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Introduction

Predicting the visual appearance of objects, by carrying out an acceptable computation effort, is often a challenge because of the variety of materials and surface finishes, and the complexity of the multiple optical phenomena occurring within the material layers. Accurate prediction is however crucial for the digital design of objects. It requires modeling the multiple reflections and scattering of light at the interfaces and within the turbid media composing the material. A radiometric approach consists in writing the balance for the absorbed and scattered fluxes by introducing the properties of single scattering. In the general tridimensional case, the multiple scattering is mostly solved by Monte Carlo methods where each individual photon event is described with probabilities. For specific material structures, especially stacks of planar layers, one can solve the radiative transfer equation (RTE) [START_REF] Chandrasekhar | Radiative transfert[END_REF]. This integro-differential equation takes into account both the spatial position and the orientations of the incident and scattered fluxes. However, as it is complex to solve, many resolution techniques and approximations have been suggested. One common approximation is not to take into account explicitly lateral scattering within the material. Therefore, the equation depends only on one spatial dimension, namely the depth z within the stack. Regarding the angular distribution of light, it can be discretized into N annular solid angles. This N-flux model was first proposed by Mudgett and Richards [START_REF] Mudgett | Multiple scattering calculations for technology[END_REF] in the case of azimuthally isotropic scattering and generalized by Stamnes et al. [START_REF] Stamnes | Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layer media[END_REF] under the so-called discrete ordinate method. N can exceed 20 [START_REF] Mudgett | Multiple scattering calculations for technology[END_REF] but small N values present the advantage of simple expressions for the reflectance and the transmittance factors. For N=2, only two hemispherical fluxes with constant radiance propagate towards positive and negative z. In that case, the RTE has analytical solutions, well known as the Kubelka-Munk formulas [START_REF] Kubelka | Ein Beitrag zur Optik der Farbanstriche[END_REF][START_REF] Kubelka | New contributions to the optics of intensely light-scattering material, part I[END_REF]. This twoflux model was also extended to determine the diffuse reflectances and transmittances of stacks of scattering layers [START_REF] Kubelka | New contributions to the optics of intensely light-scattering material, part II. Non-homogeneous layers[END_REF]. Whereas the Kubelka-Munk model is the result of the continuous integration of the RTE, the [START_REF] Kubelka | New contributions to the optics of intensely light-scattering material, part II. Non-homogeneous layers[END_REF] model can be interpreted as the corresponding discrete summation. The correspondences between the continuous and discrete two-flux approaches have already been discussed [7,8,].

However, considering two diffuse fluxes is not possible when the incident light is collimated and a part of it becomes diffuse. The fourflux model with two additional collimated fluxes propagating perpendicularly to the planar layers towards positive and negative z directions improves the reflectance and transmittance predictions in case of collimated illumination. Resolutions of the RTE according to the four-flux approach with various boundary conditions were proposed by Beasley et al. [START_REF] Beasley | Scattering and absorption in turbid media[END_REF], Mudgett and Richards [START_REF] Mudgett | Multiple scattering calculations for technology[END_REF] and Ishimaru [START_REF] Ishimaru | Wave Propagation and Scattering in Random Media[END_REF]. The formulation proposed by Maheu et al. [START_REF] Maheu | Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters[END_REF][START_REF] Maheu | Four-flux models to solve the scattering transfer equation. Special cases[END_REF] became the main reference when compared with exact calculations for specific cases [START_REF] Niklasson | Comparison between four flux theory and multiple scattering theory[END_REF], or after comparisons with Monte Carlo simulations [START_REF] Maheu | Four-flux model and a Monte Carlo code: comparisons between two simple and complementary tools for multiple scattering calculations[END_REF]. In their formulation, Maheu et al. introduced an average path length parameter which can take values from 1 for a collimated flux to 2 for a perfect isotropic radiation. They also introduced a forward scattering ratio. The determination of these parameters was discussed by several authors [START_REF] Wang | Four-flux model with adjusted average crossing parameter to solve the scattering transfer equation[END_REF][START_REF] Vargas | Forward average path-length parameter in four-flux radiative transfer models[END_REF][START_REF] Vargas | Generalized method for evaluating scattering parameters used in radiative transfer models[END_REF][START_REF] Vargas | Generalized four-flux radiative transfer model average path-length parameter in four-flux radiative transfer models[END_REF][START_REF] Arancibia-Bulnes | Average path-length parameter of diffuse light in scattering media[END_REF][START_REF] Rozé | Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media[END_REF]. The four-flux model can be expressed by using a matrix formalism as suggested by Rozé et al. in the case of multilayer [START_REF] Rozé | Multilayer four-flux model of scattering, emitting and absorbing media[END_REF]. Recent formulations [START_REF] Dong | Four-flux Kubelka-Munk model of the light reflectance for printing of rough surface[END_REF][START_REF] Hébert | Fundamentals of Optics and Radiometry for Color Reproduction[END_REF] also enable predicting interface effects. The four-flux model can be used for various scattering systems as illustrated by recent publications [START_REF] Haber | Prediction of the transparency in the visible range of xray absorbing nanocomposites built upon the assembly of LaF3 or LaPO4 nanoparticles with poly(methyl methacrylate)[END_REF][START_REF] Bayou | Simulation of conversion profiles inside a thick dental material photopolymerized in the presence of nanofillers[END_REF][START_REF] Laaksonen | Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories[END_REF][START_REF] Wang | Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings[END_REF]. However, even if the fourflux approach is much easier to use than more elaborated models, the simplicity of the two-flux approximation is still often preferred. For this reason, intermediate models between two-flux and four-flux have also been proposed [START_REF] Ryde | The scattering of light by turbid media -Part 1[END_REF][START_REF] Pauli | Comparison of Different Theoretical Models of Multiple Scattering for Pigmented Media[END_REF][START_REF] Murphy | Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces[END_REF].

In the present study, we use the four-flux model without specifically focusing on the resolution of the RTE. In Section 2, we adopt a matrix formalism to calculate the reflectance and transmittance factors of a superposition of optical components (interfaces and propagating media). This approach can be seen as an extension of the Kubelka model [START_REF] Kubelka | New contributions to the optics of intensely light-scattering material, part II. Non-homogeneous layers[END_REF] to four fluxes. The main contribution of this study, presented in Section 3, consists in adapting the four-flux matrix model in order to generate families of bidirectional scattering distribution factors (BSDF) by considering an incident collimated flux in any direction and directional diffuse fluxes exiting the material. The bidirectional transfer matrices are described for the particular cases of highly scattering (Lambertian) and of non-scattering (transparent) components in Section 4. We consider flat or rough dielectric interfaces in Section 5. The complete method is finally presented in Section 6 to determine the BSDF in the special cases where a flat or a rough interface is at the top of an opaque Lambertian background.

Four-flux matrix model

The four-flux model considers a parallel planar structure of material and therefore reduces the radiative transfer equation to a problem with one spatial dimension. It can be presented as a special case of the N-flux model [START_REF] Mudgett | Multiple scattering calculations for technology[END_REF] where the radiation field for each position in the stack of layers is composed of two collimated beams Ic and Jc and two isotropic diffuse beams Id and Jd. The fluxes propagate perpendicularly to the plane, forwards (Ic and Id) and backwards (Jc and Jd). A multilayer material can be described as a succession of interfaces and media. Each component of the stack, interface or medium, gives rise to flux transfers: front side reflectance r, back side reflectance r', forward transmittance t and backward transmittance t'. They can be collimated-to-collimated (label cc), diffuse-to-diffuse (label dd) or collimated-to-diffuse (label cd) transfers. Figure 1 represents the flux transfers for a stack of two components.

Let us consider the component labelled k. The fluxes labelled by superscripts k and 1  k are related according to the following equations where, for sake of writing simplicity, we omit the label k in the transfer factors:

11 1 1 1 1 11 k k k c cc c cc c k k k c cc c cc c k k k k k d cd c cd c dd d dd d k k k k k d cd c cd c dd d dd d J r I t J I t I r J J r I t J r I t J I t I r J t I r J                            (1)
It is easy to verify that these equations express the relationships shown in Figure 1.

Matrix formulation

The system of equations ( 1) can be presented under two possible matrix equations. The first matrix equation, used to solve the RTE [START_REF] Aronson | Transfer-matrix method for gamma-ray and neutron penetration[END_REF] in a multi-angle approach, is shown in Appendix A. We consider here the second matrix equation, which focuses on the transfer nature (collimated-to-collimated, diffuse-to-diffuse and collimated-to-diffuse) and is therefore specific to the four-flux approach:

1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 kk cc cc cc kk cc cc cc kk cd dd cd dd dd kk cd dd cd dd dd II rt JJ tr r r t t II t t r r JJ                                                                  (2) 
The matrix on the left-hand side can be inverted if 0 cc dd tt  . By left- multiplying both member of Eq. ( 2) with the inverse of the left-most matrix, we obtain the following equation exhibiting the transfer matrix of the considered component, which is written for convenience under a 2×2 block form:

1 1 22 1 1 kk cc kk cc cc , kk cd dd dd kk dd II JJ II JJ                                     M0 MM (3) 
where each block is a 2×2 matrix. The two blocks on the diagonal, corresponding to collimated-to-collimated transfers (xx = cc) and diffuse-to-diffuse transfers (xx=dd), are 

             M (5)
From a given transfer matrix, the reflectances and transmittances of the component (or stack of components) can be obtained provided   

and, for collimated-to-diffuse transfers, they are given by

      11 1 1 1 1 cd cd cc dd , t ,,   M MM and             2 1 1 1 2 1 1 1 1 1 1 1 cd cd dd cd cc cc dd , , , r , , ,  M M M M M M (7) 

Matrix multiplication

In order to obtain the transfer matrix representing a stack of components, the components' individual transfer matrices are multiplied by respecting the stacking order of the components. With two components characterized by matrices M1 and M2, from front to back, the transfer matrix of the two components together is:

1 2 2 2 12 1 2 1 2 1 2 cc cc , cd cc dd cd dd dd      M M 0 MM M M M M M M (8) 
Applying the 2x2 matrix multiplication

12 xx xx
MM and the formulas (6) yields, for collimated-to-collimated (xx=cc) or diffuse-to-diffuse (xx=dd) transfers, the global transmittances and reflectances of the two component stack: 
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If either collimated-only or diffuse-only fluxes are considered, the model becomes the two-flux model described by its corresponding 2x2 matrices (either Mcc or Mdd). Similar relations as equations ( 9) were derived by Stokes [START_REF] Stokes | On the intensity of the light reflected from or transmitted through a pile of plates[END_REF] in order to predict the specular reflectances and regular transmittances of stacks of glass plates, and later by Kubelka [START_REF] Kubelka | New contributions to the optics of intensely light-scattering material, part II. Non-homogeneous layers[END_REF] to predict the diffuse reflectances and transmittances of stacks of strongly scattering layers.

Given the complex expressions of the collimated-to-diffuse reflectance and transmittance (Eqs. ( 10) and ( 11)), even with two components only, the matrix formalism is much more convenient. However, the matrix computation is valid only when the following condition is satisfied for each component:

0 cci ddi tt  (12) 
For example with an opaque component, this condition cannot be satisfied. In these cases, the matrix calculations are first performed with the literal expressions of these transmittances. They are then set to zero at the very final step of the calculation.

Extension of the four-flux matrix model to express the BSDF of component stacks

In its original expression [START_REF] Maheu | Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters[END_REF], the four-flux model assumes collimated and isotropic hemispherical diffuse fluxes propagating perpendicular to the stack of layers. In order to define BSDF models from the four-flux matrix method presented in Section 2, some adaptations are needed.

The BSDF expresses the bidirectional reflectance and transmittance distribution functions (BRDF and BTDF), for which the incident illumination is assumed to be a unique collimated flux in any direction i of the upper hemisphere, not only at the normal incidence. Moreover, the diffuse fluxes exiting the material from the border components of the stack are not assumed necessarily Lambertian and can therefore depend on the output direction o of the upper hemisphere for BRDF and of the lower hemisphere for BTDF.

The radiometric definitions and relations used in this section are detailed in the literature, for example in Refs [START_REF] Nicodemus | Geometrical consideration and nomenclature for reflectance[END_REF][START_REF] Hébert | Two-flux and multiflux matrix model for color surface[END_REF].

BSDF configuration

According to the definition of the BSDF, the incident illumination is assumed to be a collimated flux in the incident direction i. There is no incident diffuse flux or upward incident flux. In the case of the system represented in Figure 1, this means that 022 0 

d c d I J J  . The scattered light is captured in every direction o.

Collimated fluxes related to the incident direction

The collimated incident beam is defined for a freely chosen orientation i within the upper hemisphere. The collimated fluxes after multiple reflections and transmissions remain within the incident plane. Knowing the different refractive indices, the directions of the downward fluxes are defined from the incident direction i and by Snell's refraction law. The direction of each upward flux is deduced from the direction of the corresponding downward flux according to Snell's reflection law.

Directional diffuse output transfers

In the original four-flux model, the diffuse fluxes are assumed to be hemispherical with angle-independent radiance (i.e. Lambertian). In our approach, we make an exception for the diffuse fluxes exiting the material from the first or from the last component of the stack. Therefore, the reflectance and transmittance factors to be chosen depend on the position of the component in the stack. Directional light that exits the stack of components is diffused according to the BRDF and the BTDF of the bordering components. Table 1 defines the collimated-to-diffuse and diffuse-to-diffuse transfer factors to be used according to the definitions by Nicodemus et al. [START_REF] Nicodemus | Geometrical consideration and nomenclature for reflectance[END_REF]. For the sake of simplicity, we specify vector i only when the incident light is collimated, and/or vector o only when light is captured in one direction (see Tables 1 and2). By knowing the BRDF and the BTDF of a component, we can define its reflectance or transmittance factors according to the formulas given by Table 2 [START_REF] Nicodemus | Geometrical consideration and nomenclature for reflectance[END_REF]. For a stack of components, according to Table 1, and after the matrix multiplications, one can deduce the BRDF

  r f, io and BTDF   t f, io of the stack:     cd r r, f,  io io and     cd t t, f,  io io ( 13 
)
where the bidirectional reflectance and transmittance factors,   cd r, io and   cd t, io , are given by Eqs (7). Moreover, in the case where part of the incident collimated flux remains collimated after exiting the border components, the specular reflectance   cc r i and the regular transmittance   cc t i , given by Eq. ( 6) with xx cc  , have to be added to the BSDF, formally by using Dirac delta functions [START_REF] Walter | Microfacet models for refraction through rough surfaces[END_REF]. 

             
In contrast with more elaborated models based on the multiangle scattering approach [START_REF] Jakob | A comprehensive framework for rendering layered materials[END_REF], we assume that the diffuse fluxes lose their directionality within the stack. In many systems, this limitation has a weak influence when at least one component of the stack is sufficiently scattering to make the assumption acceptable. But even when it is not the case, the directionality of the collimated fluxes is preserved within the stack, and the directionality of the diffuse fluxes is conserved at the extreme components of the stack. A more restrictive limitation, but intrinsic to the four-flux approach, is the fact that the angular spreading of the collimated fluxes is not rendered.

Transfer matrices for Lambertian and nonscattering components

Among the optical components, the Lambertian scattering as well as the non-scattering components are interesting limit cases. Their presence in a stack enables important simplifications of the prediction method, especially when the border components of the stack are nonscattering. 

Lambertian component

For a Lambertian component, light is uniformly scattered over the hemisphere, independently of the orientation of the incident light. It is worth noting that it is an ideal case [START_REF] Kienle | 250 years Lambert surface: does it really exist[END_REF]. Consequently, an incident collimated light is entirely transformed into diffuse light and 0 cc cc tr  (Figure 3a). However, to fulfill the condition (12), we artificially define a transmittance cc t , which we will set to zero hereafter, and the following matrix Mcc:

10 1 00 cc cc t     M ( 14 
)
The assumption of a Lambertian component implies that the reflectance and transmittance factors are identical for a collimated or a diffuse incident light flux, and for every output direction o:

          cd cd dd cd cd dd dd r , r r t , t t t          i o i i o i o and         cd dd cd cd dd dd rr t , t t t               i i o i o (15) 
Therefore, the transfer matrix for a Lambertian component is independent of its position in the stack according to Table 1. Assuming 0 cc dd tt  , the collimated-to-diffuse transfer matrix (Eq. ( 5)) can be expressed as

1 dd cc dd cd dd dd dd dd dd cc dd r tt r t t r r tt            M ( 16 
)
For example, we can define a perfectly Lambertian rough interface or a perfectly Lambertian medium. In the last case, the medium is generally considered as symmetrical and: 

cd cd cd r t t   , io   , f  io Directional-hemispherical factor , , , cd cd cd cd r r t t     i   2 , cos o o f d     io Hemispherical-directional factor , dd dd t t    o   2 , cos i i f d     io
Bihemispherical factor , , , We can check that the superposition of Lambertian components is also Lambertian as its transfer matrix verifies the conditions ( 14) and (15).

dd dd dd dd r r t t     2 2 1 , cos cos i i o o f d d         io

Non-scattering component

Without scattering, the collimated fluxes cannot be transferred into diffuse fluxes (Figure 3b). Therefore:

22 cd ,  M0 (18) 
For example, a non-scattering component can be a perfect plane interface or a non-scattering medium. In the last case, the light cannot be reflected by such a medium  

0 cc cc dd dd r r r r     
and the matrices Mcc and Mdd are then diagonal. For the special case of a non-scattering component, the diffuse-todiffuse reflectances or transmittances are the integrals of the collimated beams in all directions of the upper or lower hemisphere, and can then be directly expressed from the corresponding collimatedto-collimated transfer factors:

    2 2 2 0 0 0 1 2 i i i // dd cc i i i i cc i i h h cos sin d d h sin d                     ii ( 19 
)
where h is r, r', t or t'. It is worth noting that the transfer matrix for the superposition of nonscattering components verifies Equation [START_REF] Vargas | Generalized four-flux radiative transfer model average path-length parameter in four-flux radiative transfer models[END_REF]. The resulting component is therefore also non-scattering. The reflectances and transmittances can be determined by operating independently with the 2x2 transfer matrices Mcc and Mdd. However, the diffuse reflectances and transmittances obtained by diffuse-to-diffuse transfer matrix multiplication (Eqs. [START_REF] Beasley | Scattering and absorption in turbid media[END_REF] with xx=dd) is a crude approximation for non-scattering components. One needs to calculate first the collimated-to-collimated reflectances and transmittances (Eqs. [START_REF] Beasley | Scattering and absorption in turbid media[END_REF] with xx=cc), and integrating then over the hemisphere (Eq. ( 19)).

Scattering components surrounded by non-scattering components

When several components are superposed, sub-stacks of nonscattering components are first regrouped and their corresponding transfer matrices are determined. The expressions of their diffuse-todiffuse transmittance factors depend if they are boundary component or not according to Table 1. In the case that the non-scattering substack is the first component, the hemispherical-directional   dd t o is:

    2 dd cc t t n   oo ( 20 
)
where n is the refractive index ratio between the initial and final media.

If it is the last component of the stack, the hemispherical-directional

  dd t o is:     2 dd cc t n t  oo (21) 
The factor 2 1 n in equation [START_REF] Rozé | Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media[END_REF], respectively the factor 2 n in equation [START_REF] Rozé | Multilayer four-flux model of scattering, emitting and absorbing media[END_REF], is related to the conservation of the optical extent and takes into account the extension of the light beam towards a less refractive medium, respectively the contraction of the light beam towards a more refractive medium [START_REF] Hébert | Two-flux and multiflux matrix model for color surface[END_REF]. A non-scattering component presents the advantage to preserve the bidirectional reflectance factor, respectively transmittance factor, when it is the first or the last component. Let us consider a nonscattering component (index 1) on any scattering component (index 2) as represented in Figure 4a. By using equation ( 11) and the properties of the non-scattering component 1 (Eqs ( 18) and ( 20)), the resulting bidirectional reflectance factor   cd r, io can be expressed in terms of the one of the component 2,

  2 2 2 cd r, io :                1 2 2 2 1 2 1 2 1 2 11 cc cd cd cc cc cc dd dd t r , r , t n r r r r     o i o i o i ii (22) 
where the directions i2 and o2 are related to the directions respectively i and o according to Snell's refraction law.

With similar considerations, we can obtain the bidirectional transmittance factor for any scattering component (index 1) on a nonscattering component (index 2) as represented in Figure 4b: 

                   2 1
where the direction o1 is related to the outgoing direction o according to the Snell's refraction law.

Transfer matrices for flat and rough interfaces

As the first and the last components mainly influence the BRDF and BTDF of a layered material, the scattering responses of these two components must be analyzed carefully. These border components are most often interfaces. We present the corresponding four-flux matrices for a flat or a rough interface between two dielectric media labeled 0 and 1, with respective refractive indices n0 and n1. The relative refractive index of the interface is denoted as 10 n n n  .

Flat interface

A flat interface is a non-scattering component, which does not enable any collimated-to-diffuse light transfer. Therefore, the 2×2 matrix cd M is a zero matrix. The collimated-to-collimated transfers are given by the Fresnel formulae as functions of the incident direction i. By calling 

                1 01 01 10 1 01 10 1 01 1 1 cc cc c ii c t T R r R R tT si n R n n si                   ii ii ii (24)
the collimated-to-collimated transfer matrix can be written according to formulas ( 5) and ( 24):

        01 01 01 01 1 1 12 cc R RR T        i M ii i (25)
Regarding the diffuse-to-diffuse transfer matrix, the bihemispherical reflectance factor rdd is obtained by the angular integration of equation ( 19) [START_REF] Judd | Fresnel reflection of diffusely incident light[END_REF]:

  2 01 01 0 2 i / dd i i r r R sin d       i ( 26 
)
The other bihemispherical reflectance and transmittance factors can then be easily deduced from rdd by the relations: 

              (27)
These bihemispherical factors only depend on the refractive index ratio n and can be expressed analytically [START_REF] Molenaar | Determination of Kubelka-Munk scattering and absorption coefficient[END_REF]. According to equations ( 20) and ( 21), if the flat interface is the first or the last component of the stack, the hemispherical-directional transmittance factors can be calculated as:

    2 01 dd t T n   oo (28)     2 01 dd t n T  oo (29)

Rough interface

Any model describing the BSDF of a rough interface can be used in the four-flux model presented in this article. We adopt the microfacet model described by Walter et al. [START_REF] Walter | Microfacet models for refraction through rough surfaces[END_REF]. The roughness parameter σ becomes an additional index for all transfer factors. We assume that the incident collimated flux is completely converted into diffuse fluxes. Hence, the collimated-to-collimated transfers are assumed to be zero (Eq. ( 14)). The bidirectional reflectance factor is defined as

           01 01 4 r r r R , D G , , r,     i h h i o h io i n o n ( 30 
)
and the bidirectional transmittance factor as: 

                 2 

   i h o h i h h i o h io i n o n i h o h (31)

where Dσ is the distribution of the microfacet normals, G is a shadowing-masking term, and the directions r h and t h are defined as

  r    h i o i o and   0 1 0 1 t n n n n     h i o i o .
All entries of the transfer matrix are reflectance and transmittance factors that can be calculated according to the position of the component within the stack (Table 1), and to the angular distribution of the incident flux on both faces (relations of Table 2). For example, the following equation gives the expression of the bihemispherical reflectance factor 01 r  as a function of the directional-hemispherical reflectance factor

  01 r  i :   2 01 01 0 2 i / ii r r sin d        i ( 32 
)
Appendix B shows the calculated directional-hemispherical and the bihemispherical factors of a rough interface for various roughness parameter values, and presents a way to preserve the energy at the interface.

Flat or rough interface on an opaque Lambertian background

As case studies, we consider a flat or a rough interface on the top of an opaque Lambertian background (Figures 5a and5b). These systems involve only two components and the matrix calculations result in compact analytical relations. The calculation consists in multiplying the transfer matrix of the interface described in Section 5 by the transfer matrix of the opaque Lambertian background defined in Section 4.2. As a Lambertian component, the substrate matrix must verify the relations ( 14) and ( 16). The background diffuse reflectance is denoted as

dd cd rr   .
Although the substrate is opaque, we artificially assume that 0 cc t  and 0 dd t  (Eq. ( 12)) while

0 cd cd cc dd t t t t        and 0 cd cc dd r r r       .
The transfer matrices of the opaque Lambertian background can then be written as:

1 0 1 0 0 0 and 0 0 00 dd cc cc dd cd cc dd t t , t t                                M M M (33) 

Flat interface on a Lambertian background

As the first component of the stack, the transfer matrices for the plane interface are (Eqs. ( 25)-( 28)): The resulting transfer matrix is obtained by multiplying the interface matrix [START_REF] Hébert | Two-flux and multiflux matrix model for color surface[END_REF] with the background matrix [START_REF] Nicodemus | Geometrical consideration and nomenclature for reflectance[END_REF]. We obtain the following matrices for the stack of the two components: 

             
         
From these matrices, using Eqs. ( 6) and ( 7), we can deduce the transfer factors of the interfaced background. Then, by setting 0 cc dd tt  (these latter were artificially maintained non-zero), we obtain that the transmittances are zero as expected since the material is opaque. The overall collimated-to-collimated reflectance corresponds to the specular reflectance   01 R i of the flat interface. Finally, the collimated- to-diffuse reflectance rcd of the interfaced background enables deducing the BRDF without its specular component thanks to Eq. ( 13):

        01 01 2 10 1 1 r f , T T r n      i o i o (36) 
This analytical relation was firstly obtained by Elias et al. [START_REF] Elias | Bidirectional reflectance of a diffuse background covered by a partly absorbing layer[END_REF] and can be interpreted as a bidirectional extension of the earlier spectral reflectance model by Williams and Clapper [START_REF] Williams | Multiple Internal Reflections in Photographic Color Prints[END_REF] for gelatin-based photographic color prints assuming a non-absorbing gelatin layer. The Saunderson correction [START_REF] Saunderson | Calculation of the color pigmented plastics[END_REF] deals with the same system (flat interface on a Lambertian background) but in the more basic two-flux approach for diffuse light beams. The bidirectional calculation can be easily extended to the case of a stack of non-scattering components instead of a single flat interface either by using the four-flux matrix formalism, or by replacing the interface regular transmittances T01 and internal diffuse reflectance r10 of Eq. ( 36) by the equivalent factors of the nonscattering multilayer [START_REF] Simonot | Extension of the Williams-Clapper model to stacked nondiffusing colored coatings with different refractive indices[END_REF]. The model can be also generalized to non-Lambertian background by using Eq. ( 22), which allows calculating the BRDF of a flat interface on the top of any substrate whose bidirectional reflectance factor is known.

Rough interface on a Lambertian background

By using the notations introduced in Section 5, the transfer matrices for the rough interface as first component of the stack are written:

  

)
where Tcc is the collimated-to-collimated transmittance of the rough surface, firstly assumed to be non-zero.

After multiplying the rough interface matrix (37) by the opaque Lambertian background matrix [START_REF] Nicodemus | Geometrical consideration and nomenclature for reflectance[END_REF], we obtain: 

                                   i M i o i o (38) 
From these matrices, using Eqs. ( 7) and ( 13), and by setting

0 cc cc dd T t t   
(artificially maintained non-zero during the calculations), we can deduce the corresponding BRDF with no additional specular term:

        01 01 10 10 1 1 r f , r , t t r            i o i o i o (39) 
The first term of Eq. ( 39) is the BRDF of the rough interface (single scattering). The second term is due to the multiple reflections between the inner face of the rough interface and the Lambertian background. As far as we could see in the literature, such analytical expression for this system has never been published. However, as explained in Appendix B, usual microfacet models strongly underestimate the internal diffuse reflectance 10 r  . To compensate for this energy loss at the interface, we assume this reflectance to be independent of the roughness (see 

Interfaced Lambertian facets

It is interesting to compare the configuration described by equation [START_REF] Molenaar | Determination of Kubelka-Munk scattering and absorption coefficient[END_REF] and Figure 5b with the one described by Figure 5c, developed in a previous work [START_REF] Simonot | A photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets[END_REF], with the same microfacet slope distribution. The corresponding BRDF can be written as:

                   01 2 10 01 01 2 1 1 r m r, f, r n T , T , D G , , d            io io i n o n i m o m m i o m i m o m ( 40 
)
where the integral sums up the radiances related to every microfacet normal m in the hemisphere.

It can be first noted that both models are equivalent for a flat interface   0   with the expression given in equation [START_REF] Jakob | A comprehensive framework for rendering layered materials[END_REF]. Moreover, the first term   01 r,  io , due to surface scattering, is similar for both equations [START_REF] Molenaar | Determination of Kubelka-Munk scattering and absorption coefficient[END_REF] and [START_REF] Elias | Bidirectional reflectance of a diffuse background covered by a partly absorbing layer[END_REF]. It corresponds to a Cook-Torrance-like specular lobe [START_REF] Cook | A reflectance model for computer graphics[END_REF] whose expression is given in equation [START_REF] Murphy | Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces[END_REF]. We therefore focus the comparison on the second term of equations ( 39) and ( 40), due to volume scattering. When a Lambertian background has a flat interface, its volume BRDF trends rapidly towards zero at grazing incident angles (see Figure 6 for 0   ). This effect is reduced when considering a rough interface superposed over the Lambertian background (Figure 6a). The resulting volume BRDF tends to the one of a Lambertian reflector when the roughness increases. This BRDF is azimuthally isotropic, which is not the case for the distribution of interfaced Lambertian facets (Figure 6b). The variation of the volume BRDF depends on the observation angle: it decreases when observation is the part of the hemisphere containing the specular direction (θo>0 in Figure 6b) but it increases for grazing angles towards the backscattering direction (θo<0 in Figure 6b). This difference between both models is striking even when there is no refractive index change   1 n  between media. In that specific case, the figure 5b (Eq. ( 39)) is equivalent to the flat Lambert background while the figure 5c (Eq. ( 40)) corresponds to a distribution of Lambertian microfacets, and is therefore equivalent to an Oren-Nayar-like model [START_REF] Oren | Generalization of the Lambertian model and implications for machine vision[END_REF]. 

Conclusion

The methodology presented in this article opens new perspectives to solve radiative transfer problems. We adapt the four-flux model by describing a material as a stack of discrete components. We introduce a 4x4 transfer matrix that described for each component of the stack, collimated-to-collimated, diffuse-to-diffuse and collimated-to-diffuse flux transfers both in transmittance and reflectance. Stacks of components are built by carrying out the corresponding matrix multiplications. Special matrices describe a Lambertian or a nonscattering component, a flat or a rough interface, and a border component given by its BRDF and BTDF. By construction, the 4x4 transfer matrix can be reduced to 2x2 matrices, and the two-flux models for either collimated-only or diffuse-only beams are special cases of this four-flux model. The use of four-flux is justified as soon as at least one component induces collimated to diffuse light transfers, and particularly for translucent materials where the two-flux models fail. We also extend the four-flux to obtain the BSDF of multilayer systems. A restriction of the model is the directionality loss of the diffuse fluxes within the stack. However, in most common cases, this limitation has a negligible impact, because the model accounts for the directionality of the collimated fluxes at every position within the stack, and for the directionality of the diffuse fluxes for the most external scattering components of the stack. Another restriction is that the four-flux approach does not describe the progressive angular broadening of the collimated beams. However, the method is easy to use, offers compact matrix expressions and quick computations. For computer graphics, it allows to generate families of virtual BSDF for a superposition of components knowing the BSDF of each component. We apply the method for a flat and a rough interface on an opaque Lambertian background. Although systems with only two components are relatively basic, they offer a wide variety of physical based reflectance models from matte to glossy materials. We intend to apply this methodology to more complex systems, where the compact matrix formalism will be an attractive feature.

Appendix A: Another transfer matrix

The transfer matrix chosen in the article focuses on the nature of the light transfers (labelled cc, dd or cd). After rearrangement of the flux order for the vectors, another matrix relation, alternative to relation [START_REF] Mudgett | Multiple scattering calculations for technology[END_REF] , can be obtained: 

                                                             (41) 
By introducing the 2x2 matrices T, R, T' and R', the matrix relation can be rewritten by block: 

                                             T 0 1 R R 1 0 T (42) 
By assuming 0 cc dd tt  , the matrix of the left side is inverted and left- multiplied to the matrix of the right side: Given the 2x2 block matrices Mij of the transfer matrix, the following matrix relations can be obtained: 

This transfer-matrix formalism was classically used to solve the radiative transfer equation with NxN block matrices [START_REF] Aronson | Transfer-matrix method for gamma-ray and neutron penetration[END_REF]. Let us note that both matrix expressions (Eqs. ( 2) and ( 41)) are related by permutation matrices. r  (Figure B2b). Let us note that because of energy loss, 01 r  continuously decreases with roughness parameter while 10 t  is almost constant. As a physical description of the interactions with multiple facets seems to be very complex, these effects are mostly ignored, or empirically corrected. For example, Jakob et al. [START_REF] Jakob | A comprehensive framework for rendering layered materials[END_REF] suggest to reintroduce the energy loss as a diffuse radiation in reflection and transmission so that the energy is conserved. With the same idea, we suggest to firstly calculate 01 r  , respectively 
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 1 Fig. 1. Flux transfers between two components represented by thin arrows. Bold arrows correspond to fluxes.

  us express for example to frontside reflectance and the front-to-back transmittance for the different tupes of transfers. For collimated-to-collimated (xx=cc) and diffuse-todiffuse (xx=dd) transfers, they are given by:

Figure 2

 2 explicits the notations.

Fig. 2 :

 2 Fig. 2: Useful notations for defining the BSDF.

  Azimuthal angle φ Elementary solid angle dω

Table 1 :

 1 Collimated-to-diffuse and diffuse-to-diffuse reflectance and transmittance factors of a component according to its position in the component stack. The greyed cells are non-useful situations according to the assumptions presented in Section 3.1.

Fig. 3 :

 3 Fig. 3: Flux transfers (a) for a Lambertian component, (b) for a nonscattering component.

Fig. 4 :

 4 Fig. 4: (a) Bidirectional reflectance factor   cd r, io of a non-scattering component (index 1) on a scattering component (index 2), (b) bidirectional transmittance factor   cd t, io of a scattering component (index 1) on a non-scattering component (index 2)

Fig. 5 :

 5 Fig. 5: (a) Perfectly flat interface on a Lambertian background, (b) microfacet rough interface on a Lambertian background, (c) distribution of interfaced Lambertian microfacets.

  in figureB2-b). Consequently, we apply Equation (39) by replacing 10 r  by the internal diffuse reflectance 10 r of a flat interface.

Fig. 6 :

 6 Fig. 6: Volume BRDF in the incident plane, assuming a Beckmann distribution for Dσ and the corresponding Smith shadowing-masking function for G [47,48], with 60 i  

  , to preserve energy conservation. The internal diffuse reflectance 10 r  can then be considered as independent of the roughness, and can be approximated by the internal diffuse reflectance 10 r of a flat interface.

Fig. B2 :

 B2 Fig. B2: Bihemispherical factors of a rough interface in terms of the roughness parameter σ with n=1.5 (a) from medium 0 to medium 1, (b) from medium 1 to medium 0.

Table 2 : Expressions of the different reflectance or transmittance factors in function of the BRDF or BTDF f, where
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Appendix B: Energy preservation for a microfacet rough interface

We consider a rough interface between two media with 15 n.  , whose bidirectional transfer factors are given by the equations [START_REF] Murphy | Modified Kubelka-Munk model for calculation of the reflectance of coatings with optically-rough surfaces[END_REF] and [START_REF] Aronson | Transfer-matrix method for gamma-ray and neutron penetration[END_REF]. The function Dσ is the Beckmann distribution and the corresponding shadowing-masking function G is the one described by Smith [START_REF] Smith | Geometrical shadowing of a random rough surface[END_REF] and generalized by Bourlier et al. [START_REF] Bourlier | One and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations[END_REF]. Figure B1 shows the different directional-hemispherical factors. As expected, the rougher the surface is, the more Lambertian these resulting factors are. The differences with the flat interface   0   are more pronounced at grazing incident angles from the less to the more refractive medium (Figure B1a). The differences are much more important in the opposite direction due to the effect of total reflection for a large part of the incident hemisphere (Figure B1b). From relations similar to equation ( 32), the different bihemispherical factors can be calculated and are represented in figure B2 in terms of the roughness parameter. The conservation of energy should give 1 rt . This is however not the case because the microfacet models do not account for interactions with multiple facets. The energy loss increases steadily with the roughness parameter. It is relatively weak from medium 0 to medium 1 (3% loss for σ=0.6). It has a larger impact on the diffuse transmittance 01 t  than on the diffuse reflectance 01 r  (Figure B2a). From medium 1 to medium 0, the loss is much more important (20% loss for σ=0.6). Due to the total reflections, it mainly impacts the diffuse reflectance