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Impact of kinetic isotope effects in isotopic
studies of metabolic systems
Pierre Millard1,2,3,4,5*, Jean-Charles Portais3,4,5 and Pedro Mendes1,2,6

Abstract

Background: Isotope labeling experiments (ILEs) are increasingly used to investigate the functioning of metabolic
systems. Some enzymes are subject to kinetic isotope effects (KIEs) which modulate reaction rates depending on
the isotopic composition of their substrate(s). KIEs may therefore affect both the propagation of isotopes through
metabolic networks and their operation, and ultimately jeopardize the biological value of ILEs. However, the actual
impact of KIEs on metabolism has never been investigated at the system level.

Results: First, we developed a framework which integrates KIEs into kinetic and isotopic models of metabolism,
thereby accounting for their system-wide effects on metabolite concentrations, metabolic fluxes, and isotopic
patterns. Then, we applied this framework to assess the impact of KIEs on the central carbon metabolism of
Escherichia coli in the context of 13C-ILEs, under different situations commonly encountered in laboratories. Results
showed that the impact of KIEs strongly depends on the label input and on the variable considered but is
significantly lower than expected intuitively from measurements on isolated enzymes. The global robustness
of both the metabolic operation and isotopic patterns largely emerge from intrinsic properties of metabolic
networks, such as the distribution of control across the network and bidirectional isotope exchange.

Conclusions: These results demonstrate the necessity of investigating the impact of KIEs at the level of the
entire system, contradict previous hypotheses that KIEs would have a strong effect on isotopic distributions
and on flux determination, and strengthen the biological value of 13C-ILEs. The proposed modeling framework
is generic and can be used to investigate the impact of all the isotopic tracers (2H, 13C, 15N, 18O, etc.) on
different isotopic datasets and metabolic systems. By allowing the integration of isotopic and metabolomics data
collected under stationary and/or non-stationary conditions, it may also assist interpretations of ILEs and facilitate the
development of more accurate kinetic models with improved explicative and predictive capabilities.

Keywords: Isotope effect, Isotope labeling experiment, Metabolic flux analysis, Fluxomics, Kinetic model, Isotopic
model

Background
Isotopic studies are increasingly used to better under-
stand the organization and the functioning of metabolic
systems in systems biology and to assist the design of ef-
ficient and robust production strains in biotechnology
[1–4]. The basic principle of isotope labeling experi-
ments (ILEs) consists of: i) cultivating cells on an isotop-
ically enriched substrate [5], ii) collecting metabolites using
adequate sampling methods [6–8], and iii) quantifying

their isotopic content by mass spectrometry (MS) and/or
nuclear magnetic resonance (NMR) [9–12]. Isotopic data
are typically exploited to identify metabolic pathways
[13] and metabolites [14], to assist the discovery of
new metabolite-protein regulatory interactions [15], to
profile metabolic variants [16, 17], and to quantify
metabolite and flux responses to environmental and
genetic perturbations [18, 19].
The biological insights obtained from ILEs are valid

provided isotopes do not modify the operation of the
metabolic network investigated and no isotopic fraction-
ation occurs in the network. However, many enzymes
are subject to kinetic isotope effects (KIEs) that modify
reaction rates depending on the isotopic composition of
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their substrate(s) [20]. For instance, it is well established
that Rubisco, the carbon fixing enzyme of the Calvin
cycle, assimilates preferentially 12CO2 over 13CO2 [21].
Therefore, KIEs modify the propagation of isotopes
through the network and the isotopic data collected in
ILEs. Since KIEs modify reaction rates, one can intui-
tively expect they also impact the operation of the meta-
bolic systems investigated (i.e. metabolite concentrations
and fluxes), and thus isotopic data themselves. However,
the metabolic control may be distributed over different
steps of a pathway, and in this case the change of rate
constant of a particular reaction may not directly trans-
late into a change of flux through the corresponding
pathway. This systemic property of control distribution
across the network was theoretically developed under
the framework of metabolic control analysis [22, 23] and
has been repeatedly observed in vivo [24–27]. Changes
of reaction rates may also propagate through the net-
work and affect the metabolic operation and the distri-
bution of isotopes in other parts of the network. Hence,
KIEs may exert considerable effects over all variables of
the system (metabolite concentrations, fluxes, and distri-
bution of isotopes), and thus potentially jeopardize the
biological value of ILEs. However, these effects are usu-
ally assumed to be negligible.
The first attempt to assess the impact of KIEs on the

distribution of isotopes in intracellular metabolites was
published recently, in the context of 13C-ILEs [28]. They
concluded that in some situations the impact of KIEs of
pyruvate dehydrogenase on the labeling of acetyl-CoA
may be of comparable size to the measurement errors in
GC-MS, hence introducing a significant bias in the
estimated fluxes. In another study, Fan et al. [19] carried
out 2H-ILEs to quantify the contribution of the pentose
phosphate pathway to NADPH production in Escheri-
chia coli. They corrected isotopic measurements for the
strong isotopic fractionation related to 2H, assuming
they have no impact on fluxes. Although highly inform-
ative, these studies were carried out at the level of a
single metabolic node. Thus, they fail to account for the
system-wide effect that these KIEs have over all metabol-
ite concentrations, fluxes and isotopic distributions.
In this study, we first developed a modeling framework

which combines isotopic and kinetic models, while tak-
ing the system-wide KIEs into account. This framework
is based on the fluxomer concept [29], which represents
the rates at which metabolic reactions transform each
substrate(s) isotopomers. This allows for a straight-
forward integration of KIEs, which are measured for
a particular (subset of) substrate(s) isotopomer(s). This
generic framework was applied to investigate the impact of
KIEs on the glycolytic and pentose phosphate pathways of
the model bacterium E. coli, in the context of the most
widely used 13C-ILEs. The impact of KIEs on metabolite

concentrations, fluxes and isotopic distributions was quan-
tified under a broad range of situations commonly encoun-
tered in laboratories (in terms of label input, metabolic
state, and isotopic information considered).

Methods
Model construction
The kinetic model published by [30] was used as a scaf-
fold to develop the isotopic system, as detailed in the re-
sults section, with carbon atom transitions taken from
[6]. Since reversibility results in bidirectional isotope ex-
change [31], forward and backward rates of reversible re-
actions were considered separately by decomposing the
rate laws into forward and backward components. For
instance, in the case of the phosphoglycerate mutase
(GPM) described by a reversible Michaelis-Menten-type
rate law:

vnetgpm ¼ Vmax

PG3− PG2
Keq

KPG3
m : 1þ PG2

KPG2
m

� �
þ PG3

ð1Þ

the forward (vforw) and backward (vback) rates are equal
to:

vforwgpm ¼ Vmax
PG3

KPG3
m : 1þ PG2

KPG2
m

� �
þ PG3

ð2Þ

vbackgpm ¼ Vmax

PG2
Keq

KPG3
m : 1þ PG2

KPG2
m

� �
þ PG3

ð3Þ

The model thus contains 58 fluxes (32 irreversible and
13 reversible reactions) decomposed into 7376 fluxo-
mers. This model describes the dynamics of 616 isotopo-
mers (and 94 isotopologues) from 17 metabolites.
Five reactions included in the model are catalyzed

by enzymes for which KIEs were identified (Table 1).
However, KIEs were measured only for singly labeled
isotopomers. KIEs related to multiply labeled isotopo-
mers were approximated assuming effects are cumula-
tive [28]. Multiply labeled isotopomers are therefore
more strongly impacted by KIEs than singly labeled
isotopomers.

Simulations
The system of ordinary differential equations was auto-
matically generated in FORTRAN, and steady-states
were calculated using the LSODE solver implemented in
the runsteady function of the rootSolve package (v1.6.5)
of R (v3.0, www.r-project.org). Absolute and relative
error tolerances were set to 10−8 and 10−6, respectively.
All the scripts used to construct the models, perform
the simulations and generate the figures are distributed
in supplementary information (Additional file 1) under
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an open source license to ensure reproducibility and
reusability.

Global sensitivity analysis
A global sensitivity analysis was carried out to evaluate
the robustness of our conclusions under a broad range
of metabolic states. To this end, steady-states were simu-
lated for 10,000 sets of random enzyme levels generated
using the runif function of R. For each set, maximum re-
action rates (Vmax, which is proportional to the level of
active enzyme) were sampled over two orders of magni-
tude (between 0.1 and 10 times the enzyme levels of the
initial model) from a log uniform distribution to ensure
each order of magnitude to be sampled in similar
proportions.

Results and discussion
Modeling isotopic fractionation
A simple network is given in Fig. 1a as an example, with
the corresponding carbon atom transitions shown in
Fig. 1b. The labeling state of a metabolite containing n
carbon atoms is denoted by the coefficients (a, b,…, n),
which take a value of 0 if the atom in the corresponding
carbon position is 12C or a value of 1 if the atom is 13C.
For instance, B0,1,1 represents the isotopomer of the me-
tabolite B which is unlabeled in position 1 and labeled in
positions 2 and 3. In the absence of KIEs, each isotopo-
mer of a given metabolite reacts with a probability equal
to its abundance relative to the total metabolite pool.
Each isotopomer Aa,b,c is thus produced at the rate v1
weighted by S

�
a;b;c , which denotes the concentration of

the isotopomer Sa,b,c relative to the total S pool (
X
a;b;c

Sa;b;c).

Similarly, Aa,b,c is consumed at the rate v2 weighted by
Āa,b,c, which denotes the concentration of the isotopomer
Aa,b,c relative to the total A pool. Therefore, the balance
around the isotopomer Aa,b,c is:

dAa;b;c

dt
¼ v1:S

�
a;b;c−v2:A

�
a;b;c ð4Þ

where v1 and v2 are functions of the concentrations of
reactants and effectors, and of the kinetic parameters of
the enzymes catalyzing these reactions. This equation
can be rewritten using the fluxomer variable introduced
by [29]. A fluxomer is the rate at which a metabolic re-
action transforms one or several substrate(s) isotopo-
mers into product(s) isotopomers. Fluxomers are usually
expressed as rate fractions [28, 29], which allows a direct
mapping between fluxomers and isotopomer abun-
dances. However, this is not relevant to calculate isoto-
pomers derivatives. Therefore, fluxomers were expressed
as absolute rates rather than rate fractions. In the ab-
sence of KIEs, the fluxomer f1

a,b,c which consumes Sa,b,c
is defined by:

f Sa;b;c1 ¼ v1:S
�
a;b;c ð5Þ

and the mass balance around Aa,b,c can be rewritten
as:

dAa;b;c

dt
¼ f Sa;b;c1 −f Aa;b;c

2 ð6Þ

It must be noted that the term "fluxomer" is somewhat
misleading in the context of this study since it does not
define a flux (which is a term used for the rate when the
reaction is part of a whole system) but rather a local rate
(i.e. the rate when considering the reaction isolated from
the rest of the system). Bearing that in mind, we keep
this terminology for sake of simplicity, but note the
important distinction between these terms.
KIEs affect the rate constant of reactions depending

on the isotopic composition of their substrate(s). Conse-
quently, KIEs were included by weighting each fluxomer
with a coefficient α which represents the KIE of a given

Table 1 Kinetic isotope effects measured on five central metabolic enzymes. For multiply labeled isotopomers, α coefficients were
approximated from KIEs of singly labeled isotopomers assuming KIEs are cumulative [28]; for instance, αPDHPYR_110 = αPDHPYR_100. αPDHPYR_010

Enzyme Reaction Substrate Isotopomer α Ref.

6-phosphogluconate dehydrogenase GND PGN 100000 0.9905 [48]

glucose-6-phosphate dehydrogenase G6PDH G6P 100000 0.9837 [49]

fructose-1,6-bisphosphate aldolase ALD FBP 001000 0.9843 [50]

ribulose-5-phosphate epimerase RPE RB5P 01000 0.9931 [51]

00100 0.9818

00010 0.9852

00001 0.9980

pyruvate dehydrogenase PDH PYR 100 0.9908 [52]

010 0.9791

001 0.9969
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enzyme with respect to its substrate(s) isotopomers. For

instance, each coefficient αAa;b;c
v2 is defined as:

αAa;b;c
v2 ¼ vAa;b;c

2

vA0;0;0

2

ð7Þ

where vAa;b;c

2 ( vA0;0;0

2 ) represents the rate of reaction 2
when isotopomer Aa,b,c (A0,0,0) is its unique substrate.
The mass balance around Aa,b,c finally becomes:

dAa;b;c

dt
¼ αSa;b;cv1 :f Sa;b;c1 −αAa;b;c

v2 :f Aa;b;c

2 ð8Þ

To calculate the mass balances for the isotopomers of
pool B, two additional points must be taken into ac-
count. First, it is worth recalling that bidirectional iso-
tope exchange that arise from reversibility significantly
impacts the distribution of isotopes through the network

[31]. Forward and backward reaction rates must be
considered separately in the case of reversible reactions,
like v3 in the model considered here. Second, in the case
of reactions with more than one substrate, the impact of
KIEs on reaction rate may depend on the isotopic com-
position of each substrate. Therefore, one fluxomer must
be defined for each combination of substrates isotopo-
mers. Reaction v3 was first decomposed into its forward
(v3

forw) and backward (v3
back) components, each of them

being then decomposed into fluxomers:

f Ba;b;c

3; forw ¼ vforw3 :B
�
a;b;c ð9Þ

f Ca;Db;c

3; back ¼ vback3 :C
�
a:D

�
b;c ð10Þ

and the mass balance around Ba,c,b is:

Fig. 1 A simple example network. a Representation of the example network in Systems Biology Graphical Notation format (SBGN, www.sbgn.org) [47].
Rounded rectangles represent enzymes, circles represent metabolites, and circles with dark bands along their bottoms represent metabolites which
appear multiple times in the map. The concentration and labeling state of S are fixed, and reactions v5–7 represent sink reactions. b Carbon transition
network used to construct the isotopomers balances, where hexagons represent carbon positions. While v1 and v4 do not modify the
carbon skeleton between substrates and products, other reactions result in carbon inversion (v2) or in the reversible cleavage of carbon-
carbon bonds (v3)
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dBa;c;b

dt
¼ αAa;b;c

v2 :f Aa;b;c

2

þ αCa
v3 :α

Dc;b
v3 :f Ca;Dc;b

3; back−α
Ba;c;b
v3 :f Ba;c;b

3; forw−α
Ba;c;b
v4 :f Ba;c;b

4

ð11Þ
Using the same formalism, the mass balances around

the isotopomers of C, D and E are:

dCa

dt
¼

X
b;c

αBa;b;c
v3 :f Ba;b;c

3; forw

� �
−
X
b;c

αCa
v3 :α

Db;c
v3 :f Ca;Db;c

3; back

� �
−αCa

v5 :f
Ca
5

ð12Þ
dDb;c

dt
¼

X
a

αBa;b;c
v3 :f Ba;b;c

3;f orw

� �
−
X
a

αCa
v3 :α

Db;c
v3 :f Ca;Db;c

3;back

� �

−αDb;c
v6 :f Db;c

6 ð13Þ

dEa;b;c

dt
¼ αBa;b;c

v4 :f Ba;b;c

4 −αEa;b;c
v7 :f Ea;b;c

7 ð14Þ

The system of ordinary differential equations (ODEs)
defined by Eqs. 8, 11, 12, 13, 14 can be transformed into
matrix notation by defining a matrix U where rows corres-
pond to isotopomers and columns correspond to fluxo-
mers. This matrix contains the stoichiometric coefficients
of each substrate(s) and product(s) isotopomer(s) for each
fluxomer fr

p (where p represents a particular (set of) sub-
strate(s) isotopomer(s) consumed through the reaction r).

A vector f is then defined that contains all the fluxomers
(calculated from the kinetic rate laws of each reaction, the
concentrations of reactants and effectors, and the relative
abundances of substrate(s) isotopomers), and a vector a
that contains the coefficients αr

p for each fluxomer fr
p. The

isotopomer balances can be calculated by:

dI
dt

¼ U :ðf ðtÞ∘aÞ ð15Þ

where I is the vector of isotopomer concentrations
and ∘ is the element-wise product operator, i.e. (f(t) ∘
a)x = fx(t). ax. The dynamics (and steady-states) of all
the isotopomers can be simulated by solving this sys-
tem of ODEs. Finally, fluxes and metabolite concen-
trations can be calculated by summing fluxomers and
isotopomer concentrations, respectively. The numer-
ical procedure and its implementation are summa-
rized in Fig. 2.

Impact of KIEs on the operation of E. coli central
metabolism in 13C-labeling experiments
We applied this framework to evaluate the impact of
KIEs on the operation of the glycolytic and pentose
phosphate pathways of the model bacterium Escherichia
coli grown on 13C-labeled glucose. The kinetic model
published by [30] was used as a scaffold to construct the
isotopic model, with the carbon transition network taken

Fig. 2 Diagram of the procedure developed to simulate the system-level impact of KIEs on metabolism. Blue boxes represent the input (definition
of the metabolic system investigated and of its parameters), green and red boxes represent the steps implemented in R and FORTRAN, respectively, and
orange box represents the output (simulation results). R is used to i) construct isotopic matrices, ii) create the FORTRAN library which contains the ODEs
system, iii) initialize parameters, iv) solve ODEs and v) gather the results. Briefly, the FORTRAN library performs the following steps: i) computes metabolite
concentrations (M) by summing isotopomer concentrations (I), function g, ii) calculates fluxes from metabolite concentrations (M) and kinetic parameters
(p), function h, iii) decomposes fluxes (F) into fluxomers (f) using concentrations of isotopomers (I) and metabolites (M), function i, and iv)
isotopomers derivatives are finally calculated from the isotopic matrix (U) and the fluxomers (f) and KIEs (a) vectors (Eq. 15)
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from [6] (Fig. 3). KIEs measured on five enzymes were
included (glucose-6-phosphate dehydrogenase, G6PDH;
6-phosphogluconate dehydrogenase, GND; ribulose-5-
phosphate epimerase, RPE; fructose-1,6-bisphosphate

aldolase, ALD; and pyruvate dehydrogenase, PDH), with
the corresponding αr

p coefficients listed in Table 1.
Steady-states were simulated for glucose at natural
abundance and six different glucose labelings: U-13C-

Fig. 3 Central carbon metabolic network of Escherichia coli. Representation of the glucose uptake, glycolytic and pentose phosphate pathways of E. coli
in SBGN format. Circles represent metabolites and rounded rectangles represent enzymes. Enzymes subjected to kinetic isotope effects are highlighted
in orange. Note that the 17 reactions of dilution of intracellular pools due to growth are omitted from this diagram for clarity of the layout
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glucose, a mixture containing 80 % of 1-13C- and 20 %
of U-13C-glucose, an equimolar mixture of 12C- and
U-13C-glucose, 2,3,4,5,6-13C-glucose, 1,2-13C-glucose
and 3,4-13C-glucose. These label inputs are representative
of those commonly used in 13C-ILEs [6, 32–35].
For the metabolic state represented by the model, the

relative changes of fluxes and metabolite concentrations
caused by KIEs for each glucose input are shown in
Fig. 4a and b, respectively. Impact on these variables is
low (<2 %), with maximal changes observed when cells
are grown on U-13C-glucose. Since in this situation all
the metabolites are fully labeled, impact of KIEs on reac-
tion rates is also maximal. For instance, assuming that
KIEs are cumulative at the level of a single reaction [28],

the reaction rate of the ribulose-5-phosphate epimerase
(RPE) is reduced by 4.14 % when RB5P is fully labeled.
However, the predicted change of flux (−1.7 %) is lower
than that, which can be explained by the distribution of
flux control over several reactions of the network. More-
over, the signs of the changes of fluxes and metabolite
concentrations depend on the label input. This indicates
that the impact of KIEs on the system cannot be intui-
tively inferred from their impact at the reaction level,
even qualitatively. The impact of KIEs must be investi-
gated at the system-level and not at the level of an iso-
lated reaction or metabolic node.
The predicted changes of metabolite concentrations

are significantly lower than the precision commonly

Fig. 4 Impact of KIEs on the operation of E. coli central carbon metabolism. The impact of KIEs on the (steady-state) fluxes (a) and metabolite
concentrations (b) of E. coli central carbon metabolism was simulated for glucose at natural abundance and six label inputs commonly
used in 13C-labeling experiments. Impact of KIEs was defined as the relative difference between steady-states reached with and without
KIEs, i.e. with alpha coefficients set to their experimental values (Table 1) or to 1, respectively
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reached in metabolomics (circa 10 %) [18, 36], hence
they cannot be detected with current methods. The same
situation is observed for fluxes, with changes caused by
KIEs slightly lower than the flux precision commonly ob-
tained in 13C-metabolic flux analysis (13C-MFA) [5, 6, 12].
However, the predicted flux changes caused by KIEs are
one order of magnitude higher than the flux precision
estimated using parallel labeling experiments with different
label inputs [37]. Therefore, fluxes obtained in high-
resolution 13C-MFA studies might be biased, and KIEs
should be considered during flux estimation and sensitivity
analysis when such high degree of precision can be reached.

Impact of KIEs on isotopic patterns of central metabolites
Isotopic data collected in 13C-ILEs can be exploited quan-
titatively to infer information on the structure and the op-
eration of metabolic systems. Since KIEs may impact
isotopic data and ultimately jeopardize the validity of the
biological interpretations, their impact must be assessed
rigorously. This was performed for the various isotopic
data that can be acquired with modern analytical plat-
forms: isotopomer distributions [11, 38, 39], isotopologue
distributions [7, 40] and molecular enrichments [40, 41].
The corresponding (steady-state) isotopic datasets were
simulated in the absence or presence of KIEs, for three
different label inputs: glucose at natural abundance, a mix-
ture containing 80 % of 1-13C-glucose and 20 % of U-13C-
glucose, and an equimolar mixture of 12C- and U-13C-glu-
cose. The distributions of errors caused by KIEs are shown
in Fig. 5 for each isotopic dataset and label input.
The sensitivity of isotopic data to KIEs strongly depends

on the isotopic information considered and on the label
input. As a general trend, the impact of KIEs is maximal
for the equimolar mixture of 12C- and U-13C-glucose, and
minimal for glucose at natural abundance. The predicted
errors caused by KIEs are surprisingly low – below 0.001 –
for virtually all metabolites and isotopic data. The only ex-
ception is pyruvate, with predicted errors up to 0.0045 for
its isotopologues, 0.0047 for its isotopomers, and 0.0045
for its molecular enrichment. These errors originate
exclusively from KIEs of pyruvate dehydrogenase (PDH).
Here again, the system-level impact of KIEs on the isotopic
distributions strongly differs from the impact that can
be expected for isolated reactions. Moreover, impacts
of individual KIEs do not add up at the system level,
contrary to what was previously hypothesized [28].
This example illustrates how the framework developed

here can be used to evaluate the sensitivity of each iso-
topic data to KIEs. The less reliable measurements with
respect to KIEs can be identified and discarded from the
datasets exploited in quantitative approaches such as 13C-
MFA. In the situations investigated here, the biases caused
by KIEs on the distribution of isotopes into the glycolytic
and pentose phosphate pathway metabolic intermediates

are significantly lower than the precision and accuracy
obtained by MS (or even MS/MS) [40, 42] and NMR [10],
which is around 1 %, and cannot be detected. Many other
central metabolic enzymes are likely subject to KIEs,
which may significantly increase their predicted impact on
isotopic patterns. However, the present results support the
assumption that KIEs can be neglected when studies
focus on the glycolytic and pentose phosphate path-
ways and are based on isotopic information obtained
from metabolic intermediates.

Isotopic data are robust to KIEs under a broad range of
metabolic states
The above results indicate that isotopic data are robust
to KIEs locally, i.e. near the given metabolic state investi-
gated. However, metabolic systems are highly non-linear
and the impact of KIEs might strongly differ depending
on the metabolic state considered [28]. To grasp the
global impact of KIEs on isotopic distributions, we first
generated 10,000 sets of random enzyme levels for
which we calculated the steady-states of the system with
80 % 1-13C- glucose + 20 % U-13C-glucose as label input.
Although it is clear that these sets are not representative
of those expressed in vivo, they are expected to result in
different metabolic states. This was confirmed by analyz-
ing the distribution of some systemic steady-state vari-
ables, e.g. the glucose uptake flux varied between 0.02
and 1.6 mmol/gDW/s, and the carbon channeled into gly-
colysis varied between 0 and 98 % of the glucose uptake
flux (Fig. 6). For each metabolic state, errors caused by
KIEs on the three isotopic datasets were calculated and
are summarized in Fig. 7. Errors remain very low for the
vast majority of isotopic data, with 99.7 % of absolute
isotopomer errors below 0.002, 99.0 % of absolute isoto-
pologue errors below 0.003, and 97 % of enrichment
errors below 0.003. Here again errors strongly depend
on the metabolite considered. For all isotopic datasets,
the highest errors are related to pyruvate, consistently
with the above results. Still, errors for this metabolite
errors are minor in most cases (<0.003 for 89 % of its
isotopomers and 77 % of its isotopologues). A more
detailed analysis revealed that only the proportions of
the unlabeled and fully labeled pyruvate isotopomers
(and isotopologues) are significantly impacted by KIEs
(Fig. 8), errors regarding other isotopomers (and isoto-
pologues) remain very low (<0.002) under all the meta-
bolic states. Errors related to other metabolites are
minor (<0.003) for all the datasets, for instance the high-
est absolute error for glyceraldehyde-3-phosphate (GAP)
isotopologues is 0.002. These results highlight a global
robustness of the isotopic data measured on glycolytic
and pentose phosphate pathway intermediates, and
soften the conclusions of [28].
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Reversibility is a key determinant of the robustness of
isotopic patterns
In a linear pathway with an irreversible step (i.e. not
subject to feedback inhibition by its product(s)), reac-
tions downstream the irreversible step do not exert any
flux control [43]. Reversibility therefore participates in
the robustness of the metabolic operation to KIEs by
contributing to the distribution of (flux and concentra-
tion) control via feedback regulation. In ILEs, another
consequence of reversibility is the bidirectional exchange
of isotopes that occurs between substrates and products
of reversible reactions. To test if this exchange also plays
a role in the robustness of isotope distribution to KIEs, a
model of the same network was generated without expli-
citly considering isotope exchange in the isotopomer

balances, i.e. without decoupling forward and backward
reaction rates when constructing the equation system. It
is important to mention that all the systemic properties
that emerge from metabolic regulation (in particular the
distributed control) are identical in both models since
the rate laws remain unchanged. With the two models,
the impact of KIEs on isotopologue abundances was
simulated with and without isotope exchange (Fig. 9).
Errors caused by KIEs were significantly higher for all
metabolites when exchange was not explicitly consid-
ered, with a 10-fold increase of the mean of absolute
errors (0.0014 vs 0.00015). Moreover, errors increased for
all metabolites. For instance, while errors on fructose-6-
phosphate (F6P) and dihydroxyacetone phosphate (DHAP)
isotopologues are negligible with exchange (<0.0002 for
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Fig. 5 Impact of KIEs on the distribution of isotopes in intracellular metabolites. The impact of KIEs on the different isotopic datasets of central
metabolites (isotopologue abundances in panels a-c, isotopomer abundances in panels d-f and enrichments in panels g-i) was simulated for
three label inputs: glucose at natural abundance, 80 % 1-13C-glucose + 20 % U-13C-glucose, and 50 % 12C-glucose + 50 % U-13C-glucose. Error is
defined as the absolute difference between isotopic data simulated with and without KIEs, i.e. with alpha coefficients set to their experimental
values (Table 1) or to 1, respectively
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both metabolites), they increase up to 0.006 for F6P and
0.008 for DHAP without exchange. Hence, reversibility
appears as a key determinant of the robustness of isotopic
data to KIEs, both by contributing to the distribution of
control across the network and by enabling bidirectional
exchange of isotopes between metabolites.
This is consistent with the 13C-depletion observed in

amino acids [44] since they are produced by less revers-
ible biosynthetic pathways and are therefore expected to
be more sensitive to KIEs. Conversely, no major isotopic
fractionation was detected on central metabolites in a
recent study aiming to produce standard samples that
contain metabolites with controlled and predictable iso-
topic contents [40]. Our simulations support these con-
clusions and strengthen the reliability of the proposed
strategy. These results stress the necessity to take into
account reversibility, or at least to evaluate the potential
consequences of neglecting this important property of
metabolic systems, when integrating isotopic data into
quantitative models.

Conclusion
In this work we introduce a framework that allows com-
prehensive and rigorous investigations on the impact of
KIEs in isotopic studies of metabolism. This framework
integrates KIEs into kinetic and isotopic models of me-
tabolism, thereby accounting for their effects on metab-
olite concentrations, isotopic patterns, and metabolic
fluxes on a system-wide basis.
As a case study, this framework was applied to assess

the impact of KIEs on i) the operation of the central
metabolic network of Escherichia coli and ii) the distri-
bution of isotopes into metabolic intermediates, in the
context of 13C-ILEs under metabolic steady state condi-
tions. Simulations showed that the impact of KIEs is lower
than expected from measurements obtained on isolated
enzymes. Robustness of the metabolic operation – and
thus also of the distribution of isotopes – to KIEs partly
originates from the distribution of concentration and flux
control over several steps of the network. Bidirectional
isotope exchange due to reversibility is also a major

fr
eq

ue
nc

y 
(

)

fr
eq

ue
nc

y 
(

)

Fig. 6 Random sampling of enzyme levels results in a broad range of metabolic states. Distribution of the steady-state glucose uptake (a) and
glycolytic (b) fluxes simulated from 10,000 sets of random enzyme levels

Fig. 7 Global impact of KIEs on isotopic patterns. Distributions of errors caused by KIEs on the isotopomer abundances (a), isotopologue abundances
(b) and enrichments (c) of metabolic intermediates, simulated from 10,000 sets of random enzyme levels to cover a broad range of metabolic states.
Error is defined as the absolute difference between isotopic data simulated with and without KIEs, i.e. with alpha coefficients set to their experimental
values (Table 1) or to 1, respectively
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determinant of the robustness of the isotopic patterns.
This robustness was observed for virtually all the meta-
bolic intermediates, for all the label inputs tested, and
under a broad range of metabolic states. It is therefore un-
likely that KIEs jeopardize the biological insights obtained
in 13C-ILEs, at least for the metabolic network investi-
gated here. The low impact of KIEs on central metabolic
intermediates also confirms the interest of quantifying the
labeling directly in these intermediates rather than in
metabolic end products (such as proteinogenic amino
acids). It is important to note that the impact of KIEs may
be significant in other situations (in terms of isotopic
tracers, metabolic pathways or analytical platforms) and
should be evaluated in the specific context of each study.
These findings soften the suggestions of previous stud-

ies that 13C- KIEs would have a strong effect on isotopic
distributions [28] and stresses the necessity of consider-
ing reversibility in isotopic studies. It now appears evi-
dent that the impact of KIEs on metabolic systems must
be investigated at the system level. Unfortunately, KIEs

are still unknown for many enzymes, and in most cases
they are measured only for some isotopomers. It seems
therefore important to dedicate more efforts to in vitro
characterization of KIEs. Future knowledge can be read-
ily integrated into the model developed here to obtain a
more accurate picture of their impact on the system.
The proposed modeling framework is generic and is

applicable for other metabolic systems, for different iso-
topic tracers (e.g.2H, 18O or 15N), or for other systemic
variables. It may therefore facilitate accurate interpret-
ation of isotopic data collected in ILEs and increase the
reliability of the biological insights inferred from these
data. We are also considering the application of this
framework to better exploit the rich isotopic information
collected in ILEs. In particular, it may allow a more accur-
ate estimation of in vivo kinetic parameters of enzymes by
integrating isotopic and metabolomic measurements
obtained under metabolic and/or isotopic non-stationary
states [45]. This is expected to improve the predictive and
explicative capabilities of kinetic models, and thereby their

Fig. 8 Global impact of KIEs on the isotopic content of pyruvate. The distributions of errors caused by KIEs on the (steady-state) abundances of pyruvate
isotopomers (a) and isotopologues (b) were estimated from 10,000 sets of random enzyme levels. Error is defined as the absolute difference between
isotopic data simulated with and without KIEs, i.e. with alpha coefficients set to their experimental values (Table 1) or to 1, respectively

Fig. 9 Impact of bidirectional isotope exchanges on the robustness of isotopic data to KIEs. The impact of KIEs on the isotopologue abundances
of central metabolites was simulated for 80 % 1-13C-glucose + 20 % U-13C-glucose as label input, with (red squares) or without (blue squares)
considering isotope exchange caused by reaction reversibility. Error is defined as the absolute difference between isotopic data simulated with
and without KIEs, i.e. with alpha coefficients set to their experimental values (Table 1) or to 1, respectively
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applicability for in silico design of industrially competitive
cell factories [46].
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