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Abstract. Beyond a given threshold, an upward fluid flow at constant flowrate, injected 
through a small size section, is able to generate a fluidization along a vertical chimney over 
the entire height of a granular assembly. Fluidization is first initiated in the immediate vicinity 
of the injection hole and then the fluidized zone grows gradually until reaching the upper 
surface of the granular packing. In this work, we present numerical results on the kinetics of 
chimney fluidization in an immersed granular bed produced with two-dimensional 
simulations coupling the Discrete Element and Lattice Boltzmann Methods (DEM-LBM). A 
parametric study is carried out with 11 different sets of physical parameters and analyzed 
based on spatio-temporal diagrams. Then a dimensional analysis allows finding general 
scaling laws for both threshold and growth rate of the fluidized zone by use of two 
dimensionless numbers, namely Reynolds and Archimedes numbers, while quite simple 
empirical relationships can also be proposed. 
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1 INTRODUCTION 
A fluidized state within a granular bed is reached when the upward force exerted by the 

flow can balance the buoyant weight of the particles. Fluidization is used extensively in 
industry for drying, mixing and agglomeration processes with many applications as 
gasification of biomass, ion exchange processes or high efficiency carbon capture. Some 
among these industrial processes rely more specifically on a localized state of fluidization as 
is the case for spouted beds [1] and tapered beds [2] which are generated by means of an 
upward gas flow injected most often at the neck of a conical container. Contrariwise, 
channelization, i.e. occurrence of such preferential channels of fluidization, is to be absolutely 
avoided for other types of fluidized bed applications. In sedimentology, some geologic 
formations of fluid escape structures by localized fluidization through vertical pipe have been 
specifically examined [3]. A somehow similar situation is encountered in the context of dike 
safety, when a seepage flow through the foundation of an embankment is susceptible to 
generate such a local fluidization, commonly called “sandboil”, and possibly initiate a piping 
process by backward erosion, which is one of the four basic mechanisms identified for soil 
particles removal by internal erosion [4]. 

Here the focus is put more restrictively on the development and growth of a local fluidized 
state within an immersed granular assembly induced at the bottom of the grain bed by an 
upward fluid flow passing through a small injection hole. Several previous works have 
studied specifically this configuration and analysed the formation of a vertical chimney of 
fluidized soil on the basis of either experiments [5, 6] or numerical simulations coupling 
Discrete Element Method (DEM) with Lattice Boltzmann Method (LBM) [7]. It should be 
noted, however, that most efforts have been so far dedicated to the steady state rather than to 
the transitory development of such fluidized chimney [6]. This transient regime of localized 
fluidization is therefore specifically under the scope of the present study. For this purpose, a 
numerical model based on a 2D DEM/LBM  coupled approach has been implemented to carry 
out a systematic analysis of the temporal evolution of the fluidized zone, expanding 
progressively from the injection hole to the top of the granular layer. As will be detailed 
below, a critical fluid velocity Uc as well as the growth rate of the fluidized cavity above this 
threshold can be precisely defined. Using the relevant dimensionless numbers of the problem, 
a general collapse of the data can be obtained, which permits the proposal of empirical scaling 
laws both for the critical velocity and for the fluidization growth rate.  

The following sections first introduce the numerical approach developed in the present 
study and then focus specifically on the transient regime to fluidized chimney within an 
immersed granular bed subject to a localized fluid injection at its base. 

2 NUMERICAL METHODS 
Many numerical methods are developed to simulate fluid-particles interactions at the 

micro-scale. The crucial point is the approach taken to couple the particles’ dynamics and the 
interstitial fluid flow. Here we have chosen to tackle this issue by a simultaneous use of the 
Discrete Element Method (DEM) and of the Lattice Boltzmann Method (LBM). This choice 
has the advantage to combine the comparative simplicity of DEM with LBM, one of the most 
efficient computational methods for fluid dynamics. Both methods as well as the coupling 
strategy are briefly described below. 
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2.1 DEM modeling of the solid phase 

     In this study, the Discrete Element Method (DEM) is implemented through the Molecular 
Dynamics modeling, a numerical method originally developed by Cundall and Strack [8] for 
rock mechanics applications and which quickly became very popular in many other fields of 
application dealing with interacting solid particles [9]. The Molecular Dynamics method 
considers the solid material as discrete particles that interact with each other in areas of 
mutual contact. The particles are assumed to be rigid with possibly a small overlap at the 
contact while the interactions are modelled by appropriate and physically based laws 
depending on this overlap. Then, the particles’ motion can be directly described by Newton’s 
equations. More details can be found in [10, 11]. 

2.2 LBM modeling of the fluid phase 
A classical D2Q9 scheme is used here for LBM describing the fluid flow within the grains, 

allowing for an explicit finite differences calculation of Boltzmann equation on a Cartesian 
lattice grid (2D) and using a discrete set of velocity vectors at each grid node (Q9) [12]. The 
calculation is related to a probability density function, discretized on the lattice, and computed 
in two successive steps: collision and advection, both assuming specific rules to ensure mass, 
momentum and energy conservation provided that Mach number is very low or, equivalently, 
that fluid velocity remains significantly smaller than the lattice speed. With this condition, the 
fluid flow follows the incompressible Navier-Stokes equations. Note also that, instead of the 
classical single relaxation time scheme originally proposed by Bhatnaggar, Gross, and Krook 
[12], a multiple relaxation time (MRT) is advantageously implemented here, following the 
generalized formulation by d’Humières [13, 14]. Further details on this method can also be 
found in [10, 11].   

2.3 Solid-fluid coupling 
In our modelling, the simple technique proposed by Bouzidi et al. [15] for momentum 

exchange is implemented to calculate the hydrodynamic forces on each discrete particle and 
couple this way the fluid and solid phases. This computation is based on a generalized 
bounce-back condition with a linearly interpolated geometry of the particles boundary inside 
the fluid lattice. A key parameter for the fluid-solid coupling is the space resolution, i.e. the 
lattice grid size compared to the minimum particle diameter. It is commonly accepted that a 
satisfactory result can be obtained with at least 10 grid points per grain diameter, which is the 
resolution used in the present study for an affordable computational cost. Moreover, as the 
calculation time is much larger for LBM than DEM, we have used the sub-cycling time 
integration technique proposed by Feng et al [16] with a number of DEM sub-cycles which is 
restricted to 2 for each LBM loop, a good compromise to maintain the accuracy of the 
computed hydrodynamic forces on the solid particles. In order to overcome the fact that a real 
2D assembly of discs in contact is an occluded space with a zero permeability value, the LBM 
calculations are here carried out with a constant reduction of the particles’ radius by a factor 
of 0.8, which provides a realistic permeability value [17] and roughly accounts for lubrication 
forces [18]. 
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3 TRANSIENT REGIME TO FLUIDIZED CHIMNEY 

3.1 Configuration and parameters 
Based on the coupled DEM-LBM technique described above, a two-dimensional numerical 

modeling was carried out to simulate an assembly of grains subjected to a localized fluid 
injection at its base. Grain sizes have a mean value d and are uniformly distributed from 0.8d 
to 1.2d. Two different samples have been used with initial height H0 equal respectively to 
approximately 86 mm and 54 mm while the overall domain dimensions are L = 222 mm in 
length and H = 160 mm in height. The bottom boundary is a solid wall except for a filtering 
orifice of width D = 14mm at its center which allows the fluid to be injected upwards at a 
constant velocity U but remains impassable for the grains. A velocity inlet condition is thus 
implemented at the injection hole while a periodic condition is set at the top and bottom 
boundaries of the domain. A no-slip condition is implemented on all other boundaries, 
considered as solid walls. A sketch of the configuration is shown in Figure 1. 

 

 
 

Figure 1: Configuration and boundary conditions of the numerical study. 

To reach a fluidized state, the drag forces induced by the interstitial flow must overcome 
the inter-granular forces within the particles’ sample. In the studied conditions of purely 
frictional interactions between grains, the internal granular stress is solely related to the 
buoyant weight of the system. Consequently, the physical parameters of the problem are: the 
diameter of the grains d, the kinematic viscosity of the fluid f, the density of the fluid f and 



562

J. Ngoma, P. Philippe, S. Bonelli, P. Cuéllar, J.-Y. Delenne and F. Radjai 

 5 

of the grains g, and finally the gravity g. The control parameter used here is the injected fluid 
velocity U while the geometry of the system is fixed by the initial height H0, the width of the 
domain L and the diameter of the injection hole D. In what follows, L and D remain 
unchanged and, since D is much smaller than L (D/L  0.06), it can be reasonably considered 
that L plays a minor role.  

A parametric study has been carried out using 11 different parameter sets (see Table 1) 
enabling some of the physical parameters to be significantly varied, namely f, g, g and d. 
Two different values of the initial height H0 has also been used while the injection diameter D 
was kept constant (D = 14mm). 

 
Table 1: Sets of parameters 

Set number f (m2.s-1) g (kg.m-3) g (m.s-2) d (mm) 

1 5.10-5 2500 9.81 2 
2 1.10-5 2500 9.81 2 
3 5.10-5 2500 1 2 
4 1.10-5 1500 9.81 2 
5 5.10-5 1500 9.81 2 
6 5.10-5 2500 1 2 
7 5.10-6 2500 9.81 2 
8 5.10-6 1500 9.81 2 
9 2.10-6 2500 9.81 2 

10 2.10-6 1500 9.81 2 
11 5.10-5 2500 9.81 4 

 
For all parameter sets, the analysis of the transitory evolution to final fluidized chimney is 

performed using space-time diagrams constructed at the injection from the different sequences 
obtained for each successive fluid velocity U imposed at the injection hole (Figure 2). From 
these diagrams, it is then possible to determine quite accurately the time T0 needed for the 
fluidized zone to expand upwards to a height equal to H0.  

 

 
Figure 2: Typical space-time diagram used to determine the duration T0 of the transient regime and calculated in 

the rectangular area (in dotted line) located above the injection hole. 

T0 
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3.2 Chimney expansion time and growth rate 
Plotting the chimney expansion time T0 as a function of the injection velocity U, a 

divergence is observed when U tends to a threshold value Uc which can be accurately 
determined by use of the following power law adjustment of the curve:  

T0(U) = 0(U/Uc – 1)- (1) 

where 0 is a constant equal to T0(U = 2Uc) and  is the opposite of the exponent.  
The value of  can be satisfactorily chosen within the range 0.5 <  < 0.7 with a small but 

still significant impact on the threshold velocity Uc. Of probably greater interest is V0 = H0/T0, 
the characteristic growth rate which quantifies the velocity at which the fluidized zone 
expands upwards. Here again, as shown in Figure 3, a power law can be used with the 
opposite exponent : 

V0(U) = 0(U/Uc – 1) (2) 

where 0 is a constant equal to V0(U = 2Uc) .  

 
Figure 3: Characteristic growth rate V0 of the fluidized zone versus fluid injection velocity U for H0 = 86 mm. 

The lines are power law functions given by Equation (2) with  = 0.6. 

It can be noted that in the present study  has been arbitrarily fixed equal to 0.6 and, 
depending on the parameters in Table 1, the values obtained for Uc vary on several orders of 
magnitude as can be noticed in Figure 3.  

3.3 Scaling laws 
Accounting for buoyancy, the only relevant physical quantities are the fluid kinematic 

viscosity f, the fluid injection velocity U, the grain diameter d, and the resultant buoyant 
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gravity g* = g(g /f -1). From these magnitudes, two dimensionless numbers can be formed, 
namely the Reynolds number Re = Ud/f and the Archimedes number Ar = g*d3/f 

2. And 
thus, the critical Reynolds number Rec = Uc d/f should consequently be simply dependent on 
Ar. As shown in Figure 4, such a relationship is indeed reasonably well obtained for all values 
corresponding to the 11 different sets of parameters and a very simple empirical power law 
relation can be proposed:  

Rec  Ar3/4 (3) 

Therefore, the dependencies on the geometrical parameters H0 and D are completely taken 
into account by the proportionality factor in Equation (3). 

 
Figure 4: The critical Reynolds number Rec plotted as a function of Archimedes number Ar for H0 = 86 mm. 

The line corresponds to Equation (3) with a proportionality factor equal to 0.1. 

Such a dimensional analysis can be extended beyond the critical value for chimney 
fluidization to account more broadly for the transient behavior obtained once this threshold is 
exceeded, i.e. for U > Uc. For this purpose, we now use the general expression of the 
Reynolds number, Re=Ud/f, while the characteristic growth rate V0 is also made 
dimensionless by introducing a new Reynolds numbers Re0 defined as follows:   

Re0 = V0d/f  (4) 

     Finally, to get rid of the additional dependencies due to the geometry of the system 
(mainly through the initial height H0), Re and Re0 are both divided by the critical Reynolds 
number Rec. This way, as shown in Figure 5, a global collapse of all the data is obtained, 
confirming the previous analysis. Moreover, following Equation (2), a general empirical 
scaling law can now be proposed in the form: 

Re0 / Rec  (Re / Rec - 1 )3/5 (3) 
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Note that the proportionality factors obtained for the two values of H0 used in this 
study are indeed rather close although slightly different, equal to 0.75 and 0.95 
respectively for H0 = 86 mm and H0 = 54 mm.  

 

 
Figure 5: The ratio Re0/Rec plotted versus Re/Rec-1 for H0 = 86 mm. The line stands for Equation (5) with a 

proportionality factor being equal to 0.75. 

4 CONCLUSION 
     A 2D coupled DEM-LBM model has been implemented to produce a realistic 
representation of fluid-grains interactions and dynamics. This model has been successfully 
applied to study the particular phenomenon of development of a fluidized chimney within an 
immersed granular bed from a small fluid injection hole at the base of a grain assembly. 
Focusing specifically on the transient regime leading to a steady chimney, a parametric 
analysis has been undertaken with 11 different sets of the main physical parameters involved 
in the problem. The first outcome of this study shows that the critical fluid velocity Uc needed 
for such a chimney fluidization can be clearly interpreted in terms of dimensionless numbers. 
The corresponding critical Reynolds Rec = Ucd/f is indeed simply a function of the 
Archimedes number Ar = g(g /f -1) d3/f 

2 which is fairly compatible with an empirical 
power law relation: Rec  Ar3/4.  
     In addition, the characteristic growth rate V0, i.e. the upward expansion rate of the fluidized 
zone, can also be predicted from our dimensional analysis provided that additional Reynolds 
numbers are formed using the different velocities of the system: U, Uc and V0. This way, it is 
possible to obtain a general collapse of all data from the different parameter sets, allowing the 
proposal of a very simple empirical law: Re0 / Rec  (Re/Rec – 1)3/5. 
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