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Gaussian beam launching based on frame

decomposition and 3d spectral partition

I.F. Arias Lopez∗ C. Letrou†

Abstract — Frame decomposition has been intro-
duced into Gaussian Beam Shooting (GBS) algo-
rithms to perform decompositions of fields radiated
by large planar apertures into a half plane in a rig-
orous and stable way. This work proposes a general-
ization of frame-based GBS to situations when fields
are radiated into all directions in 3d space. Frame
decomposition is applied in six planes in the spectral
domain, starting from the knowledge of the radiated
far field, which is partitioned through a “partition
of unity” procedure. The formulation is presented,
as well as numerical results which illustrate its va-
lidity and its accuracy versus frame decomposition
and beam launching parameters.

1 INTRODUCTION

Frame theory allows for complete representations of
source field distributions in phase space (geometri-
cal and associated spectral domains), in the form
of superpositions of translated and phase shifted
Gaussian windows [1, 2]. These Gaussian frame
windows radiate fields in the form of paraxial Gaus-
sian beams, in as much as their spectrum is suffi-
ciently localized. Frame decomposition can thus be
used at the starting point of Gaussian beam shoot-
ing algorithms [3, 4].

Until now however, frame decomposition was ap-
plied to source distributions in one plane, radiating
into one half-space. Also, the fields of beams prop-
agating along directions close to the source plane
(large spectral shift of the source frame window)
are not accurately approximated by the paraxial
approximation, for the spectrum of their frame win-
dow source is not fully comprised in the visible do-
main.

To overcome these limitations, other types of ini-
tial decompositions have been proposed, generally
based on sampling theorems on a sphere [5, 6]. Our
contribution in this paper consists in formulating a
method based on frame decompositions in planes,
yet allowing for beam launching into the whole 3d
space, and reducing the inaccuracy related to highly
shifted beams.

The proposed method applies to frame decom-
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position of fields in the spectral domain, and is
therefore easily applied to source fields known by
their spectrum (or far field). The 3d source spec-
trum is supposed to be known in six planes radi-
ating into six half-spaces. A partition of unity is
then formulated which allows to synthetize the 3d
far field from the summation of fields radiated by
six spectra, each multiplied by a partitioning win-
dow. Frame decomposition can be applied to these
”partial spectra”, in each of the six planes, and the
Gaussian beams launched from all the planes are
summed to obtain the 3d radiated fields.

Section 2 gives a brief outline of frame decom-
position and of its application in the context of a
directive source radiating into a half-space. Sec-
tion 3 presents the new “spectral partitioning” for-
mulation, and section 4 numerical results obtained
in the case of a half-wavelength dipole.

2 FRAME DECOMPOSITION

Frame decomposition is briefly outlined in this sec-
tion. Harmonic time dependence e−iωt, with ω
the angular frequency, is assumed and suppressed
in equations. The Fourier transform of a func-
tion g ∈ L2(R), denoted g̃, is defined as g̃(kx) =∫ +∞
−∞ g(x)e−ikxx dx.

2.1 Gaussian window frames in L2(R)

In the L2(R) Hilbert space, the set of Gaussian
functions

wmn(x) = w(x−mx̄)eink̄x(x−mx̄) , (m,n) ∈ Z2

with w(x) =

√√
2

L
e−π

x2

L2

is a frame if and only if x̄k̄x = 2πν with ν < 1
(oversampling factor) [1]. x̄ and k̄x are respectively
the spatial and spectral domain translation step.

If the set of functions wmn is a Gaussian window
frame, then the set w̃nm, (n,m) ∈ Z2, obtained by
translations of the Gaussian function w̃ in the spec-
tral domain:

w̃nm(x) = w̃(kx − nk̄x)e−imnx̄kx

is also a Gaussian window frame in L2(R).



Frames are complete sets hence any function
f ∈ L2(R), or its Fourier transform, can be ex-
pressed as summations of weighted frame windows:

f =
∑

(m,n)∈Z2

amnwmn ; f̃ =
∑

(m,n)∈Z2

amne
imnk̄xx̄ w̃mn

with the (non unique) amn complex coefficients
called “frame coefficients”. One set of such coef-
ficients can be calculated by projecting the func-
tion or its Fourier transform on a “dual frame” of
functions [2, 4].

2.2 Frame based Gaussian beam shooting

Frames in L2(R2) are easily defined as product
frames: wmnpq = wmnwpq, (m,n, p, q) ∈ Z4. If
a y-polarized field distribution radiating into the
z > 0 half-space is decomposed on such a frame,
with Amnpq the frame coefficients, then the radi-
ated field at any point M with z > 0 is obtained
as:

−→
E (M) =

∑
m,n,p,q

Amnpqe
i(mnlxκx+pqlyκy)−→Bmnpq(M)

where
−→
Bmnpq is the field radiated by the plane wave

spectrum (PWS) associated to the wmnpq frame
window used to discretize the Ey(x, y) function.

For spectrally narrow frame windows, the
−→
Bmnpq

radiated field can be expressed in the form of a
Gaussian beam (ray type expression with complex
curvature), based on a paraxial approximation in
the spectral domain [3, 4].

3 SPECTRAL PARTITIONING

The aim of this section is to define partial PWS
in different planes, so that the field at any obser-
vation point outside of the reactive region of the
radiating source, can be obtained by summation of
the fields calculated by GBS from several of these
planes. These partial PWS radiate partial far fields,
the sum of which is equal to the antenna far field.

3.1 Notations

The far field radiated by a given “source” is as-
sumed to be known in all (θ, φ) directions in the
global coordinate system (O, x̂, ŷ, ẑ). Six coordi-
nate systems Sj = (O, x̂j , ŷj , ẑj), j = 1, . . . , 6, are
introduced, and the six planes Pj = (O, x̂j , ŷj) will
be used as source planes for the half-spaces Hj de-
fined by zj > 0. The PWS of the source radiated

fields in the Pj plane is denoted ~̃E(j) and expressed
as a function of the spectral variables (kxj

, kyj ), the
wavevector components in the Pj plane. Figure 1
gives an exploded view of the Pj planes.

Figure 1: Pj planes and associated spectral variables.

Any point M in the 3d space, except for O′, be-
longs to exactly three different Hj half-spaces. We
shall denote J the set of indices defined by:

M ∈ ∩
j∈J
Hj

3.2 Partition of unity relation

Each ~̃E(j) PWS is deduced from the antenna far
field in the Hj half-space, using the classical far
field asymptotic expression:

~E(M) ≈ −i
λrj

eikrjcosθj
~̃E(j)(kxj

, kyj ) (1)

with (rj , θj , φj) the spherical coordinates of point
M in the coordinate system Sj , k the wavenumber,
kxj

= k sinθj cosφj , and kyj = k sinθj sinφj .

A partitioning function χj , function of (kxj , kyj ),
is defined in each Pj plane, so that at an observa-
tion point M :

~E(M) =
∑
j∈J

~Eχj (M)

where ~Eχj is the far field radiated by the partial

PWS ~̃Eχj defined by:

~̃Eχj (kxj
, kyj ) = ~̃E(j)(kxj

, kyj ) χj(kxj
, kyj )

If {j, j′} ⊂ J , then
kzj
kz

j′

~̃E(j), expressed as a func-

tion of (kxj′ , kyj′ ), is the PWS in the Pj′ plane



which radiates the same far field at M as the ~̃E(j)

PWS defined in the Pj plane. With such relations,
it is easily shown that the partitioning functions
χj , j ∈ J , have to satisfy, for any set J of three
intersecting half-spaces:∑

j∈J
χj(kxj

, kyj ) = 1

where the (kxj
, kyj ) variables are projections in the

planes Pj of the same wavevector ~k.

3.3 Partition of unity functions

One-variable partition of unity functions can easily
be defined by translations of an even function which
for positive x verifies:
- χ(x) = 1 for 0 < x ≤ kL,
- χ(x) = f(x−kL) for kL ≤ x ≤ kL+δ (transition),
- χ(x) = 0 for x > kL + δ.
We derive the function f used in the “transition”
region from the Hann window, in order to minimize
the effect of truncation in the transformed domain
[7]. Figure 2 is an example of such a one-variable
partitioning function χ.

Figure 2: One-variable partitioning function with
Hann function type transition.

The following constraints are imposed to the χj
partitioning functions:

1. Functions χ5 and χ6, respectively used in the
“upper” P5 and “lower” P6 planes (cf Fig. 1)
possess circular symmetry: they are defined as

functions of krj =
√
k2
xj

+ k2
yj , j ∈ {5, 6};

2. The χj functions defined in the “lateral” Pj
planes (j ∈ {1, 2, 3, 4}) are of the following
form:

χj(kxj
, kyj ) = χjx(kxj

, kyj )χjy(kyj )

where χjy(kyj ) is responsible for the parti-
tioning with “upper” and “lower” planes.

Explicit expressions of these partitioning functions
will be presented at the conference.

4 NUMERICAL RESULTS

The results presented in this section are for the case
of a theoretical half-wave dipole, aligned along the
z axis, with its far field given by:

~E(r, θ, φ) = −i 60 I
eikr

r

cos(
π

2
cos θ)

sin θ
θ̂

with I = 1/60.
Figure 3 represents the dipole far field on a sphere

of radius r = 50λ, as a function of the spherical an-
gles θ ∈ [0, π] and φ ∈ [0, 2π], respectively used
as radial and angular polar variables in the fig-
ure. This field has been synthetized by GBS from
six planes where partial spectra resulting from the
“spectral partitioning” procedure described in Sec-
tion 3 have been decomposed on frames of Gaussian
windows.

Figure 3: Half-wavelength dipole far field (r = 50λ)
synthesized by GBS with “spectral partitioning”.

For this computation, the same frame parameters
are used in all the Pj planes: να = 0.16, Lα = 10λ,
α = xj , yj . For computational purpose, source dis-
tributions and Gaussian frame windows are trun-
cated at a threshold value of ε = 10−3. With these
parameters, the initial limits of frame indices are
±26 for n and q (spectral domain) and ±6 for m
and p (spatial domain), in each plane. Among all
the frame cofficients, only those with relative mag-
nitude (normalized to the maximal one) larger than
a “compression” parameter γ are considered non
negligible. The beams weighted by “negligible” co-
efficients are not launched. The γ “compression”
parameter was taken equal to 10−3, which allowed
to neglect about half of the coefficients.

Figure 4 presents a map of the absolute normal-
ized error (normalized with respect to the maxi-
mum of the field magnitude), which is visibly coher-
ent with the threshold and compression parameters
ε and γ. Figure 5 gives a better view of the absolute



Figure 4: Absolute normalized error of the half-
wavelength dipole far field (r = 50λ) synthesized by
GBS with “spectral partitioning”.

Figure 5: φ = π/4 cut of the absolute normalized er-
ror of the half-wavelength dipole far field (r = 50λ)
synthesized by GBS with “spectral partitioning”.

normalized error in the φ = π/4 half-plane. Radi-
ated fields in the half-space H1 synthetized by GBS

without partitioning, from the ~̃E(1) PWS in the P1

plane, with the above frame and γ parameters, will
be presented at the conference as well as the corre-
sponding absolute normalized error map. The max-
imum absolute normalized error in the whole space
is respectively of 1.7 × 10−4 with partitioning and
3.3 × 10−2 without partitioning. The latter is re-
lated to the lack of accuracy of highly shifted beams
and of their frame coefficients.

When using the new “spectral partitioning” al-
gorithm, the final error is clearly related to the
threshold value: ε = 10−1 yields a maximum abso-
lute normalized error of 1.7×10−2, 100 times more
than in the previous case, computed with ε = 10−3.
The choice of the Gaussian window width param-
eter Lα (α = x, y) does not affect accuracy under
the following constraint: all frame windows needed
to analyze the partial spectra must be centered in
the “visible domain”. For a given Lα value, accu-
racy starts degrading at distances larger than 5b

with b the collimation distance of non tilted beams
(b = L2

α/λ).

5 CONCLUSION

A “spectral partitioning” formulation, based on a
partition of unity applied to the far field of a radi-
ating source, is introduced to allow the representa-
tion of non directive radiated fields by summations
of Gaussian beams. Six frame decompositions are
used as the starting point of this GBS algorithm.
The validity of the approach is numerically proven,
as well as its accuracy. Although tested in the far
field, the method is of special interest to calculate
fields in the near (non reactive) zone of radiating
sources.
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