is D ∈ Wv such that ω′ · D = 0. But as pNS(ω

′) = pNS(ω) = ωNS, it
follows that ω ·D = 0, which is not possible.

4. Moduli spaces of stable twisted sheaves

In this section we recall the notion of twisted sheaf on a complex
manifold, and we introduce the notion of stability for coherent twisted
sheaves. We will then construct (relative) moduli spaces of stable
twisted sheaves on a K3 surface (not necessarily projective): they will
be used to show that the moduli spaces Mµ

v (S, ω) of µω−stable sheaves
with Mukai vector v = (r, ξ, a) such that r and ξ are prime to each other
are compact, connected, simply connected and deformation equivalent
to a Hilbert scheme of points on a projective K3 surface (whenever the
polarization ω is v−generic).

4.1. Twisted sheaves and stability. We recall some basic facts
about twisted sheaves on a complex manifold X (we refer the inter-
ested reader to [6] or [25] for more details).
There are several definitions of twisted sheaves, giving equivalent

categories. We use three of them: the first one is due to Căldăraru
[6], and presents twisted sheaves as a twisted gluing of local coherent
sheaves on X ; the second one (to be found again in [6]) presents twisted
sheaves as modules over an Azumaya algebra on X ; the last one, due
to Yoshioka [43], presents twisted sheaves as a full subcategory of the
category of coherent sheaves on some projective bundle over X .
We begin by recalling these definitions. As our aim are moduli spaces

of stable twisted sheaves, we need to introduce several notions: first,
we recall the Chern character and the slope of a twisted sheaf (for
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projective manifolds, this was done in [18] and [43]); we then introduce
µω−stability for twisted sheaves (with respect to a Kähler form ω).

4.1.1. Twisted sheaves following Căldăraru. Let U = {Ui}i∈I be an
open covering of X , and let Uij := Ui ∩ Uj and Uijk := Ui ∩ Uj ∩ Uk.
Choose a 2−cocyle {αijk}, where αijk ∈ O∗

X(Uijk), defining a class
α ∈ H2(X,O∗

X). A {αijk}−twisted coherent sheaf is a collection F =
{Fi, φij}, where Fi ∈ Coh(Ui) for every i ∈ I, and for every i, j ∈ I
φij : Fj|Uij

−→ Fi|Uij
is an isomorphism in Coh(Uij) such that

(1) φii = idFi
for every i ∈ I;

(2) φij = φ−1
ji for every i, j ∈ I;

(3) φij ◦ φjk ◦ φki = αijk · id for every i, j, k ∈ I.

By a morphism of {αijk}−twisted sheaves

f : F = {Fi, φij} −→ G = {Gi, ψij}
we mean a collection f = {fi} of morphisms fi : Fi −→ Gi of
OUi

−modules such that ψij ◦ fj = fi ◦ φij for every i, j ∈ I.
The {αijk}−twisted coherent sheaves form an abelian category

Coh(X, {αijk}). If {αijk} and {α′
ijk} are two representatives of the

same class α ∈ H2(X,O∗
X), then there is an equivalence between

Coh(X, {αijk}) and Coh(X, {α′
ijk}), so that we can speak of the cate-

gory Coh(X,α) of coherent α−twisted sheaves.
If F ∈ Coh(X,α) and G ∈ Coh(X, β), we can define in a natural

way F ⊗ G and H om(F ,G ): the first one is a coherent αβ−twisted
sheaf, while the second is a coherent α−1β−twisted sheaf.
We now recall an important definition: a sheaf A of OX−modules is

said to be an Azumaya algebra if it is a sheaf of OX−algebras whose
generic fibre is a central simple algebra. Equivalence classes of Azu-
maya algebras form a group Br(X), the Brauer group of X , which has
an injection into H2(X,O∗

X). One of the main properties we will use
in the following is (see Theorem 1.3.5 of [6]):

Proposition 4.1. Let X be a complex manifold and α ∈ Br(X). Then
there exist a locally free α−twisted sheaf on X.

For the rest of this section, we suppose α ∈ Br(X) and define
the twisted Chern character and twisted Mukai vector for α−twisted
sheaves. More precisely, let F be an α−twisted coherent sheaf on X
and E a locally free α−twisted coherent sheaf. The Chern character
of F with respect to E is

chE(F ) :=
ch(F ⊗ E∨)√
ch(E ⊗ E∨)

.
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The Mukai vector of F with respect to E is

vE(F ) := chE(F ) ·
√
td(X).

The slope of a torsion-free α−twisted sheaf F with respect to E and
to a Kähler class ω is

µE,ω(F ) :=
cE,1(F ) · ω
rk(F )

,

where cE,1(F ) is the component of chE(F ) lying in H2(S,Q).
We collect some explicit formulas when X = S is a K3 surface. Let

r := rk(F ), s := rk(E), ξ := c1(F ⊗ E∨), a := ch2(F ⊗ E∨) and
b := ch2(E ⊗ E∨). Then

chE(F ) = (r, ξ/s, (2as− rb)/2s2),

vE(F ) = (r, ξ/s, r + (2as− rb)/2s2)

so that

(1) µE,ω(F ) =
ξ · ω
rs

=
c1(F ⊗ E∨) · ω
rk(F )rk(E)

= µω(F ⊗ E∨)

and

(2) v2E(F ) =
ξ2

s2
− 2ra

s
+
r2b

s2
− 2r2.

If α = 0, then one easily sees that µE,ω(F ) = µω(F )−µω(E) and that

(3) v2E(F ) = v2(F ).

If F is a torsion free α−twisted sheaf on S, we let

chα(F ) := chF∨∨(F ), vα(F ) := vF∨∨(F ),

called twisted Chern character and twisted Mukai vector of F . The
twisted slope of F with respect to ω is

µα,ω(F ) :=
cα,1(F ) · ω
rk(F )

,

where cα,1(F ) is the component of chα(F ) in H2(S,Q).
Using twisted slopes, we introduce the notion of stability for twisted

sheaves. Fix α ∈ Br(X) and E an α−twisted locally free sheaf.

Definition 4.2. We say that a torsion-free F ∈ Coh(X,α) is
µE,ω−stable if for every α−twisted coherent subsheaf E ⊆ F such
that 0 < rk(E ) < rk(F ) we have µE,ω(E ) < µE,ω(F ). If µE,ω(E ) ≤
µE,ω(F ) for every such subsheaf, we say that F is µE,ω−semistable.
A µF∨∨,ω−(semi)stable sheaf will be called µα,ω−(semi)stable.



14 PEREGO, TOMA

To conclude this section, we show that the µE,ω−stability does not
depend on E.

Lemma 4.3. Let α ∈ Br(S), F ∈ Coh(S, α) and ω ∈ KS. If
E ′, E ∈ Coh(S, α) are locally free, then F is µE,ω−stable if and only
if it is µE′,ω−stable. In particular, F is µE,ω−stable if and only if it
is µα,ω−stable. If α = 0, the sheaf F is µ0,ω−stable if and only if it is
µω−stable.

Proof. Let F ∈ Coh(S, α), G an α−twisted coherent subsheaf of F ,
and H a locally free α−twisted coherent sheaf. Then

rk(H)rk(F )c1(G ⊗H∨)− rk(H)rk(G )c1(F ⊗H∨) =

(4) = c1(G ⊗ F
∨ ⊗H ⊗H∨) = rk2(H)c1(G ⊗ F

∨).

Suppose now that F is µE,ω−stable but not µE′,ω−stable. Hence
there is an α−twisted coherent subsheaf G of F of rank 0 < s < rk(F )
such that µE′,ω(G ) ≥ µE′,ω(F ). By µE,ω−stability of F we even have
µE,ω(G ) < µE,ω(F ). Writing these two inequalities explicitly we have

(5) ω · (rk(E ′)rc1(G ⊗ (E ′)∨)− rk(E ′)sc1(F ⊗ (E ′)∨)) ≥ 0,

(6) ω · (rk(E)rc1(G ⊗E∨)− rk(E)sc1(F ⊗ E∨)) < 0.

Using equation (4) forH = E ′, equation (5) becomes ω·c1(G⊗F∨) ≥ 0.
Using equation (4) forH = E, equation (6) becomes ω·c1(G⊗F∨) < 0,
getting a contradiction. �

4.1.2. Twisted sheaves as A−modules. Let againX be a complex mani-
fold andA an Azumaya algebra onX . We let Coh(X,A) be the abelian
category of coherent sheaves on X having the structure of A−module.
The following is Proposition 1.3.6 of [6]:

Proposition 4.4. Let X be a complex manifold, A an Azumaya algebra
on X and α its class in Br(X). If E is a locally free α−twisted coherent
sheaf such that E nd(E) ≃ A, we have an equivalence

Coh(X,α) −→ Coh(X,A), F 7→ F ⊗ E∨.

We now define Chern characters, Mukai vectors and slopes for the
objects of Coh(X,A), which allow us to define a notion of stability.
For F ∈ Coh(X,A) we define

chA(F ) :=
ch(F )√
ch(A)

, vA(F ) := chA(F ) ·
√
td(X),
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and if ω is a Kähler class and F is torsion-free, we let

µA,ω(F ) :=
cA,1(F ) · ω
rk(F )

,

where cA,1(F ) is the component of chA(F ) in H2(S,Q). We now
introduce the notion of stability for A−modules:

Definition 4.5. A torsion-free F ∈ Coh(X,A) is µA,ω−stable if for
every E ⊆ F in Coh(X,A) such that 0 < rk(E ) < rk(F ), we have
µA,ω(E ) < µA,ω(F ). If µA,ω(E ) ≤ µA,ω(F ) for every such subobject,
we say that F is µA,ω−semistable.

We notice that if G ∈ Coh(X,α) and E is a locally free α−twisted
sheaf such that E nd(E) ≃ A, then chE(G ) = chA(G ⊗ E∨). It follows
that

vE(G ) = vA(G ⊗ E∨), µE,ω(G ) = µA,ω(G ⊗ E∨),

so that F ∈ Coh(X,α) is µE,ω−stable if and only if F ⊗ E∨ is
µA,ω−stable.

Remark 4.6. We notice that Λ := (OX ,A) is a sheaf of rings of dif-
ferential operators following the definition of [32], and Coh(X,A) is
the category of Λ−modules (always in the sense of [32]). Moreover,
µA,ω−stable A−modules are exactly µ−stable Λ−modules (always in
the sense of [32]). Even if the definitions of [32] are given only for pro-
jective manifolds, they can immediately be extended to compact complex
manifolds.

4.1.3. Twisted sheaves following Yoshioka. In [43] Yoshioka introduces
twisted sheaves as a full subcategory of the category of coherent sheaves
on a projective bundle.
More precisely, let X be a complex manifold, α ∈ Br(X) and E

a locally free α−twisted sheaf. On an open cover U = {Ui}i∈I we
represent E by {Ei, φij}i,j∈I . Let Pi := P(Ei), together with the map
πi : Pi −→ Ui. The twisted gluing data φij turn to a gluing data ϕij of
the Pi and of the πi, getting a projective bundle π : P −→ X (whose
class in Br(X) is α).
As shown in Lemma 1.1 of [43], we have Ext1(TP/X ,OP) = C, hence,

up to scalars, there is a unique non-trivial extension

0 −→ OP −→ G −→ TP/X −→ 0.

The vector bundle G can be described in another way. Fix a tauto-
logical line bundle O(λi) over Pi, so that the twisted gluing data φij

give isomorphisms ψij : O(λi) −→ O(λj), and L := {O(λi), ψij} is an
π∗(α−1)−twisted line bundle on P. Then the vector bundles π∗

iEi(λi)
glue together to give a locally free sheaf which is isomorphic to G.
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Definition 4.7. A coherent sheaf F on P is called P−sheaf if the
canonical morphism π∗π∗(G

∨ ⊗ F ) −→ G∨ ⊗ F is an isomorphism.
We let Coh(P, X) be the full subcategory of Coh(P) given by P−sheaves.

Lemma 1.5 of [43] shows that F ∈ Coh(P, X) if and only if F|Pi
≃

π∗E|Ui
⊗ O(λi) for some E ∈ Coh(Ui). Using this, one shows:

Proposition 4.8. Let X be a complex manifold and π : P −→ X a pro-
jective bundle whose class in Br(X) is α. Then there is an equivalence
of categories

P : Coh(P, X) −→ Coh(X,α), P (F ) := π∗(F ⊗ L∨).

Following Yoshioka, we have a definition of Chern character, Mukai
vector and slope of a P−sheaf F . More precisely, we have

chP(F ) :=
ch(π∗(G

∨ ⊗ F ))√
ch(π∗(G∨ ⊗G))

,

so that

vP(F ) = chP(F ) ·
√
td(S), µP,ω(F ) :=

cP,1(F ) · ω
rk(F )

,

where cP,1(F ) is the component of chP(F ) in H2(S,Q). We now in-
troduce the notion of stability for P−sheaves.

Definition 4.9. We say that a torsion-free F ∈ Coh(P, X) is
µP,ω−stable if for every subobject E of F in Coh(P, X) such that 0 <
rk(E ) < rk(F ), we have µP,ω(E ) < µP,ω(F ). If µP,ω(E ) ≤ µP,ω(F )
for every such subobject, we say that F is µP,ω−semistable.

If P = P(E) for some locally free α−twisted sheaf E, the equivalence
P gives

chP(F ) = chE(P (F )), vP(F ) = vE(P (F )),

µP,ω(F ) = µE,ω(P (F )).

It follows that F ∈ Coh(P, X) is µP,ω−stable if and only if P (F ) is
µE,ω−stable.
If F is a µP,ω−stable P−sheaf, as Coh(P, S) is a full subcategory of

Coh(P) and as the functor P is an equivalence, we have that

Ext1Coh(P,S)(F ,F ) ≃ Ext1Coh(S,α)(P (F ), P (F )),

and

Ext2Coh(P,S)(F ,F ) ≃ Ext2Coh(S,α)(P (F ), P (F )).
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4.1.4. Chern classes following Huybrechts and Stellari. If we consider
twisted sheaves following Căldăraru, there is another possible definition
of their Chern classes and character, introduced by Huybrechts and
Stellari in [17], that we recall here.
Consider a complex manifold X and α ∈ H2(X,O∗

X), and fix a Čech
2−cocycle {αijk} representing α on an open covering {Ui}i∈I of X .
Moreover, choose a Čech 2−cocyle {Bijk}, where Bijk ∈ Γ(Uijk,Q),
such that αijk = exp(Bijk) (viewed as local sections of R/Z = U(1) ⊆
O∗

X).
As the sheaf C∞

X of C∞−functions on X is acyclic, up to supposing
the covering {Ui}i∈I is sufficiently fine, there are aij ∈ Γ(Uij, C

∞) such
that

Bijk = −aij + aik − ajk.

Now, let us consider an α−twisted sheaf given by F = {Fi, φij} and
let

ψij := φij · exp(aij),
which is clearly an isomorphism between the restrictions of Fi and Fj

to Uij . It is moreover easy to show that

ψij ◦ ψjk ◦ ψki = id,

hence the sheaf FB = {Fi, ψij}i,j∈I is an untwisted sheaf. We then let

chB(F ) := ch(FB).

The definition given in this way depends only on B.
The relation between chB and the previous Chern characters is ex-

plained in [18], and goes as follows, supposing that α ∈ Br(X). Let E
be a locally free α−twisted sheaf and

BE :=
cB1 (E)

rk(E)
,

where cB1 (E) is the degree two part of chB(E). Then we have

chB(F ) = chE(F ) · exp(BE).

4.2. Genericity for polarizations. We now extend the notion of
genericity for polarization to the twisted case. As we did in section
2.2, we first introduce a notion of discriminant for twisted sheaves,
which depends on the choice of a locally free E ∈ Coh(S, α).
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4.2.1. Discriminant of a twisted sheaf. If F is an α−twisted coherent
sheaf, we call discriminant of F with respect to E the number

∆E(F ) :=
1

2rk2(F )
v2E(F ) + 1.

If α = 0, this is just ∆(F ) by equation (3). More generally, the
discriminant does not depend on E, as shown in the following:

Lemma 4.10. Let α ∈ Br(S) and F ∈ Coh(S, α). If E1, E2 ∈
Coh(S, α) are locally free, then ∆E1

(F ) = ∆E2
(F ).

Proof. Let E ∈ Coh(S, α) be locally free of rank s, and pose r :=
rk(F ), ξ := c1(F ⊗E∨), a := ch2(F ⊗E∨) and b := ch2(E⊗E∨). By
equation (2) we have

∆E(F ) =
1

2r2

(
ξ2

s2
− 2ra

s
+
r2b

s2
− 2r2

)
+ 1.

An easy computation shows that

ξ2

s
− 2ra

s
+
r2b

s2
= −ch2(F ⊗ F∨ ⊗ E ⊗ E∨)

s2
+
r2ch2(E ⊗ E∨)

2s2
=

= −ch2(F ⊗ F
∨),

so that

(7) ∆E(F ) =
1

2r2
(−ch2(F ⊗ F

∨)− 2r2) + 1,

which does not depend on E, implying the statement. �

For v ∈ H2∗(S,Q) and α ∈ Br(S), we let

∆α(v) := ∆F∨∨(F ),

where F ∈ Coh(S, α) is torsion free and vα(F ) = v. By Lemma 4.10
this is well defined and if α = 0, then ∆0(v) = ∆(v). We now prove a
generalization to twisted sheaves of the Bogomolov inequality:

Proposition 4.11. Let α ∈ Br(S), F ∈ Coh(S, α) and ω a Kähler
class on S. If F is µα,ω−semistable, then ∆α(F ) ≥ 0.

Proof. It is easy to see that F is µα,ω−semistable if and only if
F∨ is µα−1,ω−semistable. In particular, this implies that F is
µα,ω−semistable if and only if F∨∨ is µα,ω−semistable.
Now, notice that F∨∨ ⊗F∨ = (F ⊗F∨)∨∨, hence if l is the length

of the singular locus of F ⊗ F∨, it follows that

ch2(F
∨∨ ⊗ F

∨) = ch2(F ⊗ F
∨) + l.
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By equation (2), it then follows that

v2α(F
∨∨) = v2α(F )− 2l ≤ v2α(F ).

As rk(F ) = rk(F∨∨) it follows that ∆α(F ) ≥ ∆α(F
∨∨), hence we

just need to show the statement for F∨∨.
Let now F := F∨∨, which is locally free and µα,ω−semistable. By

the Kobayashi-Hitchin correspondence for twisted sheaves as proved by
Wang in [41], the sheaf E nd(F ) = F ⊗ F∨ is µω−polystable, so that
∆(F ⊗ F∨) ≥ 0 by the Bogomolov inequality.
Choose now a locally free E ∈ Coh(S, α) of rank s, and let b :=

ch2(E ⊗E∨). By Lemma 4.10 we have ∆(F ⊗F∨) = ∆E⊗E∨(F ⊗F∨),
so that ∆E⊗E∨(F ⊗F∨) ≥ 0. If ξ = c1(F ⊗E∨) and a = ch2(F ⊗E∨),
it follows from equation (2) that

v2E⊗E∨(F ⊗ F∨) =
2r2ξ2

s2
− 4r3a

s
+

2r2b

s2
− 2r4 = 2r2v2E(F ) + 2r4.

Hence

0 ≤ ∆E⊗E∨(F ⊗ F∨) =
1

2r4
v2E⊗E∨(F ⊗ F∨) + 1 = 2∆E(F ).

Hence ∆α(F ) = ∆E(F ) ≥ 0, and we are done. �

4.2.2. Walls and chambers. Now, let

Wα,v := {D ∈ NS(S) | − r4

2
∆α(v) ≤ D2 < 0}.

If α = 0, we have W0,v = Wv.

Definition 4.12. If D ∈ Wα,v, we call the hyperplane D⊥ an
(α, v)−wall. A connected component of KS \ ⋃

D∈Wα,v
D⊥ is called

(α, v)−chamber. A polarization ω ∈ KS is (α, v)−generic if it lies
in a (α, v)−chamber.

A polarization ω is (0, v)−generic if and only if it is v−generic. We
are now ready to prove one of the main results of this section about
changing polarization inside a chamber. The argument is the same one
for untwisted sheaves, here adapted to the twisted case.

Proposition 4.13. Let α ∈ Br(S), v ∈ H2∗(S,Q) and ω, ω′ two
(α, v)−generic polarizations lying in the same (α, v)−chamber. If
F ∈ Coh(S, α) is a torsion free sheaf such that vα(F ) = v, then
F is µα,ω−stable if and only if it is µα,ω′−stable.

Proof. The proof is divided in two steps.
Step 1. Choose an α−twisted locally free sheaf E, and let r :=

rk(F ), ξ := c1(F ⊗ E∨), a := ch2(F ⊗ E∨), s := rk(E) and b :=
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ch2(E⊗E∨). Let ω be any polarization, and suppose that F is properly
µα,ω−semistable: hence there is an α−twisted subsheaf E ⊆ F such
that µE,ω(E ) = µE,ω(F ). We let r′ := rk(E ), ξ′ := c1(E ⊗ E∨) and
a′ := ch2(E ⊗ E∨), where 0 < r′ < r and ξ′ ∈ NS(S)⊗ Q. Moreover,
let

D := r
ξ′

s
− r′

ξ

s
,

so that D · ω = 0. Hence D2 ≤ 0, as ω is a Kähler form.
Now, let G := F/E , and we suppose without loss of generality

that E is saturated and that E and G are µα,ω-semistable. Moreover,
let r′′ := rk(G ), ξ′′ := c1(G ⊗ E∨) and a′′ := ch2(G ⊗ E∨), so that
r′′ = r − r′, ξ′′ = ξ − ξ′ and a′′ = a− a′. Finally, let

K :=
v2α(F )

r
− v2α(E )

r′
− v2α(G )

r′′
.

We notice that as E and G are µα,ω−semistable, by Proposition 4.11
we have ∆α(E ),∆α(G ) ≥ 0, meaning v2α(E ) ≥ −2(r′)2 and v2α(G ) ≥
−2(r′′)2. Hence we get

(8) K ≤ v2α(F )

r
+ 2r.

On the other hand, by equation (2) we have

K =
ξ2

rs2
− (ξ′)2

r′s2
− (ξ′′)2

r′′s2
= −r

2(ξ′)2 + (r′)2ξ2 − 2rr′ξξ′

s2rr′r′′
.

By definition of D we have

D2 =
r2(ξ′)2 + (r′)2ξ2 − 2rr′ξξ′

s2
,

so that the inequality (8) implies

D2 = −rr′r′′K ≥ −r′(r − r′)v2α(F )− 2r2r′(r − r′).

But as r′(r − r′) ≤ r2/4, we finally get

D2 ≥ −r
2

4
v2α(F )− r4

2
= −r

4

2
∆α(F ) = −r

4

2
∆α(v).

In conclusion, D ∈ Wα,v ∪ {0}.
Step 2. Suppose that F is µα,ω−stable but not µα,ω′−stable. Let

[ω, ω′] := {ωt := tω′ + (1− t)ω | t ∈ [0, 1]}
be the segment from ω to ω′, and let Bα be the family of subsheaves
of F whose slope with respect to E and ω′ is bounded from below.
If E ∈ Bα, then E ⊗ E∨ is a subsheaf of F ⊗ E∨, and µE,ω(E ) =

µω(E ⊗E∨). This implies that E ⊗E∨ is in the family B of subsheaves
of F⊗E∨ whose slope with respect to ω is bounded from below. As the
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family B is bounded, it follows that the family Bα is bounded. Using
the same argument as in the proof of Lemma 3.1, one can then conclude
that there is t ∈]0, 1] such that F is properly µα,ωt

−semistable.
Hence there is a subsheaf E of F of rank 0 < s < r such that

µE,ωt
(E ) = µE,ωt

(F ). If D = rcE,1(E ) − scE,1(F ), it follows that
D · ωt = 0. As D · ω 6= 0, we have D 6= 0, hence D2 < 0. But as F is
µE,ωt

−semistable, Step 1 implies that D ∈ Wα,v, which is not possible
as ωt is in the same (α, v)−chamber as ω and ω′. In conclusion, the
sheaf F has to be µE,ω′−stable, and we are done. �

4.3. Moduli space of stable twisted sheaves. We now introduce
(relative) moduli spaces of stable twisted sheaves. On projective man-
ifolds these were constructed by Yoshioka in [43] (viewing twisted
sheaves as P−sheaves, and using a GIT construction), and by Lieblich
in [25] (viewing twisted sheaves as sheaves on some O∗−gerbe).
Here we first provide a relative moduli space of simple twisted sheaves

by viewing them as simple P−sheaves. The relative moduli space of
stable sheaves will then be an open subset of it.

4.3.1. The relative moduli space of simple twisted sheaves. Consider a
smooth and proper morphism π : X −→ T such that for every t ∈ T
the fibre Xt over t is a K3 surface. We assume for simplicity that T
is a complex manifold, although the constructions work over complex
spaces as well.
Suppose moreover that we are given a complex manifold P together

with a morphism f : P −→ X of T−complex spaces such that for
every t ∈ T , the morphism ft : Pt −→ Xt is a projective bundle, where
Pt = f−1(Xt). For every t ∈ T the projective bundle Pt −→ Xt defines
a class αt in the Brauer group Br(Xt).
Now, let f ′ := π ◦ f , so that we get a map f ′ : P −→ T . By

Theorem (6.4) of [22], there is a complex space M (P/T ) together
with a holomorphic surjective map

φ : M (P/T ) −→ T

which is a relative moduli space of simple coherent sheaves on P: for
every t ∈ T the fibre Mt of φ over t is the moduli space of simple
coherent sheaves on Pt.
Now, F ∈ Coh(Pt) is simple if and only if End(F ) ≃ C. As

Coh(Pt, Xt) is a full subcategory of Coh(Pt), a Pt−sheaf F is sim-
ple in Coh(Pt, Xt) if and only if it is simple in Coh(Pt). Hence simple
Pt−sheaves form a subset M s(P/T ) of M (P/T ).
As the condition defining P−sheaves is open (see Lemma 1.5 of [43]),

it follows that M s(P/T ) is open in M (P/T ), hence it is a complex
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space together with a holomorphic map ψ : M s(P/T ) −→ T . This is
the relative moduli space of simple P−sheaves on X .
The relative projective bundle f : P −→ X corresponds to the

existence of a relative Azumaya algebra A on X : for every t ∈ T , we
have Pt = P(Et) for some locally free αt−twisted sheaf on Xt, and we
let At := Et ⊗ E∨

t . The previous equivalence of categories of twisted
sheaves then shows that M s(P/T ) is the relative moduli space of
simple A−modules on X or, equivalently, the relative moduli space of
simple twisted sheaves on X .

4.3.2. The relative moduli space of stable twisted sheaves. We now pro-
duce out of ψ : M s(P/T ) −→ T the relative moduli space of sta-
ble twisted sheaves. Choose v = (v0, v1, v2) ∈ H2∗(S,Q) such that
v1 ∈ NS(St) for every t ∈ T , and v0 ≥ 2. We let M s

v (P/T ) be the
component of M s(P/T ) parametrizing simple P−sheaves of Mukai
vector v, and we write ψv : M s

v (P/T ) −→ T for ψ|M s
v (P/T ).

In order to define the moduli space of stable twisted sheaves of Mukai
vector v, we need a section ω̃ ∈ R2π∗C such that ωt := ω̃|Xt

is a Kähler
class for every t ∈ T , which is used to define stability on every fibre. As
stable twisted sheaves are simple, we let M µ

v (P/T, ω̃) be the subset of
M s

v (P/T ) whose fibre over t ∈ T is given by the simple Pt−sheaves
which are µPt,ωt

−stable and whose Mukai vector is v. We then have a
natural map (of sets)

p : M
µ
v (P/T, ω̃) −→ T.

The main result of this section is the following

Proposition 4.14. Let π : X −→ T , f : P −→ X , v and ω̃ be as
before. Then M µ

v (P/T, ω̃) is an open subset of M s
v (P/T ). Hence it

is a complex manifold, and the map p is holomorphic.

Proof. By Remark 4.6, the openness can be proved as in Lemma 3.7
of [32]. Indeed, if F ∈ Coh(P, S) and F := P (F )∨∨, then F is
µP,ω−stable if and only if P (F )⊗P (F )∨ is µA,ω−stable in Coh(S,A),
where A = P (F )⊗ P (F )∨. Moreover, the openness of stability in the
analytic case may be proved in the usual way, by using boundedness
results which are contained in [37] and [38]. The separatedness fol-
lows from Proposition (6.6) of [22] since the parameterized sheaves are
stable. �

Standard deformation arguments following [5] allow us to show that
if p : M := M µ

v (P/X , ω̃) −→ T is the relative moduli space of twisted
stable sheaves, then for every t ∈ T and for every F ∈ p−1(t) = Mt
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we have

T[F ]Mt ≃ Ext1Coh(Xt,αt)(P (F ), P (F )),

that the obstruction for the existence of deformations of F live in

Ext2Coh(Xt,αt)(P (F ), P (F )),

and that we have an exact sequence

(9) Ext1Coh(Xt,αt)(P (F ), P (F )) −→ T[F ]M −→

−→ TtT −→ Ext2Coh(Xt,αt)(P (F ), P (F ))0.

It follows from this exact sequence and by the previous discussion, that
the morphism p : M −→ T is smooth.
If T is reduced to a point, then X is just a K3 surface S and P −→ S

is a projective bundle whose class in Br(S) is α. The moduli space of
µα,ω−stable α−twisted sheaves of twisted Mukai vector v on S will then
be denoted Mµ

α,v(S, ω).

Remark 4.15. Suppose that α = 0 and let

γ :=
ch(F∨)√
ch(F ⊗ F∨)

for F ∈ Mµ
0,v(S, ω). Then v0(F ) = v if and only if v(F ) = v/γ, so

that Mµ
0,v(S, ω) ≃Mµ

v/γ(S, ω). We even notice that ω is (0, v)−generic

if and only if it is v/γ−generic.

4.3.3. Moduli spaces of stable twisted sheaves over projective K3 sur-
faces. If the base K3 surface S is projective, from [43] we have some
informations more about the moduli spaces of stable twisted sheaves.
We make use of the following notation: let α ∈ Br(S) and F a torsion
free α−twisted sheaf whose twisted Mukai vector is w = (r, 0, a).
We let F be a locally free α−twisted sheaf and ξ be a representative

of the class of P(E) in H2(S,Z). We let eξ/r := (1, ξ/r, ξ2/2r2) and
wξ := eξ/r · w, so that

wξ = (r, ξ, a+ ξ2/2r).

It is worthwhile to notice that there is a topological vector bundle Eξ

on S such that v(Eξ) = wξ. As shown in [43], we have wξ ∈ H2(S,Z)
(while in general we have w ∈ H2(S,Q)).

Remark 4.16. If α = 0 and F is a µω−stable sheaf whose Mukai
vector is v = (r, ξ, a), write a = c+r where c = ch2(F ). The 0−twisted
Mukai vector of F is then w = (r, 0, r + a′/2r), where a′ = ch2(F ⊗
F∨∨). We notice that a′ = 2rc − ξ2, hence w = (r, 0, r + c − ξ2/2r).



24 PEREGO, TOMA

A representative of the class of P(E) in this case can be chosen to be ξ
itself. Hence we have

wξ = eξ/rw = (r, ξ, r + c) = v.

The following is Theorem 3.16 of [43]:

Theorem 4.17. Let S be a projective K3 surface, w = (r, ζ, b) ∈
H2(S,Q) and α ∈ Br(S). Choose a representative ξ of α in H2(S,Z),
and suppose that wξ is primitive. Moreover, let H be a (α,w)−generic
ample line bundle on S. Then the moduli space Ms

α,w(S,H) is an irre-
ducible symplectic manifold which is deformation equivalent to a Hilbert
scheme of points on S.

We have the following result, which is the twisted version of Theorem
3.4:

Proposition 4.18. Let S be a projective K3 surface, w = (r, ζ, b) a
Mukai vector and α ∈ Br(S). Choose ξ to be a representative of α
in H2(S,Z), and suppose that r and ξ are prime to each other. If
ω is a (α,w)−generic polarization, then Mµ

α,w(S, ω) is an irreducible
symplectic manifold which is deformation equivalent to a Hilbert scheme
of points on S.

Proof. By Lemma 3.3, Proposition 4.13 and following the same proof
of Theorem 3.4, we see that there is an ample line bundle H such that
Mµ

α,w(S, ω) =Mµ
α,w(S,H). This last moduli space is an irreducible sym-

plectic manifold which is deformation equivalent to a Hilbert scheme
of points on S by Theorem 4.17. �

4.3.4. Quasi-universal families. We conclude this section with the fol-
lowing result about the existence of a quasi-universal family; cf. [1] for
the absolute untwisted case.

Proposition 4.19. Let π : X −→ T , f : P −→ X , v = (v0, v1, v2)
and ω̃ be as before. Let A be a relative Azumaya algebra corresponding
to P, and for every t ∈ T let αt ∈ Br(Xt) be the class of At. Sup-
pose that there is a locally free A-module V verifying the two following
properties for every t ∈ T :

(1) the restriction Vt of V to Xt is µαt,ωt
−stable;

(2) the twisted Mukai vector of Vt is (v0, v1, w2), where w2 < v2.

Then there is a quasi-universal family on M µ
v (P/T, ω̃)×T X .

Proof. Let M := M
µ
ṽ (P/T, ω̃). As for stable coherent sheaves, there is

an open covering U = {Ui}i∈I of M given by analytic subsets endowed
with universal A-modules Fi.
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Let pi : Ui ×T X → Ui and qi : Ui ×T X → X denote the two
projections. We put Ei := Fi ⊗q∗i A

q∗i V∨. By the choice of V we have

R0pi,∗Ei = 0 = R2pi,∗Ei and Wi := R1pi,∗Ei is a non-trivial locally free
OUi

-module whose rank is independent of i.
It is easy to check now that theA-modules Fi⊗O p

∗
iW

∨
i glue together

to give the desired quasi-universal family. �

4.4. Deformation of stable twisted sheaves along twistor lines.

In this subsection we describe and generalize a construction used by
several authors in the case of stable locally free sheaves of slope zero,
cf. [35], [39], [40], [27].
Let (S, I, ω) be a polarized K3 surface and π : Z(S) −→ P1 its

twistor family. We suppose that the fibre over 0 is S0 = (S, I), and
we write St = (S, It) for the fibre over t. Here I = I0 and It denote
the complex structures on S. With this convention we have S∞ =
(S, I∞) = (S,−I). Recall that the choice of ω on (S, I) is equivalent
to the choice of a Riemannian metric g which is compatible with I and
whose associated Kähler class is ω. Along the twistor line the metric g
remains compatible with It, the associated class ωt is Kähler, and we
get a section ω̃ of R2π∗C which is ωt on St. Slope stability on St will
be considered with respect to ωt.
Before we introduce deformations of sheaves along twistor lines we

make an observation on (1, 1)-forms on the twistor space of S. Recall
that, as a differentiable manifold, Z(S) is the product S × P1, which
is endowed with a complex structure in the following way (see [13]):
cover P1 by two charts (each isomorphic to C) and take ζ the complex
coordinate function on one of them and ζ−1 on the other. Further, let
I, J,K be the complex structures on S which make it into a hyperkähler
manifold. If IP1 is the complex structure on P1 then put the following
complex structure to act on the tangent space TS × TP1 of S × P1:

I :=

(
1− ζζ̄

1 + ζζ̄
I +

ζ + ζ̄

1 + ζζ̄
J + i

ζ − ζ̄

1 + ζζ̄
K, IP1

)
.

With respect to this complex structure the projection q : S×P1 → S
is not holomorphic but only C∞.

Lemma 4.20. Let ψ be a (1, 1)-form on (S, I, ω). Its pull-back q∗ψ is
a (1, 1)-form on Z(S) if and only if ψ is anti-self-dual on (S, I, ω).

Proof. Let Ψ := q∗ψ. It is a 2-form on Z(S), so it is of type (1, 1) if and
only if Ψ(Iv, Iw) = Ψ(v, w) for any pair (v, w) of real tangent vectors
at a point of Z(S). As I preserves the horizontal and the vertical
directions on Z(S) = S × P1, and as Ψ(v, w) = 0 if one of the tangent
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vectors v or w is horizontal, it suffices to check Ψ(Iv, Iw) = Ψ(v, w)
only on vertical vectors, meaning that the restrictions of Ψ to the fibres
of π : Z(S) −→ P1 are of type (1, 1).
Suppose that ψ is anti-self-dual. This property only depends on g

and on the orientation of S: as g is compatible with each complex
structure It, it follows that the restriction of Ψ to each fibre of π is
then anti-self-dual. In particular, it is of type (1, 1), hence also Ψ is of
type (1, 1) on Z(S).
Conversely, if ψ is not anti-self-dual, then it decomposes as ψ =

ψSD + ψASD, where the self-dual part is of the form ψSD = fωI for
some non-zero function f . But ωI is not of type (1, 1) with respect to
J so neither will be Ψ. �

We now turn to deformations of sheaves along the twistor line.

4.4.1. Deformation of a locally free polystable sheaf with trivial slope.
Let E0 be a polystable vector bundle on S0 whose slope is zero, and
denote by E∞ the C∞−vector bundle underlying E0. The Kobayashi-
Hitchin correspondence provides E∞ with an ASD-connection. By
Lemma 4.20 the curvature of the connection is of (1, 1)-type on each
St. We therefore obtain holomorphic structures Et on E

∞ over each St,
induced by the structure E0 in a canonical way. In fact we even get a
holomorphic structure on q∗E∞; denote by Ẽ the corresponding sheaf
of holomorphic sections over Z(S). As Et is holomorphic and carries
an ASD-connection, it is polystable for every t ∈ P1. It is easy to see
that if E0 is stable, then Et is stable for every t ∈ P1.

4.4.2. Deformation of an Azumaya algebra. Let now A0 be an Azu-
maya algebra on S0, and let α0 be its class in Br(S0). Choose a locally
free α0−twisted sheaf E0 such that A0 ≃ E nd(E0). We will suppose
that E0 is µα0,ω0

−stable.
The Kobayashi-Hitchin correspondence for twisted sheaves estab-

lished by Wang in [41] shows that A0 is µω0
−polystable. Notice that

µω0
(A0) = 0, hence by section 4.4.1 the vector bundle A := q∗A0 car-

ries a holomorphic structure, and for every t ∈ P1 its restriction At to
the fibre St is a µωt

−polystable vector bundle with trivial slope. We
need to show that At is an Azumaya algebra.
To do so, we argue as in the proof of Lemma 6.5 in [27], point (3).

The Azumaya algebra structure on A0 is given by a holomorphic map
m0 : A0 ⊗ A0 −→ A0 verifying some identities among holomorphic
sections. This means that m0 is a holomorphic section of the vector
bundle H om(A0⊗A0,A0). But this is µω0

−polystable as A0 is, hence
it carries an ASD-connection, and m0 is parallel with respect to it.
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As a consequence, m0 defines a parallel section of H om(At⊗At,At),
hence a holomorphic map mt : At ⊗ At −→ At. Hence At is an
OSt

−algebra: as the same identities among sections which are verified
onA0 are verified even onAt, it follows thatAt is an Azumaya algebra.1

4.4.3. Deformation of a stable twisted vector bundle. Let α0 ∈ Br(S0)
and F0 an α0−twisted locally free sheaf which is µα0,ω0

−stable. Choose
an α0−twisted locally free sheaf E0 which is µα0,ω0

−stable in such a
way that cE0,1(F0) = 0.
We let G0 := F0 ⊗ E∨

0 and A0 := E0 ⊗ E∨
0 : then A0 is an Azu-

maya algebra, and as we saw in section 4.4.2 it is a polystable sheaf.
Moreover, G0 is a locally free sheaf of trivial slope and it has the struc-
ture ofA0−module. The Kobayashi-Hitchin correspondence for twisted
sheaves in [41] shows that G0 is a polystable sheaf.
Following section 4.4.2, q∗A0 is a holomorphic vector bundle, and for

every t ∈ P1 its restriction At to St is a polystable sheaf having the
structure of Azumaya algebra. We let αt be its class in Br(St).
By section 4.4.2 the polystable sheaf G0 gives rise, for every t ∈ P1,

to a polystable sheaf Gt with trivial slope. The same argument used in
section 4.4.2 to show that At is an Azumaya algebra, applied this time
to mt : At ⊗ Gt −→ Gt, shows that the sheaf Gt has the structure of
an At−module.
As Gt is an At−module, it corresponds to an αt−twisted locally free

sheaf Ft on St. In particular E0 gives rise to an αt−twisted locally free
sheaf Et on St such that E nd(Et) ≃ At and Ft ⊗ E∨

t ≃ Gt.

Lemma 4.21. The sheaves Ft and Et are µαt,ωt
−stable.

Proof. We show that Et is µαt,ωt
−stable. The proof for Ft is similar.

Suppose that Et is not µαt,ωt
−stable, and let Et ⊆ Et in Coh(St, αt)

with µEt,ωt
(Et) ≥ µEt,ωt

(Et). We suppose that Et is µαt,ωt
−stable.

1If E0 is an untwisted sheaf, we can give a more direct proof. The multiplication
of two holomorphic sections φ1, φ2 ofAt remains holomorphic (hence At is a sheaf of

algebras on St): this is a consequence of the formula D̂(φ1◦φ2) = D̂φ1◦φ2+φ1◦D̂φ2,

where D̂ is the connection induced by D on A0.
By [6, Thm. 1.1.6] we just need to show that At is locally of the form E nd(F )

for some locally free sheaf F of OSt
-modules. To do so, consider the self-dual part

RSD of the curvature R of D. We have RSD = c · Id · ω0 for a suitable constant c.
By solving the equation ddcφ = − c

r
ω0 on a open subset U , we find a holomorphic

hermitian line bundle (L, h) on U whose curvature is − c

r
ω0. Hence F∞ := E0 ⊗ L

is a rank r vector bundle on U with a Hermite-Einstein connection, and A∞ ∼=
E nd∞(F∞) as ASD-vector bundles. Hence on F∞ we have a holomorphic structure
Ft compatible with the corresponding It, and At

∼= E nd(Ft).
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We let Ht := Et⊗E∨
t , which is an At−module and we have Ht ⊆ At.

The inequality µEt,ωt
(Et) ≥ µEt,ωt

(Et) gives µAt,ωt
(Ht) ≥ µAt,ωt

(At), so
that µωt

(Ht) ≥ µωt
(At) = 0. As At is µωt

−polystable, this implies that
µωt

(Ht) = 0, and that it is a direct summand of At. In particular, it is
µωt

−polystable.
Using the same argument given before, the sheaf Ht gives rise to

a µω0
−polystable sheaf H0 on S0, which is contained in A0, has the

structure of A0−module, and µω0
(H0) = µω0

(A0) = 0. The equivalence
between Coh(S0, α0) and Coh(S0,A0) given by tensoring with E∨

0 pro-
duces then a subsheaf E0 of E0 such that µE0,ω0

(E0) = µE0,ω0
(E0). But

this is not possible as E0 is µα0,ω0
−stable. In conclusion, the sheaf Et

is µαt,ωt
−stable. �

4.5. Relative moduli space of twisted sheaves on twistor lines.

In this section we show that the relative moduli space of stable twisted
sheaves gives us a way to deform the moduli spaces Mµ

α,w(S, ω) to an
irreducible symplectic manifold (which is moreover deformation equiv-
alent to a Hilbert scheme of points on projective K3 surface).
We let S be a K3 surface, w = (r, 0, a) ∈ H2∗(S,Z) with r ≥ 2,

α ∈ Br(S) and ω an (α,w)−generic polarization. The Kähler class ω
corresponds to the choice of a Riemannian metric g which is compatible
with the complex structure I of S, and whose associated Kähler class
is ω. Let π : Z(S) −→ P1 be the twistor family of g: we denote St

the fibre of π over t, which corresponds to a complex structure It on S
associated with t. The metric g is compatible with It, the associated
class ωt is Kähler, and w is a Mukai vector on St for every t ∈ P1.
Choose now a µα,ω−stable α−twisted sheaf E on S of rank r, and

let E := E ∨∨: this is a µα,ω−stable α−twisted vector bundle of rank
r, and we let A0 := E nd(E) the corresponding Azumaya algebra. We
suppose that vE(E ) = w. By section 4.4.2, there is holomorphic vector
bundle A on Z(S) whose restriction At to St is an Azumaya algebra on
St for every t ∈ P1. We let αt ∈ Br(St) be its class and At ≃ E nd(Et),
where Et is the deformation of E along the twistor line (see section
4.4.3).
By section 4.3.2 there is then a relative moduli space of stable twisted

sheaves p : M −→ P1 such that for every t ∈ P1 the fibre over t is the
moduli space Mµ

αt,w(St, ωt) of µαt,ωt
−stable αt−twisted sheaves whose

twisted Mukai vector with respect to Et is w.

Remark 4.22. On M ×P1 Z(S) we have a quasi-universal family: if
F ∈ Mµ

α,w(S, ω), let F := F∨∨ and V0 := F ⊗ E∨. We let V in
Proposition 4.19 be V := q∗V0.
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We first prove some geometrical properties of the relative moduli
space p : M −→ P1.

Proposition 4.23. Let S be a K3 surface, w = (r, 0, a) ∈ H2∗(S,Z)
with r ≥ 2, α ∈ Br(S) and ω a (α,w)−generic polarization. The
relative moduli space p : M −→ P1 of stable twisted sheaves verifies
the following properties:

(1) the morphism p is submersive;
(2) if T ∗

p denotes the relative cotangent bundle of p, there is a holo-

morphic global section of ∧2T ∗
p ⊗OP1(2) whose restriction to any

fibre is a holomorphic symplectic form;

Proof. We divide the proof in several parts.
Step 1: submersivity. As every E ∈ Mt is simple and the canoni-

cal bundle of a K3 surface is trivial, we have Ext2(E , E )0 = 0. The
exact sequence (9) implies then that the map p is submersive, so that
condition (1) of the statement is proved.
Step 2: section through locally free sheaves. Let t0 ∈ P1, and choose

F ∈ Mµ
αt0

,w(St0 , ωt0) a locally free sheaf. As we saw in section 4.4.3,

the sheaf F gives rise to a sheaf Ft ∈ Mµ
αt,w(St, ωt) for every t ∈ P1.

This produces a section

sF : P1 −→ M , sF (t) := Ft

of p, which is holomorphic. If we let Et be the αt−twisted µαt,ωt
−stable

sheaf such that At = E nd(Et) (an Azumaya algebra on St whose class
in Br(St) is αt), and Gt := Ft ⊗ E∨

t , we let G := q∗Gt, which is a
holomorphic vector bundle on Z(S). The restriction of the relative
tangent bundle Tp of p to the section s is

s∗Tp ≃ R1π∗E nd(G).
Step 3: relative symplectic form. We prove that the condition (2)

is fulfilled. We first notice that for every t ∈ P1 the restriction Tp|t
of Tp to Mt is the tangent bundle of Mµ

αt,w(St, ωt), and similarly the
restriction (T ∗

p )|t of T
∗
p to Mt is the cotangent bundle of Mµ

αt,w(St, ωt).
As on Mµ

αt,w(St, ωt) we have a holomorphic symplectic form (if St is
projective, this is done in [43]; the proof in the general case is similar),
we get an isomorphism Tp|t ≃ (T ∗

p )t.
This implies the existence of a line bundle OP1(d) for some d ∈ Z

together with an isomorphism Tp −→ T ∗
p ⊗p∗OP1(d). We then just need

to show that d = 2. To do so, consider a locally free sheaf F ∈ M0: as
seen in Step 2 we have a holomorphic section s : P1 −→ M of p, and

s∗Tp ≃ R1p∗E nd(G)
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where G = q∗(F ⊗E∨
0 ). By the relative Serre duality we get

R1p∗E nd(G) ≃ (R1p∗E nd(G)∗ ⊗Kπ)
∗,

where Kπ is the relative canonical bundle of π : Z(S) −→ P1.
Now, as G is locally free, we have E nd(G) ≃ E nd(G)∗. Moreover,

Kπ ≃ OP1(−2) (see [13]), hence

R1p∗E nd(G) ≃ R1p∗E nd(G)∗ ⊗ OP1(2).

In conclusion,
s∗Tp ≃ s∗T ∗

p ⊗ OP1(2).

As s∗Tp ≃ s∗T ∗
p ⊗ OP1(d), it follows d = 2. This shows that condition

(2) is fulfilled. �

We now prove some geometrical properties of the moduli spaces of
stable twisted sheaves we are considering: in particular, we show that
they are all compact and connected.

Proposition 4.24. Let S be a K3 surface, w = (r, 0, a) ∈ H2∗(S,Z)
with r ≥ 2, α ∈ Br(S) and ω a (α,w)−generic polarization. Moreover,
let ξ be a representative of α in H2(S,Z) which is prime with r. The
moduli space Mµ

α,w(S, ω) is a compact, connected manifold.

Proof. The compactness of Mµ
α,w(S, ω) is well known when S is pro-

jective and a proof in the non-projective and non-twisted case has
been given in [36]. This proof uses in an essential way the compar-
ison map from the moduli space of stable sheaves to the corresponding
Donaldson-Uhlenbeck compactification of the moduli space of anti-self-
dual connections in a hermitian vector bundle on S. These arguments
may be extended to the twisted case. We refer the reader to [36] and
[41] for the ingredients.
To show that Mµ

α,w(S, ω) is connected, we will follow the strategy
used by Mukai and by Kaledin, Lehn and Sorger to prove the analogous
result when S is projective, ω is the first Chern class of an ample line
bundle, and the sheaves are untwisted (see the proof of Theorem 4.1 in
[21]).
We first suppose that the moduli space Mµ

α,w(S, ω) is not connected,
and we choose a connected component Y . Moreover, we fix a sheaf
F ∈ Y and a sheaf G ∈Mµ

α,w(S, ω) \ Y .
Let p : Y × S −→ Y and q : Y × S −→ S be the two projections,

and consider a p∗β · q∗α−twisted universal family F on Y × S. We
then define two complexes

K•
F := E xt•p(q

∗F,F ), K•
G := E xt•p(q

∗G,F )

of β−twisted sheaves on Y .
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As the sheaves F and G have the same topological invariants
(since their Mukai vectors are equal), letting d := dim(Y ), by the
Grothendieck-Riemann-Roch Theorem we have cBd (K

•
F ) = cBd (K

•
G),

where cBd is the component of degree 2d of cB (for some B−field giving
the twist β).
We now compute more explicitely these twisted Chern classes, and

we start from K•
G. We notice that if E ∈ Y , then E is a stable twisted

sheaf having the same slope of G, but which is not isomorphic to G. It
follows that

Ext0(G,F ) = Ext2(G,F ) = 0.

As

E xtjp(q
∗G,F )E ≃ Extj(G,E),

it follows that

E xtjp(q
∗G,F ) = 0

if j = 0, 2, and that E xt1p(q
∗G,F ) is a locally free β−twisted sheaf

whose rank is d− 2.
As a consequence we have

cBd (K
•
G) = −cBd (E xt1p(q∗G,F )) = 0,

as E xt1p(q
∗G,F ) is a locally free β−twisted vector bundle of rank d−

2 < d: recall that cB of E xt1p(q
∗G,F ) is defined as the Chern class of

some untwisted vector bundle of the same rank, hence, as this rank is
smaller then the dimension of Y , the d−th B−twisted Chern class is
trivial.
We now need to compute cBd (K

•
F ). To do so, we first recall that by

[3] there is locally on Y a complex

A• = · · · a−1−→ A0 a0−→ A1 a1−→ A2 −→ 0

of free sheaves such that for every σ : Y ′ −→ Y and for every j ∈ Z we
have

E xtjp′(σ
∗(q′)∗F, σ∗

F ) ≃ Hj(σ∗A•),

where p′ : Y ′×S −→ Y ′ and q′ : Y ′ ×S −→ S are the two projections,
and where Hj denotes the j−th cohomology of the complex.
Let us now cover Y with open subsets Ui so that F is contained

in only one of them, and let us moreover suppose that the previous
complex A• exists over Ui. If E ∈ Ui and E is not F , thenHj(A•)E = 0,
hence the rank of all the maps ai of the complex A• is constant on
Y \ {F}. But we have

H0(A•)F ≃ H0(A•)F ≃ C,
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hence the rank of a0 and a1 at F drops by 1, while the rank of ai is
constant on Y for i ≤ −1. The same proof of Lemma 4.3 of [21] shows
that the degeneracy locus of the a0 and a1 is the reduced point F , while
ai does not degenerate if i ≤ −1.
Let us now consider the blow-up σ : Z −→ Y of Y at F with

reduced structure, and let D be the exceptional divisor on Z. Consider
the complex

σ∗A• = · · · σ∗a−1−→ σ∗A0 σ∗a0−→ σ∗A1 σ∗a1−→ σ∗A2 −→ 0.

The degeneracy locus of σ∗a0 and σ∗a1 is then the exceptional divisor
D with reduced structure, while the σ∗ai’s do not degenerate on Z for
i ≤ −1.
The maps σ∗a0 and σ∗a1 hence factor through

(A′)0
a′
0−→ σ∗A1 a′

1−→ (A′)2

where σ∗A0 ⊆ (A′)0, (A′)2 ⊆ σ∗A2, and the sheaves

M := (A′)0/σ∗A0, L := σ∗A2/(A′)2

are supported on D. As in the proof of Theorem 4.1 of [21], Step 4,
the sheaves L and M are characterized by canonical isomorphisms

L⊗OD ≃ Ext2(F, F )⊗OD, T orOD

1 (M,OD) ≃ Hom(F, F )⊗OD.

Here the computation is done in a neighborhood of the divisor D.
As in [21], it follows from this that

E xt0p′(σ
∗q∗F, σ∗

F ) ≃ OD(D), E xt2p′(σ
∗q∗F, σ∗

F ) ≃ OD,

viewed as σ∗β−twisted sheaves, and that E xt1p′(σ
∗q∗F, σ∗F ) is a locally

free σ∗β−twisted sheaf of rank d− 2. It follows that

cBd (σ
∗K•

F ) = Dd = −1.

But remark that

cBd (σ
∗K•

F ) = σ∗cBd (K
•
F ) = σ∗cB(K•

G) = 0,

getting a contradiction. In conclusion the moduli space Mµ
α,w(S, ω) has

to be connected. �

We can now prove the following result, which is the main result of
this section, and which concludes the proof of part (1) of Theorem 1.1:

Proposition 4.25. Let S be a K3 surface, w = (r, 0, a) ∈ H2∗(S,Z)
with r ≥ 2, α ∈ Br(S) and ω a (α,w)−generic polarization. Moreover,
let ξ be a representative of α in H2(S,Z) which is prime with r. Con-
sider the relative moduli space of stable twisted sheaves p : M −→ P1

along the twistor family of (S, ω).
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(1) There is a t ∈ P1 such that Mt is an irreducible symplectic
manifold which is deformation equivalent to a Hilbert scheme
of points on a projective K3 surface S.

(2) The moduli space Mµ
α,w(S, ω) is a compact, connected complex

manifold which is simply connected and carries a holomorphic
symplectic form.

Proof. We let π : Z(S) −→ P1 be the twistor family of (S, ω). By [16,
Lemma 2.1] there is a t such that St is a projective K3 surface. The
polarization ωt is (αt, w)−generic, and wξ = v(Eξ) for some topological
vector bundle Eξ: such a topological vector bundle remains constant
along P1, hence wξ = (r, ξ, b) where r and ξ are prime to each other. It
follows from Proposition 4.18 that Mµ

αt,w
(St, ωt) is an irreducible sym-

plectic manifold which is deformation equivalent to a Hilbert scheme
of points on St.
By Proposition 4.24, all the fibers are compact, connected manifolds,

and by point (a) of Proposition 4.23 the morphism p is submersive. By
the Proposition in section 1 of [7], it follows that p is a smooth and
proper morphism, hence it is a deformation of Mµ

α,w(S, ω), and we are
done. �

4.6. Moduli spaces of locally free sheaves. The previous results
can be largely improved if we suppose something more on Mµ

v (S, ω),
namely that it parametrizes only locally free sheaves. However this case
has already been considered by differential geometers. We therefore
only state the following result and refer the reader to [19] and [20] for
the proof.

Proposition 4.26. Let S be a K3 surface, v = (r, ξ, a) a Mukai vector
such that r and ξ are prime to each other, and ω a v−generic polariza-
tion. Then the open part M lf of the relative moduli space p : M −→ P1

along the twistor family of (S, ω), parameterizing locally free sheaves,
is the twistor family of the moduli space Mµ−lf

v (S, ω) of ω-stable locally
free sheaves with Mukai vector v on S.

If morever v2 = 0, a standard argument shows that every sheaf in
Mµ

v (S, ω) is locally free (see Remark 6.1.9 of [15]), and thus the previous
proposition applies to Mµ

v (S, ω) which is moreover compact. The next
proposition shows that compact moduli spaces of stable locally free
sheaves as above may attain any even complex dimension.

Proposition 4.27. Let r be a positive integer, d ∈ [0, 2r − 2] be an
even integer and g be an integer such that g ≤ −(r2 − 1)(r − 1) and
g congruent to d

2
modulo r. Then there exists a K3 surface X with
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NS(X) generated by one element ξ such that ξ2 = 2g − 2 and there
exist torsion-free coherent sheaves E on X of rank r, c1(E) = ξ and
such that 2r2∆(E) − 2(r2 − 1) = d. Moreover all such sheaves are
locally free and irreducible. In particular they are stable with respect to
any polarization on X and their moduli space is a compact irreducible
holomorphic symplectic manifold of dimension d.

Proof. The existence of K3 surfaces X with cyclic Néron-Severi groups
was proved in [24] whereas the existence of torsion-free sheaves E with
the above invariants follows from [23, Theorem 2.7]. We shall check
that such sheaves are irreducible and locally free. Suppose 0 → E1 →
E → E2 → 0 is an exact sequence with Ei coherent sheaves without
torsion on X of ranks ri and with c1(Ei) = ξi, (i = 1, 2). Then ξ1+ξ2 =
ξ, r1 + r2 = r and we directly compute

∆(E) =
1

2r
(
ξ2

r
− ξ21
r1

− ξ22
r2
) +

r1
r
∆(E1) +

r2
r
∆(E2).

Since g ≤ 0, X is non-algebraic hence ∆(Ei) ≥ 0 and thus

∆(E) ≥ 1

2r

(
ξ2

r
− ξ21
r1

− ξ22
r2

)
=

− 1

2r1r2

(
r2ξ

r
− ξ2

)2

≥ − ξ2

2r2(r − 1)
=

1− g

(r − 1)r2
>
r2 − 1

r2
= 1− 1

r2
.

But this implies d > 2r2 which contradicts our choice of d. Hence E
is irreducible. If E were not locally free an easy computation would
imply that the discriminant of its double dual would be negative: a
contradiction to the non-algebraicity of X . �

5. The second integral cohomology

We now study the second integral cohomology of Mµ
v (S, ω). We

will show that it carries a non-degenerate quadratic form of signature
(3, 20), and that we have an isometry between H2(Mµ

v ,Z) and v
⊥. If

Mµ
v (S, ω) is Kähler, it is even a Hodge isometry: as a consequence,

we will show that the moduli space is projective if and only if S is
projective.

5.0.1. The quadratic form. All along this section we will let X :=
Mµ

v (S, ω) for a choice of a K3 surface S, a Mukai vector v = (r, ξ, a)
with r and ξ prime to each other, and a v−generic polarization ω. We
let 2n be its complex dimension. We start by defining a quadratic form
on H2(X,C) for every holomorphic symplectic form σ on X , by using
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the same formula as for the Beauville form of an irreducible symplectic
manifold: for every α ∈ H2(X,C), we let

qσ(α) :=
n

2

∫

X

α2 ∧ σn−1 ∧ σn−1

∫

X

σn ∧ σn+

(1− n)

∫

X

α ∧ σn ∧ σn−1

∫

X

α ∧ σn−1 ∧ σn.

Note that the symplectic form is always supposed to be closed so the
above definition does not depend on representatives. Note also that
qσ(σ + σ) = (

∫
X
σn ∧ σn)2 6= 0 so qσ is non-trivial.

Recall next the definition of the ”topological” quadratic form

q̃X(α) := cn

∫

X

α2
√

td(X)

where cn is a constant depending only on n chosen so that the form
becomes integral on H2(X,Z) (see [12], Definition 26.19 in Part III.
Compact Hyperkähler Manifolds). It is known that qσ and q̃X are
proportional when X is moreover supposed to be Kähler.
We finally define H̃2,0 := Im(({τ ∈ H0(Ω2) | dτ = 0} → H2(X,C))

and h̃2,0(X) := dim H̃2,0(X). We first prove the following:

Proposition 5.1. Let p : X → C be a proper submersion of relative
dimension 2n over a connected curve C such that there exists a point
0 ∈ C with X0 := p−1(0) irreducible holomorphic symplectic. Suppose
moreover that there exists a relative non-degenerate symplectic form
σ ∈ H0(X,Ω2

X/C ⊗ p∗L) with values in a line bundle L over C. Let

qt := qσt
be the quadratic form defined by σ on H2(Xt,C) for each

t ∈ C. Then for all t ∈ C the quadratic form qt is a positive multiple
of q̃X0

. In particular qt is non-degenerate of signature (3, b2(X) − 3)

and h̃2,0(Xt) = 1.

Proof. We may suppose that L is the trivial line bundle on C. Indeed,
for the general case it will suffice to take trivializations of L over Zariski
open subsets of C containing 0.
Fix some α ∈ H2(Xt,C) and define for t1, t2 ∈ C:

qt1,t2(α) :=
n

2

∫

X

α2 ∧ σn−1
t1

∧ σn−1
t2

∫

X

σn
t1
∧ σn

t2
+

+(1− n)

∫

X

α ∧ σn
t1
∧ σn−1

t2

∫

X

α ∧ σn−1
t1

∧ σn
t2
.

(Note again that the above formula does not depend on representatives
since the syplectic forms σt1 , σt2 are closed.) This defines a complex
function on C × C which is holomorphic in t1 and antiholomorphic
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in t2. It becomes holomorphic on C × C−, where C− denotes the
curve C with the opposite complex structure. Over an analytical open
neighbourhood U of 0 in C all fibers Xt are Kähler. Hence for t ∈ U
the quadratic form qt is proportional to q̃. Take now α, α′ ∈ H2(X0,C)
such that q0(α) 6= 0. Then the meromorphic function

(t1, t2) 7→
qt1,t2(α

′)

qt1,t2(α)

on C × C− is constant on the diagonal ∆U ⊂ U × U− ⊂ C × C−. But
∆U is Zariski dense in C × C−. To see this consider the system of
local holomorphic curves Ct on C × C− given as images of the maps
z 7→ (t + z, t + z̄). Each curve Ct passes through the reference point
(t, t) ∈ ∆U but its intersection with ∆U is a piece of a ”real line”. Hence
by the principle of isolated zeroes any holomorphic function vanishing
locally on ∆U will also vanish on the curves Ct and thus also on the
three dimensional real submanifold of C × C− they cover. Therefore

the function (t1, t2) 7→ qt1,t2 (α
′)

qt1,t2 (α)
is constant on C × C−. From this it

follows that qt is proportional to q̃ for any t ∈ C.
It remains to check that h̃2,0(Xt) = 1 for all t ∈ C. For this we will

show that the kernel K of the linear map

{τ ∈ H0(Xt,Ω
2) | dτ = 0} → H0(Xt, KXt

), τ 7→ τ ∧ σn−1,

consists of d-exact forms only. Let bt be the associated bilinear form
to qt. Then for any τ ∈ K and α ∈ H2(Xt,C) we have

bt(τ, α) =
n

2

∫

X

τ ∧ α ∧ σn−1
t ∧ σn−1

t

∫

X

σn
t ∧ σn

t +

+
1− n

2

∫

X

τ ∧ σn
t ∧ σn−1

t

∫

X

α ∧ σn−1
t ∧ σn

t +

+
1− n

2

∫

X

α ∧ σn
t ∧ σn−1

t

∫

X

τ ∧ σn−1
t ∧ σn

t = 0

and our assertion follows since qt is non-degenerate. �

5.0.2. Isometry with v⊥. We now show that there is an isometry be-
tween H2(Mµ

v (S, ω),Z) and v
⊥ if v2 > 0, and with v⊥/Z · v if v2 = 0.

We introduce some notations. If v ∈ H2∗(S,Z), we let v⊥ be the
orthogonal of v with respect to the Mukai pairing. If v = (r, ξ, a) and
ξ ∈ NS(S), then the pure weight-two Hodge structure on H2∗(S,Z)
induces a pure weight-two Hodge structure on v⊥: namely, a class
α = (α0, α1, α2) ∈ v⊥ is of (1, 1)−type if and only if α1 ∈ NS(S).
If α = (α0, α1, α2) ∈ H2∗(S,Q), we write α∨ := (α0,−α1, α2). If

α = ch(F ) for some locally free sheaf F , then α∨ = ch(F∨). It is
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immediate to see that if α, β ∈ H2∗(S,Q), then (α · β)∨ = α∨ · β∨.
In particular, this implies that (β/α)∨ = β∨/α∨ and (

√
α)∨ =

√
α∨,

whenever these expressions make sense.
We now introduce a morphism associating to any class in v⊥ a

rational cohomology class on the moduli space of stable (twisted)
sheaves. The construction is inspired from the similar morphism
which is used in the projective case (see [30], [42], [26], [31]). Let
α ∈ Br(S), w ∈ H2∗(S,Q) a Mukai vector and ω a w−generic po-
larization. Suppose moreover that Mµ

α,w(S, ω) is compact, and let
p : Mµ

α,w(S, ω) × S −→ Mµ
α,w(S, ω) and q : Mµ

α,w(S, ω) × S −→ S
be the projections.
Choosing a quasi-universal family E on Mµ

α,w(S, ω)×S of similitude
ρ (which exists by Remark 4.22), we define a morphism

λS,α,w : w⊥ −→ H2(Mµ
α,w(S, ω),Q)

by letting

λS,α,w(β) :=
1

ρ
[p∗(q

∗(β∨ ·
√
td(S)) · ch(E ))]1,

where [·]1 is the part lying in H2(Mµ
α,w(S, ω),Q). As β ∈ w⊥, the

class λS,α,w(β) does not depend on the chosen quasi-universal family.
If α = 0 we simply write λS,w for λS,0,w.
We now show the following, which is a generalization of known results

in the projective case (see [29], [30], [42]):

Proposition 5.2. Let S be a K3 surface, v = (r, ξ, a) ∈ H2∗(S,Z)
where r ≥ 2, ξ ∈ NS(S), (r, ξ) = 1 and v2 ≥ 0. Moreover, let ω
be a v−generic polarization. Then the image of λS,v is contained in
H2(Mµ

v (S, ω),Z), and

(1) if v2 = 0, then λS,v defines an isometry

λS,v : v
⊥/Z · v −→ H2(Mµ

v (S, ω),Z);

(2) if v2 > 0, then λS,v is an isometry.

Proof. If v2 > 0, we just need to show the following properties:

a) the image of λS,v is contained in H2(Mµ
v (S, ω),Z);

b) the morphism λS,v is bijective;
c) the morphism λS,v is an isometry.

Let E be a quasi-universal family of similitude ρ on Mµ
v (S, ω)×S, and

fix a locally free µω−stable vector bundle F of Mukai vector v. Let
w := vF (F ) = (r, 0, a− ξ2/2r) and

f :Mµ
v (S, ω) −→Mµ

0,w(S, ω), f(F ) := F ⊗ F∨
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which is an isomorphism (see Remark 4.15).
We let q :Mµ

0,w(S, ω)× S −→ S be the projection, and

E
′ := (f × idS)∗E ⊗ q∗F∨,

which is a quasi-universal family of similitude ρ on Mµ
0,w(S, ω) × S.

Moreover, as f is an isomorphism, the morphism

f∗ : H
2(Mµ

v (S, ω),Z) −→ H2(Mµ
0,w(S, ω),Z)

is easily checked to be an isometry.
Now, we let

h : H2∗(S,Z) −→ H2∗(S,Q), h(β) :=
β · ch(F∨)√
ch(F ⊗ F∨)

.

We let (·, ·)S be the Mukai pairing on S and [·]2 the part lying in
H4(S,Q). If β ∈ v⊥ we have

(h(β), w)S = −
[

β∨ · ch(F )√
ch(F ⊗ F∨)

· vF (F )
]

2

=

= −[β∨ · ch(F ) ·
√
td(S)]2 = (β, v)S = 0,

so that

h : v⊥ −→ w⊥.

The same argument shows that it is an isometry. We even have
f∗(λS,v(β)) = λS,w(h(β)). Indeed

f∗(λS,v(β)) =
1

ρ
[f∗p∗(q

∗(β∨
√
td(S))ch(E ))]1 =

=
1

ρ
[p∗((f × idS)∗q

∗(β∨
√
td(S))ch(E ′))]1 =

=
1

ρ
[p∗(q

∗(h(β)∨
√
td(S))ch(E ′))]1 = λS,w(h(β)).

In conclusion, we see that λS,v verifies the properties a), b) and c) above
if and only if λS,w verifies them.
Now, consider the twistor line of (S, ω) and let p : M −→ P1 be the

associated relative moduli space. As we can define λS,v in a relative way
using relative quasi-universal families (which exist by Remark 4.22),
properties a), b) and c) above are verified on a fibre if and only if they
are verified all along the twistor line. It follows that λS,w verifies a), b)
and c) if and only λSt,wt

verifies them for some t ∈ P1.
As we saw before, there is t such that St is projective, and in this case

λSt,wt
is an isometry by [43], hence we are done. If v2 = 0, the proof is

similar: the only difference is about the fact that Z · v is the kernel of
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λS,v, which holds in the general case as it holds over a projective K3
surface (see [29]). �

An immediate corollary of the previous Proposition is the following:

Corollary 5.3. Let S be a K3 surface, v = (r, ξ, a) ∈ H2∗(S,Z) where
ξ ∈ NS(S), r ≥ 2, (r, ξ) = 1 and v2 ≥ 0. If ω is a v−generic
polarization and Mµ

v (S, ω) is Kähler, then the morphism λv is a Hodge
isometry.

Theorem 1.2 can now be seen as a corollary of the previous results:

Corollary 5.4. Let S be a K3 surface, v = (r, ξ, a) ∈ H2∗(S,Z) where
ξ ∈ NS(S), r ≥ 2, (r, ξ) = 1 and v2 ≥ 0. If ω is a v−generic
polarization, then Mµ

v (S, ω) is projective if and only if S is projective.

Proof. First, notice that if S is projective, then Mµ
v (S, ω) is projective

by Theorem 3.4.
Suppose now that S is not projective, we want to prove that

Mµ
v (S, ω) is not projective as well. Suppose that Mµ

v (S, ω) is pro-
jective: in particular this implies that it is Kähler, hence by part (1)
of Theorem 1.1 it follows that it is an irreducible symplectic manifold.
Recall that an irreducible symplectic manifold X is projective if and

only if there is a line bundle L on X such that q(L) > 0, where q
is the Beauville form of X (see [14]). Hence there is a line bundle L
on Mµ

v (S, ω) such that q(L) > 0, where q is the Beauville form on
Mµ

v (S, ω), which coincides with the non-degenerate quadratic form we
defined in the previous section.
Moreover, by Corollary 5.3, asMµ

v (S, ω) is Kähler we have that λv is
a Hodge isometry. There is then α ∈ v⊥ of type (1, 1) (with respect to
the Hodge structure on v⊥) such that λv(α) = c1(L), and (α, α)S > 0.

Let us now describe v⊥ ⊗Q. First, an element (0, ζ, b) ∈ H̃(S,Q) is
in v⊥⊗Q if and only if b = ζ · ξ. As (0, ζ, ζ · ξ) = eξ/r · (0, ζ, 0), we have

eξ/r ·H2(S,Q) ⊆ v⊥.

It is easy to see that eξ/r · (2r2, 0, v2) ∈ v⊥ ⊗Q, hence

eξ/r ·Q(2r2, 0, v2) ⊆ v⊥ ⊗Q.

This implies that

v⊥ ⊗Q = eξ/r · (H2(S,Q)⊕Q(2r2, 0, v2)),

so that the (1, 1)−part (v⊥)1,1 of v⊥ ⊗Q is

(v⊥)1,1 = eξ/r · (NSQ(S)⊕Q(2r2, 0, v2)),

where NSQ(S) := NS(S)⊗Q.
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The direct sum is orthogonal with respect to the Mukai pairing, and
it is easy to see that

(eξ/r(2r2, 0, v2))2 = −4r2v2 ≤ 0,

as v2 ≥ 0. Moreover, as S is non-projective the lattice eξ/rNSQ(S) is
negative semi-definite. It follows that (v⊥)1,1 is negative semi-definite,
hence for every α ∈ (v⊥)1,1 we have (α, α)S ≤ 0, which is not possi-
ble. In conclusion, if S is not projective, the moduli space cannot be
projective, and we are done. �
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