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The vascular cambium, a meristem responsible for wood
formation

xylem
(wood)

vascular
cambium

phloem

bark

The vascular cambium
produces two tissues:

phloem, which conducts
ascending sap
xylem, which conducts
descending sap

The seasonal formation of
xylem results in a succession of
tree-rings.
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Differentiation of cambial cells into tracheids

Several phases of differentiation:

enlargement / division
cycles

enlargementwall thickening
and lignification

death and destruction
of cell content

differentiation

Zonation in the developing xylem:

phloemcambial
zone

enlargement
zone

wall thickening and
lignification zone

ring from
year N - 1

toward
the center
of the stem

toward
the bark
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The cell flow and its coordination

Continuum mechanics point of view
Cell enlargement causes movements in the developing tissue, with a
complex kinematics.

Major issue
The cell flow has to be coordinated at the tissue scale in order to regulate
the growth and produce the anatomical structure of the tree-ring.
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Coordination via biochemical signals

A graded concentration profile of auxin has been measured in wood-forming
tissue. It has been hypothesized that this gradient provides a positional
information to the cells:
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From Bhalerao and Fischer (2014).
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Coordination through a morphogenetic gradient

Central hypothesis
A concentration gradient of some biochemical signal provides enough
information to guide the development of the tissue and produce the final
anatomical structure observed.

Several candidate signals:
auxin (the most often mentioned);
peptides (e.g. TDIF);
cytokinins;
. . .
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Observable 1: Seasonal dynamics of xylem radial growth

According to data from Michelot et al. (2012):
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) After an initial phase of
exponential growth, the
radius increase becomes
linear, then slows down
until final arrest.

Question 1
Can a morphogenetic gradient control the radial growth and curb the
exponential divergence?
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Observable 2: Number of cells in each developmental zone

Using core samples, it is possible to obtain the average trend in cell number
in each zone.
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Rapid increase in cell numbers
at the beginning of the
growing season, then
progressive decrease.

From Cuny et al. (2013).

Question 2
Can a morphogenetx gradient control zonation and its trend through the
growing season?
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Observable 3: Anatomical structure of a tree-ring formed

Fully-formed tree-rings have a characteristic anatomical structure:

growing season

cell production barkpith
cambium

onset cessation

previous ring earlywood transition latewood

first formed
cell

late formed
cell

cell radialdiameter

Illustration adapted from Cuny et al. (2014).

⇒ large cells in earlywood / narrow cells in latewood

Question 3
Can a morphogenetic gradient account for the tree-ring structure?
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CoXyS (Conifer Xylogenesis Simulator)
Objectives and core principles

Objectives
Assessing the morphogenetic-gradient hypothesis.
More broadly, unveiling the kinematics of wood formation.

Core of the CoXyS models
basic unit = cell
a single radial file of cells is considered
the signal enters the file from the phloem side

Two possible kinds of signal transport:
diffusion in the cell walls (e.g. TDIF peptide)
polar active transport (e.g. auxin)
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CoXyS core: cell identity and enlargement

distance from cambial initials (µm)
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Signal concentration in a cell (blue dots) defines its identity:
- if concentration > division threshold, the cell can enlarge and divide;
- between the two thresholds, the cell enlarges without dividing;
- below the enlargement threshold, the cell does not enlarge.

The enlargement rate of a cell is proportional to its concentration of signal.
If a cell has an identity that allows division, it divides when it reaches twice
its initial diameter.
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Diffusible signal which is not absorbed nor diluted

We assume that the signal
is not absorbed by the
tissue
diffuses fast enough so
that dilution due to
growth is negligible

Concentration is held fixed
at both endpoints. The
profile remains linear, but
becomes flatter and flatter
as the file is growing. This
leads to an exponential
growth (positive feedback).
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Diffusible signal which is absorbed, but not diluted

dilution is still
neglected
the signal is absorbed
by the tissue

The concentration profile
reaches a steady state, with
an exponential shape.

After an initial exponential
phase, the growth of the file
reaches a constant speed.
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Diffusible signal which is not absorbed, but diluted

dilution is no longer
neglected
the signal is not
absorbed by the tissue

Where cells are enlarging,
the concentration profile
reaches a steady state, with
an approximate exponential
shape.

Again, the growth of the
file reaches a constant
speed. The growth curbs
itself through dilution
(negative feedback).
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Polar transport of auxin

Auxin transport from one cell to another relies on special carriers (PIN and
AUX/LAX).
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The non-uniform distribution of PIN proteins on the membrane makes auxin
transport polar.
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What if polar transport is involved?
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Carriers oriented toward the xylem (a): the signal accumulates and the
growth is exponential.
Carriers oriented toward the cambium (c): the concentration profile
reaches a steady state and the growth is under control.
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Simulating the variations in cell numbers through a season

By tuning the absorption rate through a whole season, we could reproduce
most of the trends observed:
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Simulated cell sizes

Cell sizes of a tree-ring obtained from a simulation with a realistic zonation:
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Summary of findings

Back to the morphogenetic-gradient hypothesis
1 Control of growth dynamics: yes (except for the progressive arrest at

the end of the growing season).
2 Control of the zonation: yes.
3 Control of the anatomical structure: no.

Next move
Going beyond the morphogenetic-gradient hypothesis, but still with a
kinematic approach.
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Thank you for your attention!

Max Ernst, They have slept in the forest too long
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