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Multilevel branching splitting algorithm for estimating rare event

probabilities

October 7, 2016

Agnès Lagnoux and Pascal Lezaud

Abstract: We analyse the splitting algorithm performance in the estimation of rare event probabilities
in a discrete multidimensional framework. For this we assume that each threshold is partitioned into
disjoint subsets and the probability for a particle to reach the next threshold will depend on the starting
subset. A straightforward estimator of the rare event probability is given by the proportion of simulated
particles for which the rare event occurs. The variance of this estimator we get is the sum of two
parts: one part resuming the variability due to each threshold and a second part resuming the variability
due to the thresholds number. This decomposition is analogous to that of the continuous case. The
optimal algorithm is then derived by cancelling the first term leading to optimal thresholds. Then we
compare this variance with that of the algorithm in which one of the threshold has been deleted. Finally,
we investigate the sensitivity of the variance of the estimator with respect to a shape deformation of
an optimal threshold. As an example, we consider a two-dimensional Ornstein-Uhlenbeck process with
conformal maps for shape deformation.

Keywords: splitting; rare event probability estimation; Monte Carlo; branching process; simulation;
variance reduction; first crossing time density; conformal maps

1 Introduction

The risk modelling approach consists in firstly formalizing the system considered and secondly using
mathematical or simulation tools to obtain some estimates (Aldous, 1989; Sadowsky, 1996). Analytical
and numerical approaches are useful, but may require many simplifying assumptions. On the other
hand, Monte Carlo simulation is a practical alternative when the analysis calls for fewer simplifying
assumptions. Nevertheless, obtaining accurate estimates of rare event probabilities, say about 10−9 to
10−12, using traditional techniques require a huge amount of computing time.

Many techniques for reducing the number of trials in Monte Carlo simulation have been proposed, like
importance sampling or trajectory splitting (L’Ecuyer et al. (2009)). In the splitting technique, we
suppose there exists some well identifiable intermediate states that are visited much more often than the
target states themselves and behave as gateways to reach the rare event. Thus we consider a decreasing
sequence of events Bi leading to the rare event B:

B := BM+1 ⊂ BM ⊂ . . . ⊂ B1 . (1)

Then p := P(B) = P(B|BM )P(BM |BM−1) . . .P(B2|B1)P(B1) where on the right hand side, each condi-
tioning event is ”not rare”. These conditional probabilities are in general not available explicitly. Instead,
we know how to make evolve the particles from level Bi to the next level Bi+1 (e.g. Markovian behaviour).

The principle of the algorithm is at first to run simultaneously several particles starting from the level
Bi; after a while, some of them have evolved ”badly”, the other have evolved ”well” i.e. have succeeded
in reaching the threshold Bi+1. Then ”bad” particles are moved to the position of the ”good” ones and
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so on until B is reached. In such a way, the more promising particles are favoured. Examples of this
class of algorithms can be found in Aldous and Vazirani (1994) with the ”go with the winners” scheme,
in Jerrum and Sinclair (1997) and Diaconis and Holmes (1995) in approximate counting and in a more
general setting in Doucet et al. (2001); Del Moral (2004); Cérou and Guyader (2005); Del Moral and
Garnier (2005); Morio et al. (2014) .

The difficulty comes from the complexity of the dynamics of the particles. A simpler analysis can be
done focusing only on the underlying Markov chain that represents the changes of thresholds. In this
technique, we make a Bernoulli trial to check whether or not the set event B1 has occurred. In that
case, we split this trial in R1 Bernoulli subtrials and for each of them we check again whether or not the
event B2 has occurred. This procedure is repeated at each level, until B is reached. If an event level
is not reached, neither is B, then we stop the current retrial. Using N independent replications of this
procedure, we have then considered NR1 . . . RM trials, taking into account for example, that if we have
failed to reach a level Bi at the i-th step, the Ri . . . RM possible retrials have failed. Clearly the particles
reproduce and evolve independently.

An unbiased estimator of p is given by the quantity

p̂M+1 =
NB

N
∏M
i=1Ri

,

where NB is the total number of trajectories having reached the set B. Considering that this algorithm
is represented by N independent Galton-Watson branching processes, as done in Lagnoux (2006), the
variance of p̂M+1 can then be derived and depends on the probability transitions and on the mean
numbers of particles successes at each level. Leading by the heuristic presented in Villén-Altamirano
and Villén-Altamirano (1991, 1997), an optimal algorithm is derived by minimising the variance of the
estimator for a given budget (or computational cost). This cost is defined as the expected number of
trials generated during the simulation, each trial being weighted by a cost function.

The optimisation of the algorithm suggests to take all the transition probabilities equal to a constant
and the numbers of splitting equal to the inverse of this constant Lagnoux (2006). Then we deduce the
number of thresholds M and finally the number N of replications. In fact, optimal values are chosen in
such a way to balance between the increase of the variance when the number splitting is small and the
exponential growth in computational effort when too much splitting are used.

In higher dimension, the engineering community have proposed algorithms to estimate rare event prob-
abilities. Subset simulation which is also based on a partitioning of the space into nested subsets uses
Markov Chain simulation (in particular the Metropolis Hastings scheme) Au and Beck (2001). Impor-
tance sampling techniques have also been developed in that framework. When the failure region is not
too complex to describe, schemes to construct importance sampling algorithms have been introduced that
are based on design points (see e.g. Au et al. (1999); Kiureghian and Dakessian (1998) and the references
therein) or adaptive pre-samples (see e.g. Au and Beck (1999) and the references therein). When the
complexity of the rare event increases, it seems to be difficult to construct efficient importance sampling
scheme Schuëller et al. (1993).

In this paper, we continue the multidimensional approach and study theoretically the algorithm intro-
duced in Glasserman et al. (1998) and Garvels (2000) mainly in order to obtain a new expression of the
variance of the estimator analogous to that of the continuous case (L’Ecuyer et al. (2009)). Thus, we
assume that each threshold is partitioned into s disjoint subsets and the probability for a particle starting
from a threshold to reach the next threshold will depend on the starting subset. Unlike the unidimensional
case, the hardness to reach the next threshold differs according to the starting subset; in some sense the
threshold is no longer an iso-probability level. In this context, the variance of the estimator p̂M+1 is the
sum of two parts: one part resuming the variability due to each threshold and a second part resuming
the variability due to the thresholds number (see Proposition 3.1). For the unidimensional case, only the
second term remains. The optimal algorithm is then derived by cancelling the first term of the variance
leading to iso-probability levels and by optimising the other parameters as in the unidimensional case.

Furthermore, by introducing new operators, we obtain an alternative expression of the variance which is
more tractable when we wish to compare the variance of the estimators in an algorithm with M thresholds
with the variance in an algorithm in which one of the threshold has been deleted. More precisely, we
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study the need of an intermediate threshold and derive a procedure to detect whether we shall keep
it or not. In order to obtain a simple criteria, we assume the optimal shape of the thresholds of the
optimal algorithm. Finally, we investigate the sensitivity of the variance of p̂M+1 with respect to a shape
deformation of the threshold relatively to the optimal shape.

The remainder of this paper is divided into five sections. In Sections 2–4 we present, analyse theoretically
and optimise the splitting algorithm in the multidimensional case. Then, Sections 5 and 6 deal with the
sensitivity analysis of the variance as previously presented. In particular, in Section 6, we illustrate a way
to deform the shape of the thresholds to get uniform occupation densities with a 2D Ornstein-Uhlenbeck
process. Finally, we complete the paper by a conclusion and some perspectives. More details and all the
proofs are postponed in the appendices.

2 Multilevel Splitting Algorithm

2.1 Definition of the thresholds and related tools

In order to estimate the probability p that a particle starting from a point in some state space E reaches the
critical subset B ⊂ E, we use the so-called splitting algorithm based on the nested sequence B1, . . . , BM+1

defined in (1). Moreover, each frontier ∂Bk of Bk is partitioned into s disjoint subsets, denoted ∂B
(i)
k ,

such that

∂Bk =

s⋃
i=1

∂B
(i)
k , k = 1, . . . ,M.

We assume that each ∂Bk has the same number s of subsets; this assumption is not restrictive as one
can see in the sequel. In any case, one can obviously rewrite the problem under concern in this particular
setting.

The random dynamics of the particle are modelled by a stochastic process Y = (Yt; t > 0) and for
k = 1, . . . ,M + 1, we define τk as the first time that the particle hits ∂Bk. Hence p can be written as
p = P(τM+1 < ∞). For the sake of simplicity, we assume naturally that Y evolves continuously and all
the intermediate thresholds are hit if the last one is. In fact, the dynamics under concern is not directly
the particle one but rather the one of the embedded Markov chain observed at each time the particle
hits a frontier ∂Bk. This embedded Markov chain will be denoted (Xk)06k6M+1. Thus, Xk = i if the

particle at time τk lies in ∂B
(i)
k i.e. Yτk ∈ ∂B

(i)
k .

Measures γk and functions fk We define for any k = 1, . . . ,M , a measure γk on the frontier ∂Bk
by

γk(i) = P(Xk = i ; τk <∞).

This measure acts on the functions f defined on ∂Bk by γk(f) = E [f(Xk) ; τk <∞] in such a way that
γk(1) = P(τk <∞) is the probability that the particle hits the event Bk (1 stands for the unit function).

For any k = 1, . . . ,M , we denote Mk (resp. Fk) the set of measures (resp. functions) defined on ∂Bk.
In particular, the functions fk ∈ Fk defined by

fk(i) = P(τM+1 <∞ | Xk = i ; τk <∞), k = 1, . . . ,M

play a special role, since

γk(fk) =

s∑
i=1

γk(i)fk(i) = p, k = 1, . . . ,M. (2)

In fact, fk(i) quantifies the hardness to reach the target set B starting from ∂B
(i)
k while γk(i)fk(i)

quantifies the hardness to reach B passing by ∂B
(i)
k and starting from O. Furthermore, for k = 2, . . . ,M ,

we introduce the operators Pk, k = 2, · · · ,M defined on ∂Bk−1 × ∂Bk by Pk(i, j) = P(Xk = j ; τk <

3



∞|Xk−1 = i ; τk−1 < ∞). Nevertheless it is easier to consider Pk as an operator right acting on Fk as
an operation Fk → Fk−1 according to

Pk(f)(i) = E [f(Xk) ; τk <∞ | Xk−1 = i ; τk−1 <∞]

and left acting on Mk−1 as an operation Mk−1 →Mk according to (µPk)(f) = µ(Pkf).

Each operator Pk is not Markovian, since the probability to reach ∂Bk is not equal one; hence we define
gk−1 ∈ Fk−1 by

gk−1(i) := Pk(1)(i) = P(τk <∞ | Xk−1 = i ; τk−1 <∞), (3)

for k = 2, . . . ,M . Remark that there is no need to define gM since it would correspond to fM .

We easily get the following transport relations for k = 2, . . . ,M ,

γk = γk−1Pk, fk−1 = Pk(fk). (4)

The notation is summarized in Figure 1.

Figure 1: This figure summarizes the notation previously introduced.

Normalized measures µk Since γk is not a probability measure, we define its normalized version
µk on ∂Bk that acts on the functions f ∈ Fk in the following way

µk(f) :=
γk(f)

γk(1)
= E [f(Xk) | τk <∞] ,

(assuming that the thresholds have been chosen such that γk(1) 6= 0 for all k). We notice that

µk(gk) =
γk+1(1)

γk(1)
= P(τk+1 <∞ | τk <∞) (5)
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and
µk(fk) =

p

γk(1)
= P(τM+1 <∞ | τk <∞).

Equation (4) induces the following scheme for the dynamics of µk

µk =
γk−1(1)

γk(1)
µk−1Pk =

1

µk−1(gk−1)
µk−1Pk (6)

that leads to

γk(f) = µk(f)γ1(1)

k−1∏
p=1

µp(gp),

which applied successively to the functions fk and fk+1 yields to µk(fk) = µk+1(fk+1)µk(gk).

Convention We extend the previous definitions to k = 0 and k = M+1. Considering that the particles
are generated at the same point O, we define F0 as the set of constant functions and in particular f0 = p
and g0 = γ1(1). Analogously M0 will represent the set of the Dirac measures at O up to a constant.
Hence γ0(f) = f (and µ0 = γ0). Obviously, γ0(1) = P(τ0 <∞) = 1.

In the same way, BM+1 is reduced to a unique point, denoted e.g. by ω. Then FM+1 is reduced to the
constant functions, with fM+1 = 1 and MM+1 is the set of the Dirac measures at ω up to a constant,
with γM+1(f) = fp (such as γM+1(fM+1) = γM+1(1) = p) and µM+1(f) = f . We set also P1(f) = γ1(f)
and PM+1(f) = f × fM .

2.2 Multilevel Splitting Algorithm

To estimate the rare event probability we proceed according to the algorithm already introduced in
Glasserman et al. (1998) and Garvels (2000). Its principle is the following:

Initialization: We perform independently N particles from the same starting point O. A random num-
ber Z1 of particles reach the threshold B1, where Z1 has a binomial distribution with parameters

N and γ1(1). These Z1 particles are spread over the subsets ∂B
(i)
1 according to a multinomial

random variable (r.v.) Mult(Z1, µ1). Let Z1 be the corresponding random vector (Z11, . . . , Z1r).

Step n (2 6 n 6M): Each of the Zn−1 particles in ∂Bn−1 is duplicated Rn−1 times; so that a total
number Rn−1Zn−1 of particles is achieved. These new particles evolve according to the dynamics

of the original process and the number Znj of particles reaching ∂B
(j)
n is still a random number.

Consider now the random vector Zn = (Zn1, . . . , Znr). The Znj particles in B
(j)
n come from

different subsets ∂B
(i)
n−1; then we decompose Znj in the following sum

Znj =

s∑
i=1

Y inj , (7)

where Y inj is the number of particles from ∂B
(i)
n−1 and having reached ∂B

(j)
n whose total number

Y in =
∑s
j=1 Y

i
nj is a binomial r.v. with parameters Rn−1Z(n−1)i and gn−1(i).

We represent the numbers Y inj in a s×s tabular where each line Yi
n = (Y in1, . . . , Y

i
ns), conditionally

to the knowledge of the total number Y in, is distributed as a multinomial r.v. with parameters Y in
and Qn(i, ·) where

Qn(i, ·) :=
Pn(i, ·)
gn−1(i)

= P(Xn = · | Xn−1 = i ; τn <∞).

In a nutshell, the random vector Zn can be expressed as the sum Zn =
∑s
i=1 Y

i
n of the random

vectors Yi
n and the total number of particles at the end of step n is Zn =

∑
i,j Y

i
nj =

∑s
i=1 Y

i
n.
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· · · ·
· Y i

nj · Y i
n

· · · ·
· Znj · Zn

Final step: Each of the ZM particles in ∂BM is duplicated RM times to get a total number RMZM
of particles. These new particles evolve accordingly to the dynamics of the original process and

the ZM+1 particles having reached ∂BM+1 come from different subsets ∂B
(i)
M ; then we decompose

ZM+1 in the following sum

ZM+1 =

s∑
i=1

Y iM+1 (8)

where Y iM+1 represents the number of particles from ∂B
(i)
M and having reached ∂BM+1. Condi-

tionally to the random vector ZM , the r.v.s Y iM+1, i = 1, . . . , r are independent and distributed as
a binomial r.v. with parameters RMZMi and fM (i). The set BM+1 being reduced to a point, the
result of this final step is simply the total number ZM+1 of particles in BM+1.

3 Algorithm analysis

In this section, we present a natural unbiased estimator of p and give several expressions of its variance
including the one given in Glasserman et al. (1996). We also define the cost of the algorithm.

3.1 A natural unbiased estimator of p

An estimator of the probability to hit ∂Bn+1 conditionally that ∂Bn has been hit is naturally given by
the ratio between the number of particles in ∂Bn+1 and Rn times the number of particles in ∂Bn, from
which we deduce a natural estimator of the probability of interest p

p̂M+1 =
Z1

N
×
M−1∏
n=1

Zn+1

RnZn
× ZM+1

RMZM
=

ZM+1

NR1 . . . RM
. (9)

Introducing the deterministic quantities r0 = N and rn = Rnrn−1, n = 1, . . . ,M , leads to p̂M+1 =
ZM+1/rM . Then it is obvious to show that this estimator is unbiased. Indeed by conditioning, (8) yields

E[p̂M+1] =
1

rM−1

s∑
i=1

E[ZMi]fM (i).

To derive the mean of ZMi, notice that E[Z1j ] = Nγ1(j), j = 1, . . . , r. By a new conditioning, we get
that

E[Z2j ] = R1

s∑
i=1

E[Z1i]P2(i, j) = NR1γ2(j) = r1γ2(j),

the last equality coming from (4). An induction principle allows us to establish that for n = 2, . . . ,M ,

E[Znj ] = rn−1γn(j) (10)

that leads to E[p̂M+1] =
∑s
j=1 γM (j)fM (j) = γM (fM ) = p.
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3.2 The variance of the estimator

Proposition 3.1. The coefficient of variation is given by

Var(p̂M+1)

p2
=

M∑
k=1

1

γk(1)

(
1

rk−1
− 1

rk

)
Varµk

(fk)

E2
µk

(fk)
+

M∑
k=0

1

rkγk(1)

1− µk(gk)

µk(gk)
. (11)

Introducing the operators Γi+1 defined, for f , g ∈ Fi+1, by Γi+1(f, g) = Pi+1(fg) − Pi+1(f)Pi+1(g), we
have

Var(p̂M+1) =

M∑
i=0

1

ri
γi (Γi+1(fi+1)) . (12)

The variance is then split into two parts. The first sum outlines the variability due to the shape of the
thresholds ∂Bk (defined by the fk’s) whereas the second outlines the variability due to the thresholds
number M , replication numbers Rk and thresholds position (contained in the Pk’s and gk’s). Also we
refer to Appendix A for more details on the operators Γi+1.

Comparison with other algorithms Notice that for s = 1, the measures γk and the functions
fk are constant. Since µk(gk) = γk+1/γk, the expression of the variance becomes

Var(p̂M+1)

p2
=

M∑
k=0

1− µk(gk)

rkγk+1
=

M∑
k=0

1

rk

(
1

γk+1
− 1

γk

)
that corresponds to the expression established in Lagnoux-Renaudie (2008).

Furthermore, Formula (11) corresponds to equation (2.21) established in Garvels (2000) for an algorithm
with a single intermediate threshold. It also has been established in L’Ecuyer et al. (2009); Cérou et al.
(2011) in the general and continuous settings.

Finally, simple computation leads to the following expression

Var(p̂M+1)

p2
=

M∑
k=1

1

γk(1)

(
1

rk−1
− 1

rk

)
µk(f2

k )

µ2
k(fk)

+

(
1

prM
− 1

r0

)
that can be found in Glasserman et al. (1999).

3.3 The cost of the algorithm

The efficiency of the algorithm can be traduced in terms of the variance of the estimator that must be
the smallest possible under the condition that the cost (in terms of computer time for example) remains
finite. Our goal is then to derive the optimal parameters of the algorithm for a fixed cost.

The total number of particles generated during the algorithm is the r.v. N + R1Z1 + . . . + RMZM .
From (10), E[Zn] = rn−1γn(1), the mean of the total number of particles generated by the algorithm is

C
(0)
M+1 := r0 + r1γ1(1) + . . .+ rMγM (1)

and can be considered as a natural cost.

Now we present a more realistic cost that takes into account the probability Pk(i, j) to reach ∂B
(j)
k from

∂B
(i)
k . Actually, even if the algorithm presented here is based on the simulation of multinomial r.v.s,

the introduction of this new cost allows to consider the dynamics of a particle between two successive

thresholds through the functions gk. Thus we associate to each particle from ∂B
(i)
k a unitary cost ck(i)

that depends on the starting threshold and the hardness gk(i) to succeed in reaching the next threshold.
More precisely, we assume that

c0 = c(γ1(1)), ck(i) = c(gk(i)), k = 1, . . . ,M,

7



where c is a positive function, decreasing (the smaller the probability of success is the highest the cost
is) such that c(x) converges to a constant (in general small) when x tends to 1.

Proposition 3.2. The mean cost is given by

CM+1 = Nc0 +

M∑
n=1

rn

s∑
i=1

γn(i)cn(i) =

M∑
n=0

rnγn(cn). (13)

The approach presented here leads to a relatively simple formula for the total mean cost, similar to
the one used in Lagnoux-Renaudie (2008). The multidimensionality of the model is taken into account
through the function cn.

4 Algorithm optimisation

Before proceeding to the optimisation of the algorithm, we start recalling the general setting.

4.1 General setting

In many applications, the rare event probability p can be viewed as an overflow probability. More
precisely, let h be a real-valued measurable function defined on E and L > 0 be a given threshold. Then
p is rewritten as p = P(h(Yt) > L) where the process Y has been defined in the Introduction. As a
consequence, we can naturally use the function h to determine the intermediate thresholds and apply the
splitting methodology to the real-valued process Z defined by Zt := h(Yt), for all t > 0 (for simplicity
Z0 > 0). For the sake of simplicity we assume that Z evolves continuously and all the intermediate
thresholds are hit if the last one is.

However remark that the intermediate thresholds L1, . . . , LM+1 for Z define splitting surfaces ∂B1, . . . ,
∂BM+1 for Y by ∂Bk = {y ∈ E | h(y) = Lk}. Defining the levels ∂Bk in such a way is not well adapted
and is far to be optimal. Indeed, this methodology is geometrical and only based on a level set without
taking into account the probabilistic aspects. More precisely, it seems natural to incorporate information
of the hardness to reach the target set from any point of the ∂Bk. This information is precisely given
by the function fk introduced previously. So, assuming the possibility to define a function f , named
importance function, on the whole space E by

f(x) = P(τM+1 <∞ | starting from x),

we rather define ∂Bk as the set of the points x ∈ E such that f(x) = Lk for some Lk ∈ [0, 1]. In some
sense, we use iso-probability density levels as intermediate thresholds. Of course, the difficulty here is
to determine the function f , the thresholds number M and the values of Lk. Nevertheless, there exists
methods that allow to get estimators of f using a reverse time analysis as proposed in Garvels (2000).

To illustrate the importance of a good choice of the intermediate thresholds, let us consider the following
example represented in Figure 2.

Example 4.1. With M = 1 and a threshold ∂B1 partitioned in two subsets such that{
γ1(1) = 10−2, γ1(2) = 0.5,
f1(1) = 10−1, f1(2) = 10−3,

we obtain p = 1.5 · 10−3 and γ1(1) = 0.51.

Let us simulate particles starting from O. We expect that 51% of them reach the threshold ∂B1, with

50% in ∂B
(2)
1 and only 1% in ∂B

(1)
1 . Nevertheless among those in ∂B1, the particles in the subset ∂B

(1)
1

have 100 times more likely to reach the target set than those in ∂B
(2)
1 . So, using this design of ∂B1 leads

to simulate almost 50% of particles pointlessly. We see that using a function f1 = p/α, with α ∈]0, 1[,
implies that γ(1) = α and all the particles in ∂B1 then have the same probability to reach the target set.
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Figure 2: The crucial choice of the importance function on an example.

The construction of the importance function when the target probability has a large deviation character-
ization is handled in Dean and Dupuis (2009). This context is also considered in Sadowsky (1996) and
Remark 4.2. Nevertheless, it seems difficult to translate the results obtained into the framework of this
paper.

4.2 Optimisation

It is important to keep in mind Equation (11) and the fact that the variance of the p̂M+1 can be split
in two parts: a first one resuming the variability due to the shape of the thresholds and a second one
resuming the variability due to the thresholds number, replication numbers and thresholds position.

Furthermore, the splitting algorithm’s parameters are: the initial number N of particles, the replication
numbers R1, . . . , RM , the number M of intermediate thresholds and their characteristics (through the
Pk’s and the gk’s).

Proposition 4.1. The parameters of the algorithm optimised by minimisation of the variance of the
estimator for a fixed cost are the following:

(i) the functions fk so that they do not depend on the starting point in ∂Bk;

(ii) the optimal values of the parameters N , M , {Rk}Mk=1 and {Pk}M+1
k=1 obtained in Lagnoux-Renaudie

(2008) for the unidimensional case (i.e. s = 1). More precisely, N is related to CM+1 and all the
Rk’s are equal to a same value, say R which depends on N and CM+1. Furthermore, in order to
satisfy the tradeoff between a premature death of the algorithm (RkPk+1 � 1) and a prohibitive cost
(RkPk+1 � 1), we need the condition RkPk+1 = 1. Then M is fixed by the relation Rp1/(M+1) = 1.

As expected, the optimal choice consists in taking the thresholds ∂Bk in such a way that fk is constant.
This is consistent with the observations of Section 4.1. Nevertheless, the difficulty lies in the evaluation
of the importance function f and so in the design of the thresholds. We will see in Section 6 the impact
of a non optimal choice on the variance and on the cost of the algorithm.

If for some k, the function fk is constant, given that γk(fk) = p, we get the following identity fk =
p/γk(1). Moreover, it comes from the definition of µk and Equations (18) and (5) that Γk(fk) = gk−1(1−
gk−1)p2/γ2

k(1) and

γk−1 (Γk(fk)) =
p2

γk(1)

µk−1 (gk−1(1− gk−1))

µk−1(gk−1)
.

Besides by (4), the function fk−1 can be expressed as fk−1 = gk−1p/γk(1). Moreover, if fk−2 is also
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constant, then Pk−1(gk−1) = γk(1)/γk−2(1), and after calculus

γk−2 (Γk−1(fk−1)) = p2

[
1

γk−1(1)

µk−1(G2
k−1)

µ2
k−1(gk−1)

− 1

γk−2(1)

]
.

Finally, if all the functions fk are constant, then the functions gk are also constant: gk = γk+1(1)/γk(1)
and as for the functions Γk+1(fk+1):

Γk+1(fk+1) =
p2

γk(1)

[
1

γk+1(1)
− 1

γk(1)

]
.

Remark 4.2. These results justify the choices done in the algorithm proposed in Miretskiy et al. (2009).
The authors assume that

lim
B→∞

1

B
log psB = −γ(s) ∀s /∈ A;

where psB represents the probability to reach the target event A starting from s, B the rarity parameter
and γ is a decreasing function. The algorithm consists in taking:

• the replication numbers (except the last one) all equal to R;

• the number of thresholds nB equals to bBγ(s)/ log(R)c;

• the frontier lk of the intermediate threshold Lk equals to{
x ∈ D / γ(s)− γ(x) =

k

B
logR

}
k = 0 . . . nB ;

• the last replication number equals to R′ =
⌊
eBγ(s)−nB logR

⌋
.

In other words, the authors equal all the replication numbers (excepted eventually the last one), take
the number of thresholds equal to the optimal one in Lagnoux-Renaudie (2008). Finally they fix all the
thresholds in such a way that the decreasing rate γ(s) is uniform over the thresholds and the probability
to reach the target set A starting from the k-th threshold depends on k but not on the starting point of
the frontier lk.

5 Sensitivity analysis: deletion of a threshold

Now, we study the sensitivity of Var(p̂M+1) with respect to the number of thresholds. We assume
that the thresholds have the optimal shape: the functions fk are constant. It amounts to work in the
unidimensional setting. Optimally, the thresholds are such that all the transition probabilities are equal,
but p being unknown this value cannot be computed. Moreover, in practice, the freedom of the choice
of the thresholds can be limited by physical constraints. Then we study the need of an intermediate
threshold and derive a procedure to detect whether we shall keep it or not.

5.1 Iterative expressions of variance and cost

The goal of this section is to compare the variance and the cost of the estimator obtained with M
thresholds with the ones obtained in the same setting but deleting the k-th threshold (thus in a simulation
with (M − 1) thresholds). In that we view, we reallocate the replication numbers as following:

• for any j = 1, . . . , k − 2, Rj stays unchanged;

• Rk−1 is replaced by λk−1Rk−1Rk;

• and for any j = k, . . . ,M − 1, Rj is modified in λjRj+1.

10



For instance, we can decide to keep all the Rj ’s unchanged so the replication numbers are R1, . . . , Rk−1,
Rk+1 . . . , RM , or to report the replication number of the k-th threshold on the k− 1-th’s, the replication
numbers being R1, . . . , Rk−1Rk, Rk+1, . . . , RM .

Proposition 5.1. The variance of the estimator p̂M+1 with M thresholds is the sum of the variance of

the estimator p̂
(−k)
M obtained by running the algorithm with the k-th threshold deleted (thus with (M − 1)

intermediate thresholds) and the contribution of the k-th threshold:

Var (p̂M+1) = Var
(
p̂

(−k)
M

)
+

1

rk−1

(
1− 1

Λk−1Rk

)
γk−1 (Γk(fk))

+

M∑
j=k

1

rj

(
1− 1

Λj−1

)
γj (Γj+1(fj+1)) ,

where Λp =
∏p
j=k−1 λj.

Similarly, the cost CM+1 given in (13) is the sum of the cost C
(−k)
M , computed with M − 1 intermediate

thresholds, and the contribution of the k-th threshold:

CM+1 = C
(−k)
M + rk−1 [γk−1(ck−1)−RkΛk−1γk−1(c̃k−1)] + rkγk(ck) +

M∑
j=k+1

rjγj(cj) (1− Λj−1) ,

where c̃k−1 stands for the cost of a particle going from the (k−1)-th threshold to the k-th in an algorithm
with (M − 1) levels.

The free parameters of the new algorithm with M − 1 intermediate thresholds are {Λj−1}Mj=k that can
be chosen by keeping the cost constant: it is sufficient to take

Λk−1 =
γk−1(ck−1) +Rkγk(ck)

Rkγk−1(c̃k−1)
and Λj−1 = 1, j = k + 1, . . . ,M. (14)

With these values, the variance Var (p̂M+1) becomes

Var
(
p̂

(−k)
M

)
+

1

rk−1

(
1− 1

Λk−1Rk

)
γk−1 (Γk(fk)) +

1

rk

(
1− 1

Λk−1

)
γk (Γk+1(fk+1)) .

5.2 Is the k-th threshold useful?

Now, the goal is to study the need for an intermediate threshold and derive a procedure to detect whether

we shall keep it or not. More precisely, the k-th threshold will be deleted if the variance of p̂
(−k)
M is lower

than the one of p̂M+1, i.e. if the contribution of the k-th threshold is positive. In order to get a tractable
procedure, we will assume the following:

(A1) All the thresholds have the optimal shape. Then we are lead to a unidimensional algorithm (s = 1),
so the measures γj and the functions fj , gj are constant;

(A2) The cost c̃k−1 between ∂Bk−1 and ∂Bk+1 in the algorithm without the k-th threshold is given by
c̃k−1 = ck−1 + ck. Notice that each ck = c(gk) is constant by (A1).

With these assumptions, we get

Λk−1 =
ak
Rk

+ gk−1(1− ak) and Λj = 1, j = k, . . . ,M − 1,

where ak := ck−1/(ck−1 + ck). Now, plugging these values into the variance, we get

Var(p̂M+1) = Var(p̂
(−k)
M ) +

p2Q(gk−1)

rkγk+1gk−1 [ak +Rkgk−1(1− ak)]
,
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where

Q(x) = −x2Rk(Rkβ − 1)(1− ak) + x [Rk(Rkβ − 1)(1− ak)− ak(Rk − 1)] + (Rk − 1)βak

and β is defined by

β := gk−1gk =
γk+1

γk−1
∈ [0, gk−1]. (15)

Notice that β = P(τk+1 < ∞ | τk−1 < ∞) quantifies the hardness for a particle to go from ∂Bk−1 to
∂Bk+1 and so β does not depend on the deleted k-th threshold.

The sign of Q in the corrective term is the opposite of the one of the following polynomial

R(x) = x2 − (1− α)x− αβ, with α =
ak(Rk − 1)

Rk(1− ak)(Rkβ − 1)
,

at x = gk−1 ∈]0, 1[. Its discriminant is ∆ = (1− α)2 + 4αβ.

In practice, we start by realising a pre-run in order to estimate the unknown parameters γk−1 and γk
and thus gk−1 and β. Then the procedure is the following.

1. If Rkβ = 1: Q(gk−1) = ak(Rk − 1) (β − gk−1) 6 0 and it is recommended to preserve the k-th
threshold.

2. If Rkβ > 1: ∆ is strictly positive and R has two roots of opposite signs, x−k < 0 < x+
k < 1:

(a) when 0 < gk−1 < x+
k , the polynomial Q is positive and it is recommended to delete the k-th

threshold;

(b) when x+
k < gk−1 < 1, the polynomial Q is negative and it is recommended to preserve the

k-th threshold.

3. If Rkβ < 1 and ∆ < 0: the polynomials R and Q are positive and it is recommended to delete the
k-th threshold.

4. If Rkβ < 1 and ∆ > 0: the polynomial R has two roots x−k < x+
k :

(a) when 0 < gk−1 < x−k , the polynomials R and Q are positive and it is recommended to delete
the k-th threshold;

(b) if x−k < 1, when x−k < gk−1 < 1, the polynomials R and Q are negative and it is recommended
to preserve the k-th threshold.

Now we focus on the simplified cost because analytical values may be obtained.

Proposition 5.2. Considering the simplified cost, there is no interest to introduce a new threshold when
β > 1/9. When β < 1/9, the optimal positioning minimising the variance for a fixed cost is given by
gk−1 = (1− 3β)/2. In that case, the optimal replication number is

R∗k =
2(1− 5β)

1− 9β2

(
1 +

√
2(1− β)

1− 5β

)

that decreases from 2(1 +
√

2) for β = 0 to 3 for β = 1/9.

6 Sensitivity analysis: perturbation of a threshold

In this section, we assume all the thresholds ∂Bi optimal (i.e. fi constant) except ∂Bk. Thus

fk =
p

γk+1(1)
gk, Pk(gk) = µk(gk)µk−1(gk−1),
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and the variance is given by

Var(p̂M+1)

p2
=

1

γk(1)

(
1

rk−1
− 1

rk

)
Varµk

(fk)

E2
µk

(fk)
+

M∑
i=0

1

riγi(1)

1− µi(gi)
µi(gi)

.

With a pre-run of the algorithm, we estimate the values of gk(i) for i = 1, . . . , r and thus µk(gk).

Now we want to twist ∂Bk in order to get closer to the optimal shape and to obtain a new function fk
constant. Consequently, with this new threshold, all the functions fk become constant and thus also the
new function gk, as explained in Section 4.2. Introducing the new threshold ∂B̃k implies that γk, Pk,
Pk+1, gk and gk−1 are changed accordingly and we will use a˜symbol to denote the new terms.

Furthermore, in order to guaranty a slight perturbation of threshold k, we assume naturally that

Bk+1 ⊂ B̃k ⊂ Bk−1,

which implies that γk+1(1) 6 γ̃k(1) 6 γk−1(1). We also introduce two operators Ek and Ek+1 defined by

P̃k = PkEk, P̃k+1 = Ek+1Pk+1,

and such that P̃kP̃k+1 = PkPk+1. So defined, Ek (respectively Ek+1) is an operator acting on F̃k (resp.

Fk) valued in Fk (resp. F̃k). We have

g̃k−1 = P̃k(1) = Pk(Ek1) and g̃k = P̃k+1(1) = Ek+1(gk).

Let us remark that g̃k−1 and g̃k are constant and linked by the identity β = g̃k−1g̃k. If we choose
Ek+1(i, j) = δij/ai with ai = Kgk(i) for some constant K, then Ek+1(gk) = 1/K so that g̃k = 1/K.
Moreover, since g̃k = γk+1(1)/γ̃k(1), we get

K =
γ̃k(1)

γk+1(1)
. (16)

Furthermore, taking Ek(i, j) = Kgk(j)δij leads to EkEk+1 = Id (and we recover P̃kP̃k+1 = PkPk+1).
Finally,

P̃k+1(i, j) =
1

K

Pk+1(i, j)

gk(i)
and P̃k(i, j) = Kgk(j)Pk(i, j).

As a consequence, if Kgk(i) > 1, P̃k+1(i, j) < Pk+1(i, j) for any j and P̃k(l, i) < Pk(l, i) for any l. It
remains to determine the optimal value of K that will be done by keeping the total cost of the algorithm
constant which translates in

c̃k−1γk−1(1) +Rk c̃kKγk(gk) = γk−1(ck−1) +Rkγk(ck),

leading to

K =
1

c̃k

{
µk(ck)

µk(gk)
+

1

Rkβ
[µk−1(ck−1)− c̃k−1]

}
.

Notice that fixing the value of K amounts to defining the value of γ̃k(1) by equation (16). Remark that
if the cost function c is constant and equal to 1, then the optimal value of K reduces to K = 1/µk(gk).

Numerical application Considering a two-dimensional Ornstein-Uhlenbeck process, we illustrate
a way to deform the shape of a threshold in order to obtain an iso-probability levels. To this end, we
simulate the stochastic process defined by{

dXt = −ΛXt dt+ σ dWt, t > 0

X0 = x ∈ R2

13



where Λ = diag(λ1, λ2) with λ1 > λ2 > 0, σ > 0 and W is a two dimensional standard Brownian motion.

We start the algorithm generating independently N = 300 particles from x = (0.05, 0) and consider the
0.5 radius circle as first intermediate threshold ∂B1. In the sequel, we take M = 2, B2 = D(0, 1) and
B = BM+1 = B3 = D(0, 1.5). The parameters of the stochastic process are λ1 = 1, λ2 = 0.2, σ = 0.3
and its simulation is done via an Euler Scheme with a step of 0.01 (we use the software Mathematica
Wolfram Research (2015)). Firstly, we estimate the density of the occupancy measure of the process on
∂B1

1, with respect to its related Lebesgue measure. This estimation is based on the von Mises Kernel
and as expected, this density (represented in Figure 3 left) is far from uniform.

Figure 3: The density of the occupancy measure at the first intermediate threshold and its estimation based on the von Mises kernel
(black line). On the left, the threshold is the centered 0.5 radius circle whereas on the right picture, the threshold is the conformal image of
the circle.

We previously noted that the efficiency of the splitting algorithm will be enhanced when the occupancy
measures of the process on the intermediate thresholds are uniform. In our case, since λ1 is greater
than λ2, we guess that the suited thresholds are ellipses. This intuition is confirmed by the left picture
in Figure 3 and consistent with Theorem (1.3) in Antonini (1991) that establishes that, for any given

x ∈ R2, (Zt)t>0 :=
( √

2
σ
√

log t
Xt

)
t>0

admits the ellipse E = {y = (y1, y2) ∈ R2; λ1y
2
1 + λ2y

2
2 6 2} while t

goes to infinity.

The goal is then to deform the first threshold. As the process lives in the plane, we can use a conformal
map, ϕ1 : B1 → Ω1, in order to obtain a uniform occupancy distribution. Notice that the conformal
maps are very convenient as planar transformations since they allow only local rotations and scales
avoiding disturbing distortions; moreover, for common domains, ∂Ω1 = ϕ1(∂B1). We follow the procedure
described in Weber and Gotsman (2010) to construct the conformal map (see also Appendix C for more
details). Once the conformal map ϕ1 is computed (see the right picture in Figure 3), we restart the
algorithm using the threshold ∂Ω1 instead of ∂B1. Then we start the next step which firstly estimates
the density of the occupation measure on ∂B2 after duplication of the particles in ∂Ω1 and secondly
deform the shape of ∂B2 as previously. Once ∂Ω2 is obtained, we restart the algorithm with this new
threshold. Finally, the final step estimates the conditional probability to reach ∂B3 for the particles in
∂Ω2. More precisely:

1. Each of the particles in ∂Ω1 is duplicated R1 = 2 times and evolve independently from ∂Ω1 until
D(0, 0.01) or ∂B2 is reached. We determine the density of the occupancy measure of the process
on ∂B2 by using the von Mises kernel. Then we find a conformal map ϕ2 : B2 → Ω2 such that
ϕ2(∂B2) = ∂Ω2 and the image of the occupancy measure on ∂B2 is the uniform measure on ∂Ω2

(See Figure 4 for more details).

2. We perform independently a second set of particles from their same starting point at ∂Ω1 with the
same size and stop them as soon as D(0, 0.01) or ∂Ω2 is reached.

1Since we work with continuous processes, the particles evolve until they reach ∂B1 or the small disk D(0, 0.01)
instead of the origin.
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3. Each of the particles in ∂Ω2 is duplicated R2 = 2 times and evolve independently from ∂Ω2 until
D(0, 0.01) or ∂B3 is reached.

Figure 4: Using a replication factor R1 = 2 for the particles having reached the first deformed threshold, we make evolving these particles
until they reach the next threshold or the inner 0.01 radius circle. The empirical densities of the occupancy measure of the unit circle (left) and
of the deformed threshold (right) and their respective estimations based on the von Mises kernel (black line) are represented. As mentioned
before, we generate a new set of particles from the first deformed threshold instead of keeping the particles used to determine the conformal
map. Thus in any rigor, we do not recover precisely the image measure; which explains the relative gap from the uniform distribution.

We emphasize that our intent is not to propose a new algorithm based on conformal mappings since
we have not sufficient expertise to produce an efficient code. Working in 2D is already difficult, thus
considering greater dimension becomes even more complex. Nonetheless, the harmonic functions or the
quasi-conformal maps Ahlfors (2006); Heinonen (2006) are the natural generalization of the conformal
transformations in higher dimensions. In our particular context, we start by estimating the density of
occupation probability on a sphere what we can identify as a volume form. We can therefore attempt to
determine a Riemannian metric g such that associated Riemannian volume form is equal to the previous
one. Then we can deform the metric g into the uniform metric through a Ricci flow for instance; we get
finally a new Riemannian variety homeomorphic to the sphere. For more details, see e.g. Patane et al.
(2014).

7 Conclusion and perspectives

In this paper, we continue the multidimensional approach studied in (Glasserman et al. (1998); Garvels
(2000)) in order to obtain a new expression of the variance of the estimator analogous to that of the
continuous case L’Ecuyer et al. (2009). Then we derive the optimal parameters of the splitting algorithm.
Furthermore, by introducing new operators, we obtain alternative expressions of the variance which are
more tractable when we compare the variance of the estimators in an algorithm with M thresholds and
in an algorithm in which one of the threshold has been deleted. More precisely, we derive a procedure
to detect whether we shall keep it or not. Finally, we investigate the sensitivity of the variance of the
estimator with respect to a deviation of the threshold shape from the optimal one. We illustrate our
theoretical results considering the planar Ornstein-Uhlenbeck process for which we propose a procedure
based on conformal maps to twist the thresholds in order to get closer to the optimal shapes.

A next natural research direction is probably the creation of a new algorithm that can decide the thresh-
olds on the fly, for instance by using efficient algorithm for shape deformation. Such an algorithm has
been proposed in Cérou and Guyader (2005) but only applies to 1D frameworks. When working in 2D or
more, the problem is even more complex and challenging; see for instance Dean and Dupuis (2009) for an
approach based on the subsolutions of Hamilton-Jacobi-Bellman equations. Another way to investigate
would consist in comparing, on a test example, the different existing algorithms dedicated to 2D or more
(subset simulation Au and Beck (2001), importance sampling based on design points Au et al. (1999);
Kiureghian and Dakessian (1998) or adaptive pre-samples Au and Beck (1999)).
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Appendix A The operator Γk and its iterates

The variance of the estimator of the target probability involves operators Γk and their iterates defined in
the following way. For k = 1, . . . ,M + 1, we introduce Γk acting on Fk × Fk and valued in Fk−1 by, for
f , g ∈ Fk,

Γk(f, g) = Pk(fg)− Pk(f)Pk(g). (17)

To lighten notation, we denote Γk(f) for Γk(f, f). With the previous notation, one has

Γ1(f, g) = γ1(fg)− γ1(f)γ1(g) and ΓM+1(f, g) = fg × fM+1(1− fM+1) = fg.

Firstly, we straightforwardly check that Γk is bilinear and symmetric. Secondly, writing Γk(f)(i) as a
conditional variance, we get

Γk(f)(i) = Pk(f2)(i)− Pk(f)(i)2 = Ec
([
f(Xk)1{τk<∞} − Ec

(
f(Xk)1{τk<∞}

)]2)
where Ec is the expectation conditionally to the set {Xk−1 = i; τk−1 <∞}, we get Γk(f) > 0. Moreover,
by (3), Γk(f,1) = (1− gk−1)Pk(f), Γk(1) = gk−1(1− gk−1) and by (4),

Γk(fk) = Pk(f2
k )− f2

k−1. (18)

Now let us iterate the construction of Γk. In that view, we introduce the multiplicative operator Γ
(0)
k

defined by

Γ
(0)
k (f, g) = fg, f, g ∈ Fk,

such that Γk(f, g) = Pk(Γ
(0)
k (f, g))− Γ

(0)
k−1(Pk(f), Pk(g)). This suggests to define for any k, the iterated

operators Γ
(n)
k in the following way:

Γ
(n+1)
k (f, g) = Pk−n

(
Γ

(n)
k (f, g)

)
− Γ

(n)
k−1(Pk(f), Pk(g)), k > 1, 0 6 n 6 k − 1 (19)

with the convention P1(f) = γ1(f) precised above. The operator Γ
(n)
k valued in Fk−n acts on Fk ×Fk.

We use the same simplified notation Γ
(n)
k (f) to refer to Γ

(n)
k (f, f). We introduce Pp,n defined by

Pn,n = Id, n = 0, . . . ,M, (20)

Pp,n = Pp+1 . . . Pn, 0 6 p 6 n− 1, n = 1, . . . ,M.

By induction on n, we easily get

Γ
(n)
k (f) =

n∑
i=0

(
n

i

)
(−1)iPk−n,k−i

[
(Pk−i,k(f))

2
]
. (21)

Since Pk−i,k(fk) = fk−i and f0 = p, it comes in the particular case of f = fk,

Γ
(n)
k (fk) =

n∑
i=0

(
n

i

)
(−1)iPk−n,k−i

(
f2
k−i
)
.

Since for f ∈ Fk, Γ
(n)
k (f) ∈ Fk−n, we can compute γk−n(Γ

(n)
k (f)). From (21) and the fact that

γknPkn,k−i = γk−i, we get

γk−n(Γ
(n)
k (fk)) =

n∑
i=0

(
n

i

)
(−1)iγk−i(f

2
k−i),
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with γ0(f) = f . Γ
(k)
k (fk) being a constant function in F0 equals γ0(Γ

(k)
k (fk)) and then the previous

identity leads to

Γ
(k)
k (fk) =

k∑
i=0

(
k

i

)
(−1)iγk−i(f

2
k−i).

The classical inversion formula which states the equivalence between the two following identities

uk =

k∑
j=0

(−1)j
(
k

j

)
vj and vk =

k∑
j=0

(−1)j
(
k

j

)
uj

yields that

γk(f2
k ) =

k∑
j=0

(
k

j

)
Γ

(j)
j (fj)

which means that γk(f2
k ) can be written as the sum of terms involving the operators Γk and their iterates.

We get in particular the following identity

γk (Γk+1(fk+1)) = γk+1(f2
k+1)− γk(f2

k ) =

k∑
j=0

(
k

j

)
Γ

(j+1)
j+1 (fj+1). (22)

Actually this identity comes from a more general relation: first we make a change of parametrization
in (19) to get the following relation (valid for any function f ∈ Fk+n),

Pk+1

(
Γ

(n−1)
k+n (f)

)
= Γ

(n)
k+n(f) + Γ

(n−1)
k+n−1(Pk+n(f)).

By a descendant induction on p, one gets for any f ∈ Fk+1 and 0 6 p 6 k:

Pp,k (Γk+1(f)) =

k∑
j=p

(
k − p
j − p

)
Γ

(j+1−p)
j+1 (Pj+1,k+1(f)) .

If f = fk+1, since Pj+1,k+1(fk+1) = fj+1, we get

Pp,k (Γk+1(fk+1)) =

k∑
j=p

(
k − p
j − p

)
Γ

(j+1−p)
j+1 (fj+1). (23)

It suffices to set p = 0 to recover equation (22) since P0,k(g) = γ1P1,k(g) = γk(g) for any function g ∈ Fk.
The use of (18) allows us to rewrite (23) in the following way

Pp,k+1(f2
k+1)− Pp,k(f2

k ) =

k∑
j=p

(
k − p
j − p

)
Γ

(j+1−p)
j+1 (fj+1)

and by a summation on k from 0 to p, for all 0 6 p 6 k, we get

Pp,k+1(f2
k+1)− f2

p =

k∑
m=p

m∑
j=p

(
m− p
j − p

)
Γ

(j+1−p)
j+1 (fj+1) =

k∑
j=p

(
k − p+ 1

k − j

)
Γ

(j+1−p)
j+1 (fj+1).

When p = 0, one gets

γk+1(f2
k+1)− f2

0 =

k∑
j=0

(
k + 1

k − j

)
Γ

(j+1)
j+1 (fj+1),

which would have been also derived directly by a telescopic sum of (22). The action of the measure γp
(p 6 k) on (23) leads to

γk (Γk+1(fk+1)) =

k+1∑
j=p+1

(
k − p

j − p− 1

)
γp

(
Γ

(j−p)
j (fj)

)
.
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This formula could be exploited to split the expression (12) of the variance Var(p̂M+1) in two parts:

l∑
i=0

1

ri
γi (Γi+1(fi+1)) + γl(Dl+1,M )

where Dl+1,M is a quantity which depends only on the thresholds greater than l.

Appendix B Proofs

Proof of Proposition 3.1 By the previous notation, Equations (9) and (8), the variance of the estimator
can be written as

Var(p̂M+1) =
1

r2
M

Var(ZM+1) =
1

r2
M

∑
i,j

Cov
(
Y iM+1, Y

j
M+1

)
.

To compute the covariances in the right hand side of the previous equation, we use the classical formula

Cov(Y,Z) = Cov(E[Y |F ],E[Z|F ]) + E[Cov(Y,Z|F)] (24)

where Y and Z are two r.v.s and F a σ-algebra and Cov(Y, Z|F) := E[Y Z|F ]− E[Y |F ]E[Z|F ].

In our case, conditioning with respect to the σ-algebra generated by ZM leads to, for any (i, j),

Cov(Y iM+1, Y
j
M+1) = R2

MfM (i)fM (j)Cov(ZMi, ZMj) +RMfM (i)(1− fM (i))E[ZMi]δij .

The last term in the right hand side cancels for i 6= j since conditionally to ZM the r variables Y iM+1, i =
1, . . . , r are mutually independent. Finally, introducing the covariance matrix Σn(i, j) = Cov(Zni, Znj)
and using (10), we derive the following expression

Var(ZM+1) = R2
M‖fM‖2ΣM

+ rMγM (fM (1− fM )),

where ‖ · ‖ΣM
is the norm associated to the scalar product 〈, 〉ΣM

defined by

〈f, g〉ΣM
=
∑
ij

f(i)g(j)ΣM (i, j);

where f and g are two functions defined on {1, . . . , s}.
To compute the scalar product 〈f, g〉ΣM

, we derive by induction the matrix ΣM and more generally the
matrices Σn. The initial term Σ1 is given by (24) and can be rewritten as

Σ1(i, j) =

{
−Nγ1(i)γ1(j), i 6= j

Nγ1(i)(1− γ1(i)), i = j
;

and one gets 〈f, g〉Σ1
= N (γ1(fg)− γ1(f)γ1(g)). By Equation (7), we get Σn(l, k) =

∑
i,j Cov(Y inl, Y

j
nk)

and conditioning by Zn−1, we have for i = j to consider the two terms of the right hand side of (24);
while for i 6= j, the last term cancels by conditional independence. The moment generating function of
the random vector Yi

n, conditionally to Z(n−1)i is given by

ϕ(t1, . . . , tr) =

(1− gn−1(i)) +

r∑
j=1

Pn(i, j)etj

Rn−1Z(n−1)i

.

By derivation of ϕ (or using the multinomial distribution), we get directly that on one hand

E[Y inl|Zn−1] = Rn−1Pn(i, l)Z(n−1)i

18



and on the other hand

Cov(Y inl, Y
i
nk|Zn−1) =

{
Rn−1Pn(i, l)(1− Pn(i, l))Z(n−1)i k = l

−Rn−1Pn(i, l)Pn(i, k)Z(n−1)i k 6= l.

By Equation (10) and E[Z(n−1)i] = rn−2γn−1(i), we have

Cov(Y inl, Y
i
nk) =

{
R2
n−1Pn(i, l)2Σn−1(i, i) + rn−1γn−1(i)Pn(i, l)(1− Pn(i, l)) k = l

R2
n−1Pn(i, l)Pn(i, k)Σn−1(i, i)− rn−1γn−1(i)Pn(i, l)Pn(i, k) k 6= l

and for i 6= j, Cov(Y inl, Y
j
nk) = R2

n−1Pn(i, l)Pn(i, k)Σn−1(i, j), that leads to the expression of Σn(l, k)
after a summation on i and j. Now

〈f, g〉Σn =
∑

(NR1...Rn−1)γn(j).k,l

f(k)g(l)Σn(l, k)

= R2
n−1

∑
i,j,k,l

f(k)Pn(i, k)g(l)Pn(j, k)Σn−1(i, j) +A

= R2
n−1〈Pn(f), Pn(g)〉Σn−1 +A

where

A = rn−1

∑
i,l

γn−1(i)f(l)g(l)Pn(i, l)− rn−1

∑
i,l,k

γn−1(i)f(k)g(l)Pn(i, l)Pn(i, k)

= rn−1γn−1[Pn(fg)− Pn(f)Pn(g)] = rn−1γn−1(Γn(f, g)).

We are lead to the following induction relation

〈f, g〉Σn
= R2

n−1〈Pn(f), Pn(g)〉Σn−1
+ rn−1γn−1(Γn(f, g))

that, applied to the function fn, yields ‖fn‖2Σn
= R2

n−1‖fn−1‖2Σn−1
+ rn−1γn−1(Γn(fn)), from which we

deduce

Var(ZM+1)

r2
M

=
1

N

[
γ1(f2

1 )− γ2
1(f1)

]
+

M−2∑
i=0

1

rM−(i+1)
γM−(i+1) (ΓM−i(fM−i)) +

1

rM
γM [fM (1− fM )]

=
1

r0

[
γ1(f2

1 )− γ2
1(f1)

]
+

M−1∑
i=1

1

ri
γi (Γi+1(fi+1)) +

1

rM
γM [fM (1− fM )].

With the convention and Equation (2), we get

Var(p̂M+1)

p2
=

M∑
i=0

1

riγi(1)

µi (Γi+1(fi+1))

µ2
i (fi)

. (25)

Proceeding with the classical notation, valid for any probability µ,

Eµ(f) := µ(f), Varµ(f) := µ(f2)− µ2(f),

and using relation (5), γM+1(1) = p and γ0(1) = 1, one gets the desired result.

Proof of Proposition 3.2 The cost of the first step of the algorithm (particles issued from 0) is
Nc0 = r0γ0(c0) and the one of the n-th step (particles issued from ∂Bn−1) for n = 2, . . . ,M + 1 is

s∑
i=1

Rn−1Z(n−1)icn−1(i).
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Finally, Formula (10) leads to a mean total cost given by (13) since by convention γ0(c0) = c0.

Proof of Proposition 4.1 The variance of the estimator is given by

Var(p̂M+1)

p2
=

M∑
k=1

1

γk(1)

(
1

rk−1
− 1

rk

)
Varµk

(fk)

E2
µk

(fk)
+

M∑
k=0

1− µk(gk)

rkγk+1(1)
.

The minimisation consists in a first step to cancel the terms (independent of the others)

Varµk
(fk)

E2
µk

(fk)

which leads to take the functions fk constant on Bk i.e. to require that the success probability from

∂B
(i)
k does not depend on i. Then we are lead to the unidimensional setting and we fix s = 1. γk and gk

are now real numbers between 0 and 1:

γk ≡ γk(1) = P(τk <∞) and gk ≡ P(τk+1 <∞|τk <∞). (26)

In a second step, we minimise the other term of the variance for a fixed cost. The variance and the cost
can be rewritten in the following way

Var(p̂M+1)

p2
=

M∑
k=0

1− µk(gk)

rkγk+1
and C =

M∑
n=0

rnγncn = Nc0 +

M∑
n=1

rnγncn.

From (26), we are lead to the optimisation problem with s = 1 of Lagnoux-Renaudie (2008).

Proof Proposition 5.1 To compute the variance of the estimator p̂
(−k)
M in the new setting, i.e. without

the k-th threshold, we use formula (25). In particular, the (k− 1)-th first terms are unchanged, while as
we need to transport the function fk+1 from ∂Bk+1 on ∂Bk−1, the k-th term becomes

1

λk−1rk
γk−1(Γ̃k(fk+1)) =

1

λk−1rk
γk(Γk+1(fk+1)) + γk−1(Γk(fk))

where Γ̃k(fk+1) = Pk−1,k+1(f2
k+1) − [Pk−1,k+1(fk+1)]2. Finally, the last terms are not modified except

the replication numbers.

Defining Λp =
∏p
j=k−1 λj , the variance Var

(
p̂

(−k)
M

)
of the new estimator can be expressed as

k−2∑
j=0

1

rj
γj (Γj+1(fj+1)) +

1

Λk−1rk
γk−1 (Γk(fk)) +

M∑
j=k

1

Λj−1rj
γj (Γj+1(fj+1))

which leads to the result.

In our context, all the ck’s are equal to 1, so the value of Λk−1 given by (14) becomes

Λk−1 =
1

Rk
+

γk(1)

γk−1(1)
=

1

Rk
+ gk−1.

The variance is now given by

Var (p̂M+1) = Var
(
p̂

(−k)
M

)
+

p2

rk−1γk(1)
(1− gk−1) +

p2

rk−1γk+1(1)
S(Rk), (27)

where S(Rk) = 1
Rk

(1− gk)− (1−β)
1+Rkgk−1

whose minimum is achieved at

R∗k =

(
1− gk

1− gk−1

)(
1 +

√
1− β

gk−1 − β

)
and S(R∗k) = −(gk−1 − β)

[√
1− β

gk−1 − β
− 1

]2

.
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The corrective term in formula (27) of the variance rewrites, up to a positive multiplicative coefficient,
as

4g2
k−1(1− β)− (gk−1 − β)(1 + gk−1)2.

The sign of the previous expression is the same of the polynomial R(x) = x2−x(1−3β) +β at x = gk−1.
So

• when β > 1/9, R(gk−1) is strictly positive;

• when β = 1/9, R(gk−1) = (gk−1 − 1/3)2 is positive and cancels at 1/3;

• when β < 1/9, R(gk−1) is minimum at g∗k−1 = (1 − 3β)/2 and R(g∗k−1) = 1
4 (1 − β)(9β − 1) < 0.

This minimum decreases with β from 0 (for β = 1/9) to −1/4 (for β = 0).

The result now becomes obvious.

Appendix C Finding the conformal map of Section 6

The goal is to determine a conformal map ϕ from a disk B to a domain Ω := ϕ(B) such that the image
of the occupancy measure ϕ∗m on ∂B is the uniform measure on ∂Ω and ϕ(∂B) = ∂Ω. First, we restrict
B to the unit disk. Since, for any Borel set E ∈ ∂Ω,

ϕ∗m(E) = m(ϕ−1(E))
def
=

∫
∂B

1ϕ−1(E)h(ξ)dξ =

∫
∂Ω

1E(ω)h(ϕ−1(ω))
dω

|ϕ′(ϕ−1(ω))|

and we want ϕ∗m(E) = 1
|∂Ω|

∫
∂Ω

1E(ω)dω, the conformal map ϕ has to satisfy |ϕ′(ξ)| = h(ξ)|∂Ω|, ∀ξ ∈
∂B.

Taking |ϕ′(ξ)| = h(ξ) induces |∂Ω| = 1. Since ϕ is a conformal map, ϕ′ is holomorphic on B and not
null and log |ϕ′| = log h is thus harmonic on B. Then we follow the procedure described in Weber and
Gotsman (2010).

1. Since we work on the unit disk, we solve the Dirichlet problem and find its harmonic conjugate
function concomitantly using the Schwarz integral formula (Remmert, 1991, Chap VII, §2) that
allows one to recover a holomorphic function, up to an imaginary constant, from the boundary
values of its real part:

φ(z) =

∫ 2π

0

log h(eiθ)
eiθ + z

eiθ − z
dθ

2π
+ ig(0), |z| < 1.

2. Now we consider eφ which is holomorphic on B. Since B is a simply connected set and taking the
Cauchy integral, there exists a holomorphic function Φ on B such that

Φ(z) =

∫
[0,z]

eφ(ω)dω,

where [0, z] is the segment that links 0 and z. Since eφ never cancels, Φ is a conformal map. Thus
we define ϕ = Φ.

In the case of a disk B of radius l, we take |ϕ′(ξ)| = h(ξ)2πl instead of |ϕ′(ξ)| = h(ξ) to get a boundary
of length 2πl = |∂Ω|.
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Schuëller, G., Pradlwarter, H., Pandey, M., 1993. Methods for reliability assessment of nonlinear systems
under stochastic dynamic loading - a review. EURODYN’93, Balkema, pp. 751–9.

Villén-Altamirano, M., Villén-Altamirano, J., 1991. Restart: a method for accelerating rare event simu-
lations. North-Holland, pp. 71–76.

Villén-Altamirano, M., Villén-Altamirano, J., 1997. Restart: An efficient and general method for fast
simulation of rare event. Technical report 7.

Weber, O., Gotsman, C., Jul. 2010. Controllable conformal maps for shape deformation and interpolation.
ACM Trans. Graph. 29 (4), 78:1–78:11.

Wolfram Research, I., 2015. Mathematica, Version 10.

23

http://www.sciencedirect.com/science/article/pii/S016747309700026X
http://doi.acm.org/10.1145/2659467.2659469

	Introduction
	Multilevel Splitting Algorithm
	Definition of the thresholds and related tools
	Multilevel Splitting Algorithm

	Algorithm analysis
	A natural unbiased estimator of p
	The variance of the estimator
	The cost of the algorithm

	Algorithm optimisation
	General setting
	Optimisation

	Sensitivity analysis: deletion of a threshold
	Iterative expressions of variance and cost
	Is the k-th threshold useful?

	Sensitivity analysis: perturbation of a threshold
	Conclusion and perspectives
	The operator k and its iterates
	Proofs
	Finding the conformal map of Section 6

