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A new scenario for gravitational collapse has been recently proposed by Haggard and
Rovelli. Presenting the model under the name of black hole fireworks, they claim that the
accumulation of quantum gravitational effects outside the horizon can cause the tunneling
of geometry from a black hole to a white hole, allowing a bounce of the collapsing star which
can eventually go back to infinity. In this paper we discuss the instabilities of this model
and propose a simple minimal modification which eliminates them, as well as other related
instabilities discussed in the literature. The new scenario is a time-asymmetric version of the
original model with a time scale for the final explosion that is shorter than m logm in Planck
units. Our analysis highlights the importance of irreversibility in gravitational collapse which,
in turn, uncovers important issues that cannot be addressed in detail without a full quantum
gravity treatment.

I. Introduction

Regular collapse models where the black hole singularity is replaced by some smooth geometry
have a long history [1–23]. The leitmotiv of these models is the attempt to understand issues
related to the Hawking information loss paradox on an effective background spacetime capturing
the idea that black hole singularities must be resolved by quantum gravity effects. Ideally one
would want to justify the relevant physical features of these models in terms of a fundamental
quantum theoretical description. Lacking a precise dynamical description of quantum gravity, their
key features are often justified in terms of generic behaviour that leads to singularity avoidance
in simplified symmetry reduced models of quantum gravity [24–27]. As one would also expect
QFT on curved spacetimes to be a valid approximation to quantum dynamics in regions where
the gravitational degrees of freedom are well described by a classical background metric of low
curvature in Planck units, valuable insights should be accessible through semiclassical methods.
Along these lines a necessary viability criterion for these models is their semiclassical stability:
contributions of quantum fluctuations of a test field in suitable quantum states1 to the expectation
value of the energy momentum tensor must remain small (in Planck units) in semiclassical regions.
In this article we study the semiclassical stability of the recently introduced bouncing black hole
model proposed in [28].2 We find the model to be strongly unstable under small perturbations and
consequently we propose a simple but nontrivial modification that avoids these instabilities without
modifying the key features of the original idea.

The paper is organized as follows. In Section II we review the definition of the fireworks model.
In Section III we study the semiclassical stability of the fireworks spacetime by computing the

∗Electronic address: tommaso.de-lorenzo@cpt.univ-mrs.fr
†Electronic address: perez@cpt.univ-mrs.fr
1 Those satisfying the correct boundary conditions that define gravitational collapse.
2 A similar scenario in which the same bouncing process happens in much shorter timescales by assuming faster-
than-light propagation of a shock-wave from the bounce region is considered in [29, 30].
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expectation value of the energy momentum tensor in a suitable state of a quantum test field on
that background. In order to produce analytic expressions, and thus make clearer our presentation,
we will assume that our quantum test field is a massless scalar field and those calculations on the
Schwarzschild background will be first done in the approximation where back-reaction is neglected;
see Section IIIA. We will argue at the end of this section that the result remains valid in the 3 + 1
framework where backscattering is taken into account. In Section IV we propose a way in which
the background of [28] could be modified in order to avoid these instabilities as well as other ones
described in Section V. The new model is a time-asymmetric version of the original one, where the
black hole phase is followed by an extremely fast explosion with time scale shorter than m logm in
Planck units. Finally, we discuss the implications of such modifications in Section VI.

II. The Fireworks Model

The Penrose diagram of the Haggard-Rovelli [28] proposal for a bouncing black hole is shown
in Fig. 1. This spacetime corresponds to the collapse of a spherical shell of mass m, and it is con-
structed in terms of patches that are isometric to the Schwalzschild, Minkowski, and an unspecified
quantum effective geometry glued together through transition hypersurfaces. In the last region
Einstein’s equations are not satisfied with any form of classical matter; its presence is interpreted
as a modification of the classical dynamics induced by the effect of quantum gravity fluctuations.

The model can be obtained from the cutting and pasting of regions easily identified in the
Penrose diagram of the maximally extended Schwarzschild solution of mass m as follows: One first
identifies a point ∆ with Kruskal-Szekeres coordinates (U∆ = −V∆, V∆) with V∆ > 0 so that ∆
lies in the exterior of the white as well as the black hole regions. One then chooses a null surface
V = Vs such that V∆ > Vs and a point E with coordinates (UE , VE = Vs) and UE > 0, i.e., E lies
on the null surface V = Vs and in the interior of the black hole region. Finally one picks a space-
like hypersurface ΣE→∆ connecting ∆ to E and extends this space-like hypersurface to space-like
infinity i0 along the hypersurface Σ∆→i0 defined by the condition t = 0 in Eddington-Finkelstein
coordinates. One names Region II the spacetime region bounded by the null surface V = Vs in the
past and ΣE→∆ ∪ Σ∆→i0 in the future. There is a partner Region tII defined in analogy to Region
II by the time reflection (U, V ) → (−U,−V ). See Fig. 1-Left. The Carter-Penrose diagram of
the fireworks model (Fig. 1-Right) is obtained by inserting the interpolating Regions III+tIII that
complete the spacetime to the future of ΣE→∆ in Region II up to ΣĒ→∆ in Region tII. The regions
v ≤ vs and u ≥ us are described by Minkowski Region I and Region tI respectively. The gluing
across the null surfaces is done by demanding continuity of the metric; this leads to a distributional
energy momentum tensor and the standard interpretation of the null gluing surface as a spherical
shell of mass m collapsing to r = 0 in the past and then bouncing out in the future. The geometry
in Region III+tIII is not explicitly defined in the model; however, the absence of singularities
require the putative energy-momentum tensor to violate energy conditions in Region III+tIII. This
is interpreted as a spacetime region where quantum gravity effects are large.

The resulting spacetime represents the dynamics of a null in-falling shell of total mass m that
bounces at r = 0 and comes out as a null outgoing shell of the same mass. The point E is the
point where the ingoing shell enters (or touches) the quantum Region III, while ∆ is considered
as the outmost boundary of the quantum Region III+tIII. As we will recall below, the time scale
of the bounce is argued to be of the order of m2 (in Planck units). This ‘fast’ process makes the
dissipation effects of Hawking radiation negligible. This is argued to justify the time-symmetric
character of the bouncing scenario.

The spacetime is event-horizon-free, but displays a trapping and an anti-trapping surface. Notice
that the past directed outgoing null rays from ∆—defining a null surface that approaches exponen-
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FIG. 1: Geometry of the black hole fireworks scenario. Left: Kruskal-Szekeres diagram, with the two inter-
esting overlapping regions shaded with different colors. Right: The resulting completely time-symmetric
Carter-Penrose diagram.

tially the trapping surface in the past—represents what we will call the past classicality horizon,
denoted H−: any observer crossing H− will end up falling into the quantum Region III+tIII. More
precisely, the domain of dependence D(III + tIII) has a boundary defined by two null surfaces. We
call H− (resp. H+) the past (resp. future) null component of that boundary.

To completely specify the model, one has to fix V∆ > 0 in order to fix the position of the
point ∆ = (−V∆, V∆), and duration of the process which is parametrized by ∆V = V∆ − Vs.
The condition V∆ > 0 implies that the quantum region III+tIII extends outside the Schwarzschild
trapping horizon. This is a central conceptual point in the proposed model: one is allowing large
quantum effects to leak out of the Schwarzschild horizon where curvature is low and far from
Planckian (here m � 1 in Planck units). In the original paper [28], this is stated by saying
that “there is no reason to trust the classical theory outside the horizon for arbitrarily long times
and sufficiently close to r = 2m”. The authors of [28] propose that quantum gravitational effects
can be accumulated with “time” and become nonnegligible outside the horizon. Accordingly, they
introduced a nonclassicality parameter defined along the world-line of a stationary observer sitting
at r = r∆ for a proper time τ as

q = `2−bp Rτ b (1)

where R is a measure of spacetime curvature defined for concreteness in terms of the Kretschmann
invariant R2 = RabcdR

abcd = 48m2/r6 and b is a phenomenological parameter of order unity. For
concreteness we take b = 1 following [28]. The parameter τ is the proper time of the stationary
observer from the crossing of the collapsing shell to the point ∆ (see Fig. 1), that is

τ =

√
1− 2m

r∆
∆v , (2)
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where v is the standard advanced inertial time at I −. The quantity q is maximized for

r∆ =
7

3
m. (3)

This means that the quantum Region III+tIII extends macroscopically outside the BH horizon.
The bouncing time is defined to be the value of ∆v for which the nonclassicality parameter (linear
in ∆v) becomes of order unity. This happens for

∆v ≡ v∆ − vs ∼ τ ∼ m2 . (4)

Due to the time symmetry of the construction, the observer at r∆ sees the entire bouncing process
happening in a proper time τtot = 2τ ∼ m2. This time scale is very important in what follows and
is argued to produce possible experimental observations [31–33].

III. Semiclassical stability

The question any classical ansatz spacetime has to be confronted with is whether it admits a
physically reasonable quantum state for the test fields living on it. This requirement represents the
first step toward addressing the problem of back-reaction. More precisely, in those regions where
we can trust the validity of QFT in curved spacetime one expects the quantum dynamics to be well
approximated by the semiclassical Einstein’s equation

Gab(gab) = 8π 〈Tab(gab)〉 , (5)

where 〈Tab(gab) 〉 represents the expectation value of the stress-energy tensor of the quantum matter
fields propagating on the metric gab.

The most famous example is the effect of Hawking evaporation on a black hole background [34,
35]. The original computation has been made in the fixed background approximation, completely
neglecting the back-reaction. However, this leads to an infinite amount of radiated energy from the
hole, clearly in contradiction with energy conservation. Intuitively, one expects the energy radiated
to be balanced by a reduction of the Bondi mass of the black hole, leading to the evaporation
of the hole and consequently the well-known loss of information paradox [36]. There are both
analytical and numerical works indicating some general features of the evaporation problem [37–40];
nevertheless, a complete description remains unsolved even in the semiclassical regime of equation
(5).

Indeed, the complete backreaction problem could be framed in a formal approximation procedure
where one starts by evaluating 〈Tab(g0

ab)〉 on a seed background g0
ab, and then inserts the result into

semiclassical Einstein equations (5) in other to find a new metric g1
ab: the first-order quantum

corrected background metric. Iterating the process one can try to find higher-order corrected line
elements eventually converging to a consistent solution gab of equation (5). Every single step is in
general a really difficult task to achieve and the final convergence is not even guaranteed.

Fortunately, for the present analysis it will be sufficient to solve a much simpler problem. Indeed,
the classical initial background g0

ab—solution of the classical Einstein equations—is a good zeroth
approximation of the quantum dynamics only if the quantum corrections coming from 〈Tab(g0

ab)〉
are small in semiclassical regions. This stability of the seed background under the effects of the
propagation of quantum test fields living on it will be called quantum-stability property. In the
following of this Section, we will compute 〈Tab(g0

ab)〉 for the model of reference [28] and show that it
diverges in Region tII. The quantum-stability property, therefore, is not satisfied by the fireworks
model.
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The computation of 〈Tab(g0
ab)〉 on a given unperturbed geometry can be already a very difficult

task. In fact, there is in general uncertainties related to the choice of the appropriate physical state
for the quantum fields and, at the same time, one needs to appeal to renormalization techniques
to eliminate usual UV divergences of QFT in a way that is consistent with general covariance [41].
Both issues are more subtle and difficult when the background spacetime is not flat. However,
the great symmetry of our example and its direct relationship with the well-studied Schwarzschild
geometry will allow us to make very precise statements.

A. Analytic calculation in the 1 + 1 setting

In this section we use spherical symmetry and we neglect back-scattering as well as the influence
of modes other than s-modes. This allows for an effective description in terms of a 1 + 1 theory.
These simplifications make possible the analytic computation of effects that qualitatively remain
valid in the 3 + 1 framework. More precisely, we show that the computation of 〈Tab(g0

ab)〉 in
the framework of the fireworks background presents a divergent behaviour. Quantum fields are
represented by a single massless scalar φ satisfying the Klein-Gordon equation

gab0 ∇a∇bφ = 0 (6)

with gab0 the background geometry of the fireworks model in the r − t space. In more detail, the
metric in Region II+tII is given by

ds2
0 = −

(
1− 2m

r

)
dvdu, (7)

where v = t+ r∗ and u = t− r∗, with t the Killing parameter and

r∗ = r + 2m log
( r

2m
− 1
)
. (8)

In Region I the metric is

ds2
0 = −dvduin, (9)

where uin = tM − r and v = tM + r and tM is the inertial Minkowski time defined by an observer
at the center of the shell. The explicit relation between uin and Schwarzschild coordinates can be
computed from the matching conditions that follow from demanding continuity of the metric across
the shell, namely

u = uin − 4m log

(
vs − uin − 4m

4m

)
. (10)

The state representing gravitational collapse. The fireworks model describes
the physics of a collapsing shell that would classically lead to the formation of a spherical black
hole spacetime. This physical situation imposes clear-cut constraints on the initial conditions of
the quantum state of the field φ. On the one hand, the state for the in-modes of the quantum
fields on I − must not be substantially excited. In other words, aside from the zeroth order matter
distribution defining the collapsing shell that will lead to the formation of the trapped regions in the
future, no substantial amount of energy momentum of φ is poured in from I −.3 This is translated

3 In Appendix B we study the contrasting situation where an infinite amount of radiation is sent from infinity: the
Hartle-Hawking state.
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into the demand that the in-modes of the quantum field on I − must be in the vacuum state. A
similar boundary condition must hold also for the out-modes in the flat interior of the collapsing
shell (Region I). Small perturbations of these conditions could be admitted yet, and this would not
change the conclusions that will follow.

These two conditions are satisfied by the so-called vacuum in-state |in〉 [42], defined as the
unique vacuum state of the Fock space where positive frequencies are defined with respect to the
mode expansion of solutions of (6) of the form

φin = eiωv, φout = eiωuin . (11)

This state corresponds to the required physical condition that there is no incoming radiation from
I − as well as no outgoing radiation from inside the shell. This state represents the idealized
physical situation one wants to describe in the context of gravitational collapse.

The region of applicability. There is uncertainty on the features of the quantum fields
in the future domain of dependence of Region III+tIII as the effective 1 + 1 geometry is expected
not to capture all the physics of the dynamics of the field through that part of the spacetime.
Therefore, all of the components of 〈Tab(g0

ab)〉 that we want to compute can be used to describe
the energy momentum expectation value only in Region I and in the portion of Region II in the
past of ΣE→∆ union the null outgoing ray u = u∆ starting at ∆ and reaching I +.

Nevertheless, whatever might be the dynamics in the strong quantum region, we expect to be
able to predict without uncertainties at least some of the components of 〈Tab(g0

ab)〉 for those points
to the future of the horizon H+. A closer look shows that, due to the decoupling of in and out
modes for a conformal theory in the present 1+1 context, the component 〈Tvv(g0

ab)〉 is independent
of the features of the quantum Region III+tIII. Both 〈Tuu(g0

ab)〉 and 〈Tuv(g0
ab)〉, on the other hand,

will be modified by quantum gravity effects. In those regions of applicability, the computation
comes out to be a standard computation [43, 44], well illustrated for instance in [45].

With these preliminary considerations stated, we are now ready to compute the expectation
value of the energy momentum tensor in the vacuum in-state defined on the background geometry
of the fireworks spacetime. In the region of interest, and for 〈Tvv(g0

ab)〉 we can simply import the
results from the standard calculation on a background given by the gravitational collapse of a shell
of mass m. Following for instance [45], see Appendix B, the components of the covariant quantum
stress-energy tensor are given by

〈in|Tuu |in〉 =
~

24π

[
−m
r3

+
3

2

m2

r4
− 8m

(uin − vs)3
− 24m2

(uin − vs)4

]
〈in|Tvv |in〉 =

~
24π

[
−m
r3

+
3

2

m2

r4

]
〈in|Tuv |in〉 = − ~

24π

(
1− 2m

r

)
m

r3
.

(12)

While the above equations seem to show that 〈Tab(g0
ab)〉 is finite everywhere, they do not. The

problem is that the Eddington-Finkelstein coordinates used to compute them are not well defined at
the trapping horizons: the modes are infinitely oscillating there. A clear analysis of the divergence
behavior of the tensor 〈Tab(g0

ab)〉 can be achieved by using good coordinates close to the trapping
horizons. The expectation value of the energy momentum tensor in our state can be shown to be
regular in whole Region II, see for instance [45]. What about Region tII?

Only 〈Tvv(g0
ab)〉 is relevant for the rest of our analysis: as mentioned above, indeed, it is the

only component of the energy momentum tensor for which (12) can be trusted in the future of H+

independently of the unknown geometry of Region III+tIII. A suitable choice of good coordinates
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are the Minkowski null coordinates (u, vout) in terms of which the metric in Region tI takes the
form

ds2
0 = −dudvout. (13)

Continuity of the metric across the outgoing shell implies

v = vout − 4m log

(
us − vout − 4m

4m

)
. (14)

Since, by definition, 〈Tab(gab)〉 is covariant, one finds

〈in|Tvoutvout |in〉 =

(
dv

dvout

)2

〈in|Tvv |in〉 =

(
us − vout

us − vout − 4m

)2

〈in|Tuu |in〉 . (15)

In these coordinates and on the outgoing shell, us − vout = 2r. The above quantity diverges at
the white hole trapping horizon r = 2m (which in the patchwork construction of [28] is close to H+)
as (r − 2m)−2. This divergence of 〈Tab〉 is, as we have just shown, explicit in the simplified 1 + 1
context.4 However, it is a general feature that remains valid in the physical 3 + 1 context. Some
references where explicit calculations are given are [46–48]. All this is implied by the very general
result implying that the Hartle-Hawking state is the only globally nonsingular state—satisfying the
Hadamard condition that implies the regularity of 〈Tab〉—on the maximally extended Schwarzschild
spacetime which is invariant under Killing time translations [41].

We conclude that in the vacuum in-state the expectation value of energy-momentum tensor
diverges at the trapping horizon r = 2m close to H+. However, this horizon is outside the region of
validity of our calculation as defined above: it is completely inside the future domain of dependence
of the quantum Region III+tIII.5 Nonetheless, the would-be-divergent component is still problem-
atic. The reason is that the trapping horizon and H+ get exponentially close to each other along
the generators of H+.

More precisely, let us call rs the value of the radius at the intersection of H+ and the outgoing
shell; see Fig. 1. From the integration of the null geodesic equation, one finds

rs = 2m

(
1 +W

[
r∆ − 2m

2m
exp

{
r∆ − 2m

2m
− ∆u

4m

}])
(16)

where W [x] is the Lambert function and ∆u = us − u∆. Clearly, rs represents the closest point to
the past horizon for which we can trust the expression of 〈in|Tvoutvout |in〉 given in equation eq. (15).
Consequently, it also gives the largest possible value of that component of the energy momentum
tensor. At that point we have

〈in|Tvoutvout |in〉|rs =
~

24π

(
rs

rs − 2m

)2 [
−m
r3
s

+
3

2

m2

r4
s

]
∼ − ~

192π

(
exp {∆v/(4m)− (r∆ − 2m)/(2m)}

r∆ − 2m

)2

, (17)

where we used the fact that rs → 2m and that, by construction,

∆u = ∆v. (18)

4 In the same way one can show that all the components of the renormalized energy momentum tensor remain finite
at the future horizon (close to H−).

5 One can try to interpolate the black hole patch with the white hole one by an effective metric, see for example
[30]. This is however not relevant for our discussion.
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Demanding the quantum energy-momentum tensor to be sub-planckian everywhere, we can find a
relation between the two parameters of the models, namely r∆ and ∆v. In fact, (~ = 1)

|〈in|Tvoutvout |in〉| < 1 (19)

implies ( r∆

2m
− 1
)
e

r∆
2m
−1 >

1√
768πm

e
∆v
4m ⇒ r∆

2m
− 1 > W

[
1√

768πm
e

∆v
4m

]
. (20)

The longer the lifetime ∆v of the hole, the more the quantum region must extend out of the classical
horizon (as parametrized by r∆) in order for the stress-energy tensor to be subplanckian along H+.
In particular, if, as estimated in [28], r∆ = 7

3m (see eq. (3)), condition (??) implies

∆v . m logm . (21)

That is, if we do not want trans-Planckian behaviors of the renormalized quantum stress-energy
tensor, the lifetime of the hole has to be so short that the model would already be ruled out by
present observations. For instance, the characteristic time τ = m log(m) would be of about 10
minutes for the central supermassive black hole in our Milky Way. For the same black hole one
could try to tune the parameter r∆ to allow a lifetime of order m2; however, a simple look at
equation (22) shows that this would imply extending the quantum region outside of the horizon to
include almost the whole of the observable universe.

IV. Asymmetric Fireworks

The issues presented in the previous section constrain the white hole lifetime to be much shorter
than the one defined in the original paper. Similar constraints can be found from simple classical
considerations.6 In all cases the problems are related to the instability due to the presence of a
white hole horizon: infinite blueshift of perturbations that are well behaved at I −. Our argument
is related to those classical instabilities if we replace the concept of perturbations by quantum
fluctuations in the in-vacuum. However, an important point is that, in all cases, the constraints
concern the lifetime of the white hole horizon only. The lifetime of the black hole horizon (which
is the one constrained by observations) can be freely set without running into the present type of
instabilities.

This can be easily seen from eq. (16). The relevant parameter for our discussion is the ∆u that
we identified with ∆v, due to the choice made originally in [28] to place the point ∆ on the surface
t = 0. Discarding the identification (18) and following exactly the same procedure, the crucial
bound in eq. (21) now becomes

∆u . m logm . (22)

A possible way out, therefore, is to abandon the time-symmetric nature of the bounce in the original
form of the fireworks model. More precisely, to avoid the time-symmetric condition ∆u = ∆v one
can modify the construction of the spacetime (Section II) by choosing the outgoing bouncing shell
to come out at a retarded time Us different from −Vs. The resulting spacetime, depicted in Fig. 2,
differs from the original one as if the point ∆ has been moved away from the t = 0 surface along a
curve r = r∆.

6 Personal communications with Eugenio Bianchi and Matteo Smerlak.
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in the text to be of order m logm.

In particular, one can choose the value of Us such that the quantum stability requirement,
expressed by eq. (22), is satisfied. Moreover, the analysis of the nonclassicality parameter presented
at the end of Section II is still precisely valid, and so are eq. (3) and (4). The accumulation of
quantum gravitational effects outside the horizon that allows the black-hole-to-white-hole transition
has not been modified, and the above instabilities are removed simply by shortening the lifetime of
the white hole horizon.

In Section VI we will largely discuss the nature and the consequences of time asymmetry intro-
duced in our modification of the model. Here we just want to emphasize that the lifetime of the
whole process (from collapse to annihilation) remains of the order of m2 as in the original model,
much shorter than the m3 time scale predicted by Hawking evaporation.7 This implies that the
nature of the time asymmetry is not a dissipative effect due to the Hawking evaporation as one
could intuitively expect: the energy radiated after a time of the order of m2 is just of the order of
the Planck mass mP . The Hawking effect is negligible and the processes discussed here are basically
nondissipative.

7 In doing this simple comparison between time scales we are making a little abuse of notation. For a more precise
statement, see the precise analysis reported in Appendix A.
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hole emits all its mass m along a massive null shell at the retarded time us. A small massive perturbation ν
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At the interaction point we have a Dray-’t Hooft geometry with m = m, M = 0, M = m + ν. The last
mass µ is uniquely determined by the constraint which leads to eq. (23): µ = rs/(rs − 2m)ν. If rs is lower
then 2µ, the emerging shell is captured in the future black hole horizon of the new geometry generated by
the interaction and cannot escape to infinity. The white hole is dead recollapsing into a black hole.

V. Black-hole-to-white-hole instability

The modification proposed also removes another related type of instability studied in [49–53].
The idea is the following. Since a white hole is attractive, any small perturbation of ambient matter
will be accelerated toward it. At the same time, since no matter can cross the white hole horizon,
after a sufficiently long time, a macroscopic mass will be accreted onto an arbitrarily thin shell close
to the horizon and will produce, when interacting with any object coming out from the white hole,
a new collapse into a future singularity.

The interaction between any small matter perturbation of mass ν sent for instance along the
null geodesic v = v∆ and the outgoing mass m shell at r = rs can be described by a Dray-’t Hooft
geometry [54] (Fig. 3-Left). The spacetime for v > v∆ and u > us is a Schwarzschild geometry with
mass µ, given as a function of the initial parameter m, ν and the radius rs by

µ =
rs

rs − 2m
ν . (23)

It is clear now that if rs < 2µ the outgoing shell is captured inside the new black hole horizon and
cannot escape to infinity: any small perturbation ν interacting with the bouncing shell will cause
the system to recollapse into a black hole of mass µ; see Fig. 3-Right. Thus, no fireworks can be
seen from infinity. The model is, however, still valid if rs > 2µ or equivalently if

rs > 2(m+ ν). (24)
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From equation (16) we get

∆u

4m
<

(
r∆ − 2(m+ ν)

2m

)
log

(
r∆ − 2m

2ν

)
, (25)

and assuming ν � m we find again

∆u . m log
(m
ν

)
. (26)

The tunneling process is strongly unstable under perturbations if ∆u, the lifetime of the white
hole, is bigger then of order m logm. This argument could surely be discussed together with the
other issues that have forced us to consider an asymmetric bouncing scenario, but presented in
this way the different time scales involved become clear. This has been extensively discussed in a
recent paper by Barceló et al. [55] in the context of the original symmetric model. The asymmetric
modification that we have introduced here also cures this instability.

VI. Smashing watches

In this section we want to discuss the physical consequences of the introduction of a time
asymmetry in the model. The bouncing process can be described by a quantum field in the |in〉
vacuum state on I − evolving into a final state |out〉 on I +. Both states represent an idealized
flat initial geometry with an infinitely diluted, but sharply defined, spherical shell carrying mass
m. More precisely, from the point of view of an observer at infinity, the in and the out classical
data are just equivalent.

On the other hand, the semiclassical analysis of the dynamics of the state |in〉 across the space-
time tells us that the state in the future must be very different from what it was in the past. We
have actually shown that the components of 〈Tab(g0

ab)〉 are perfectly smooth for u < u∆ while they
are dangerously diverging in some regions to the future u > u∆. These divergences can be cured
by modifying the background in consistency with this time asymmetry. We have achieved this by
shortening the lifetime of the white hole in Section IV; see Figure 2.

Nevertheless, in doing so we have preserved the equivalence of the past and future classical
data. The point we want to emphasize here is that the time-asymmetric nature of the inner
spacetime needed to avoid instabilities should imply strong modifications also in the classical final
out description of the model, that can be very different from the simple mean field approximation
proposed by the fireworks model.

One can illustrate the point in terms of the nonclassicality parameter q, eq. (1). Recall that the
idea is that quantum effects accumulate from v = vs along the world line of a stationary observer
at r∆ until the quantity q becomes of order one at v = v∆. This happens after a time of the order
of m2. Let us now run the process backward in time. This inverse process is still a bounce now
described by an initial state given by |out〉 evolving into |in〉. Its dynamics is given by the time
reversal of the original one. However, as q only knows about the local geometry, one finds that for
the reverse process q is far from unity at ∆. This means that something must be very different for
the later observer; something else (not explicitly stated in the model of Figure 2) must contribute
to the nonclassicality so that it builds up very much quicker in the inverse process.

If correct, the cause of the shortening of time scales in the future of the bounce must be found
in the details of the quantum state of the system beyond the mean-field approximation implicitly
used when proposing a background geometry. Notice that the future observer is exposed to quan-
tum gravitational effects coming from the would-be-singularity—whatever replaces the singularity
predicted by the classical theory, i.e. Region III+tIII. These effects must be important enough to
drastically reduce the lifetime of the white hole from m2 to m logm.
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=

0

FIG. 4: Geometry of a general asymmetric scenario. The region where the semiclassical analysis breaks
down is shaded. The metric outside is isomorphic to Schwarzschild with mass m.

But then if these quantum gravitational effects are so strong, why should we trust a semiclassical
description at all in the vicinity of the white hole? Why should the spacetime become classical again
so quickly with the mass m entirely carried by a spherical bouncing shell? It is hard to address
these questions without a full quantum dynamical treatment.

Nevertheless, the standard collapse process strongly suggests irreversibility already at the clas-
sical level. Gravitational collapse is like breaking a watch. This can be intuitively seen, from the
classical point of view, by considering the standard spacetime depicting the gravitational collapse of
a spherical shell (put the diagram on the right of Figure 3 upright). Initial states given by the shell
plus smooth matter and geometry perturbation at I − are special, they are ‘low-entropy’ states
representing our ‘watches’. They come in different types depending on the details of the initial
state. This states are bound to evolve into very complicated final states: smashed watches. This is
clear from the fact that only a very precise fine tuning of the features of the state at I + ∪ i+ ∪H
would evolve backwards to our nice watch at I − (those final states are measure zero in the phase
space of possible final states).

The previous irreversibility mechanism becomes even more apparent if quantum gravity is
brought into the discussion. Everything that crosses the horizon H− will end up at the would-
be-singularity exciting degrees of freedom that were not available at low energies. The phase space
regions available for these falling degrees of freedom can become dramatically larger with the po-
tential effect of further increasing the irreversibility of the overall process. Concretely, as the shell
approaches r = 0 more and more degrees of freedom get excited: from known standard model de-
grees of freedom (quark-gluon plasma phase, Hagedorn exponential growth of available degrees of
freedom, etc.) to beyond standard model degrees of freedom and all the way down to Planck scale.
At that ultimate fundamental level, in an approach like LQG, quantum geometries are degenerate:
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the phase space of available ‘geometries’ at the Planck scale includes a huge number of configura-
tions (microstates) which are simply overlooked in the low energy coarse graining associated with
the semiclassical background geometry proposed to describe the process.8 All this implies the type
of irreversibility proper to systems that satisfy the second law of thermodynamics.

In view of all this we find no reason to discard scenarios where the spacetime does not become
semiclassical so quickly to the future of the bounce and where the initial mass m shell dissolves
into a quantum substance after the bounce. The details can only be described in the context of full
quantum gravity. This very uncertain state of affairs is represented in Figure 4.

VII. Conclusions

We have explored certain instabilities of the fireworks scenario proposed in [28] and have proposed
a simple way to resolve them. These instabilities are all associated with the presence of a white hole
trapping horizon that is sufficiently long lived. General considerations demand the gravitational
collapse (even in the fast scenario of fireworks where Hawking radiation does not play an important
dynamical role) to be time-asymmetric and it is precisely by allowing such asymmetry that the
instabilities are resolved. In this way the black hole phase lasts a time of order m2 followed by
an extremely fast explosion where the mass m is radiated back to infinity in a time shorter than
m log(m) in Planck units (10−4s for a solar mass BH, 10−9s for a lunar mass BH). The same
considerations of the irreversible nature of the gravitational collapse lead to uncertainties in the
description of the details of this late bounce. A more precise (not yet available) quantum gravity
description of the dynamics across the would-be-singularity could shed light on these details. It is
possible that, despite these uncertainties, the scenarios discussed here could lead to some generic
observable phenomenology (for instance the m log(m) explosion scale). We leave this question to
the experts.
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Appendix A: Lifetimes

In this Appendix we compare natural time scales that appear in the collapse models. As recalled
in Section II, there is the time scale, introduced in [28], defined as the proper time τ that an observer
seating just outside the horizon at r∆ has to wait in order for allow quantum gravitational effects
to pile up until q = 1 in that region. This time scale, of order m2, is referred to as the lifetime
of the black hole in [28]. However, when one talks about lifetime in black hole physics, one would
rather refer to the retarded time elapsed at I + between an initial u0 (roughly defined by detection
of the first Hawking quantum), and the complete evaporation of the hole us (in our case). More

8 These microstates are responsible for black hole entropy in LQG [56] and have been argued to provide a simple,
natural resolution of Hawking’s information loss paradox in [57] in the more conservative framework where Hawking
evaporation is the main quantum effect for BHs with m � 1 [58].
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precisely u0 can be identified with the retarded time at which the entanglement entropy at I +

starts departing significantly from zero. The results of [59] show that this happens for the retarded
time corresponding to the collapsing shell shrinking to r = 3m. We can write

τlife = us − u0 = ∆u+ (u∆ − u0). (27)

The second term can be calculated from the diagrams (the result is the same in different models);
the result is

τlife = ∆u+ ∆v +
4

3
m+ 4m log(3). (28)

This means that, to leading scaling order, the lifetime defined in this way coincides with the one
used in [28]. It is driven by ∆v when it is chosen to scale with m faster than linearly. In the present
models we have τlife ∼ τ ∼ m2 if ∆v ∼ m2.

Appendix B: The Hartle-Hawking state

In this Appendix we recall the basic formulae (used in the main text) that allow to compute
the renormalized expectation value of the energy momentum tensor in 1 + 1 dimensions. Moreover,
we compute for completeness the analog of the Hartle-Hawking quantum state in the fireworks
background. This state leads to a regular expectation value of the energy momentum tensor in the
semiclassical part of the spacetime. It has the well-known thermal properties outside the collapsing
shell. However, this state does not represent the physics of gravitational collapse as it does not
satisfies the vacuum boundary conditions neither at I − nor inside the collapsing shell as the
following calculation shows.

To do this, let us first recall some basic relations [45]. Any 1 + 1 spacetime is conformally flat
and can therefore be written as

ds2 = −e2ρdx+dx− (29)

for some function ρ and a double null coordinate system x±. The mean value of the covariant
stress-energy tensor on some state |Ψ〉 can be defined to be

〈Ψ|T±± |Ψ〉 = − ~
12π

(
(∂±ρ)2 − ∂2

±ρ
)

+ 〈Ψ| : T±± : |Ψ〉 (30)

where : T±± : is the normal ordered stress-energy tensor. The off-diagonal term is given by

〈Ψ|T+− |Ψ〉 = − ~
12π

∂+∂−ρ. (31)

While 〈Ψ|Tµν |Ψ〉 is covariant under a coordinate transformation x± → ξ±, the normal ordered
stress tensor transforms as

〈Ψ| : Tξ±ξ± : |Ψ〉 = 〈Ψ| : Tx±x± : |Ψ〉 − ~
24π

{
x±, ξ±

}
(32)

where

{
x±, ξ±

}
=
d3x±/dξ

3
±

dx±/dξ±
− 3

2

(
d2x±/dξ

2
±

dx±/dξ±

)2

(33)

is the Schwarzian derivative.
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The terms that are independent of the state |Ψ〉 are vacuum polarization contributions stemming
from the conformal anomaly. For example, by identifying x+ → v and x− → u in the Schwarzschild
region with metric (7), they become:

− ~
12π

(
(∂±ρ)2 − ∂2

±ρ
)

=
~

24π

[
−m
r3

+
3

2

m2

r4

]
− ~

12π
∂+∂−ρ = − ~

24π

(
1− 2m

r

)
m

r3
.

The in-state
The |in〉 state is defined with respect to the mode expansion in terms of

φin = eiωv, φout = eiωuin . (34)

Inside the collapsing shell this state coincides with the Minkowski vacuum: the vacuum polarization
vanishes and the normal ordered contribution vanishes. Outside the collapsing shell we have

〈in|Tuu |in〉 =
~

24π

[
−m
r3

+
3

2

m2

r4

]
− ~

24π

{
uin, u

}
〈in|Tvv |in〉 =

~
24π

[
−m
r3

+
3

2

m2

r4

]
〈in|Tuv |in〉 = − ~

24π

(
1− 2m

r

)
m

r3
,

(35)

where we have explicitly written the vacuum polarization terms (34). Using equation (10) one can
compute the Schwarzian derivative term and obtain (12).

The Hartle-Hawking-like state
Take the vacuum state |H〉 of the Fock space where positive frequencies are defined with respect

to the mode expansion of solutions of (6) of the form

φin = eiωV , φout = eiωU , (36)

where U and V are the Kruskal coordinates for the black hole geometry. We compute are the com-
ponents of the covariant stress-energy tensor of this state in the Minkowski patch of the spacetime
defining the inside of the collapsing shell (at least the one connected with the Schwarzschild one
without touching the quantum region) which is described by the metric

ds2 = −dvduin . (37)

Outside the collapsing shell. Outside the collapsing shell and all over its classical
chronological future one has

〈H|Tuu |H〉 = 〈H|Tvv |H〉 =
~

768πm2

(
1− 2m

r

)2 [
1 +

4m

r
+

12m2

r2

]
〈H|Tuv |H〉 = − ~

24π

(
1− 2m

r

)
m

r3

(38)

Notice that these are well behaved in regular coordinates at the past horizon; see (15). At large
r →∞ we recover the energy momentum tensor of a thermal bath

〈H|Tuu |H〉 = 〈H|Tvv |H〉 =
~

768πm2

〈H|Tuv |H〉 = 0.
(39)
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Inside the collapsing shell. In the Minkowski patch of the spacetime the first term
on the right-hand side of eq. (30) is zero and, moreover, by definition the state |H〉 is such that
〈H| : TUU : |H〉 = 〈H| : TV V : |H〉 = 〈H| : TUV : |H〉 = 0. Therefore we find

〈H|Tuinuin |H〉 = − ~
24π

{
U, uin

}
=

~
768πm2

(
1− 8m

(uin − vs)
+

48m2

(uin − vs)2

)
〈H|Tvv |H〉 = − ~

24π

{
V, v

}
=

~
768πm2

〈H|Tuinv |H〉 = 0

(40)

where we used the matching conditions

u = −4m log

(
− U

4m

)
= uin − 4m log

(
vs − uin − 4m

4m

)
V = 4m exp

( v

4m

)
.

(41)

For large r →∞ we recover the thermal fluid in (39). The collapsing shell in this state is initially
filled up with radiation at hawking temperature. Due to the contraction of the shell one gets a
divergence of the energy momentum tensor when the shell crosses the origin at uin = vs.
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