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Long-term genomic selection for heterosis
without dominance in multiplicative traits:
case study of bunch production in oil palm
David Cros1*, Marie Denis1, Jean-Marc Bouvet1 and Leopoldo Sánchez2

Abstract

Background: To study the potential of genomic selection for heterosis resulting from multiplicative interactions
between additive and antagonistic components, we focused on oil palm, where bunch production is the product
of bunch weight and bunch number. We simulated two realistic breeding populations and compared current
reciprocal recurrent selection (RRS) with reciprocal recurrent genomic selection (RRGS) over four generations. All
breeding strategies aimed at selecting the best individuals in parental populations to increase bunch production
in hybrids. For RRGS, we obtained the parental genomic estimated breeding values using GBLUP with hybrid
phenotypes as data records and population specific allele models. We studied the effects of four RRGS parameters on
selection response and genetic parameters: (1) the molecular data used to calibrate the GS model: in RRGS_PAR, we used
parental genotypes and in RRGS_HYB we also used hybrid genotypes; (2) frequency of progeny tests (model calibration);
(3) number of candidates and (4) number of genotyped hybrids in RRGS_HYB.

Results: We concluded that RRGS could increase the annual selection response compared to RRS by decreasing
the generation interval and by increasing the selection intensity. With 1700 genotyped hybrids, calibration every
four generations and 300 candidates per generation and population, selection response of RRGS_HYB was 71.8 %
higher than RRS. RRGS_PAR with calibration every two generations and 300 candidates was a relevant alternative,
as a good compromise between the annual response, risk around the expected response, increased inbreeding
and cost. RRGS required inbreeding management because of a higher annual increase in inbreeding than RRS.

Conclusions: RRGS appeared as a valuable method to achieve a long-term increase in the performance for a trait
showing heterosis due to the multiplicative interaction between additive and negatively correlated components,
such as oil palm bunch production.
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Background
Genomic selection (GS) [1] is the state-of-the-art
method of marker-assisted selection for complex traits.
GS relies on dense genome-wide marker coverage to
produce genomic estimated breeding values (GEBV)
from a joint analysis of all markers. GEBV can be ob-
tained using a realized additive relationship matrix com-
puted from markers, in what is called the GBLUP
method [2, 3]. The GS model is calibrated using individ-
uals with known phenotypes and genotypes (training set)

and predicts the GEBV of selection candidates. For pheno-
typically evaluated candidates, GS is of interest due to its
ability to give GEBV with higher accuracy (rÂA, the correl-
ation between true and estimated breeding values) than
the EBV traditionally obtained through expected additive
relationships computed from the pedigree. GS also gives
GEBV of selection candidates that were only genotyped,
thus allowing selection without phenotypic evaluation.
This reduces the length of the generation interval (L), es-
pecially if conventional breeding requires long progeny
tests, and increases the selection intensity (i) when the
cost of phenotyping is higher than the cost of genotyping.
Consequently, the annual selection response, which is
given by rÂA × i × σa/L (with σa the additive standard
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deviation) [4, 5], can be higher with GS than with pheno-
typic selection.
GS can be used to increase the performance of in-

terpopulation plant hybrids and crossbred animals.
Kinghorn et al. [6] simulated a crossbreeding system
where GS was applied to select among parental lines
in order to increase heterosis in crossbred animals for
a trait with dominance at QTL. The highest selection
response was obtained in their study with reciprocal
recurrent genomic selection (RRGS), which consisted
of using phenotypes and gametotypes of crossbred
individuals to estimate line-specific marker effects.
Heterosis in a complex trait can also result from the
multiplicative interaction between additive and nega-
tively correlated components ([7, 8] p68-71]). For ex-
ample, this can be the case for yield in crops as a
product of fruit weight and number, or plant height
as a product of internode number and length. In such
cases, dominance at QTL is not necessary to explain
heterosis in the multiplicative trait. As GS proved to
be efficient for single additive traits in many studies,
it could also be beneficial in the case of multiplicative
interactions between complementary parental compo-
nents. However, this potential benefit over conventional
phenotypic selection has not been quantified so far. Oil
palm is an interesting model for this purpose. In oil palm,
bunch production is the product of bunch weight (BW)
and bunch number (BN), two negatively correlated and
mostly additive traits [9, 10]. Oil palm breeding currently
relies on reciprocal recurrent selection (RRS) between two
heterotic populations showing complementary character-
istics for BW and BN. One of them is the Deli population
of Asian provenance and the other is African, commonly
known as the La Mé population (Côte d’Ivoire). Deli
palms have small numbers of large bunches, while La Mé
have large numbers of small bunches. This results in
heterosis in the hybrids for bunch production, which is at
least 25 % higher than in the parental populations [11].
The potential of GS in oil palm has been evaluated in

two studies. One of these is an empirical work [12],
where the accuracy of GS was estimated through a
cross-validation approach. In this previous study, we im-
plemented population-specific GS models with progeny-
tested parents as training sets, using their deregressed
EBV and genotypes. This approach required little geno-
typing effort, as the number of progeny-tested parents
was reduced (<200 per population and generation). On
the other hand, these small numbers lead to small train-
ing sets, consequently with a detrimental effect for GS
accuracy. The small number of individuals available to
train the GS model is a common problem for many spe-
cies requiring costly and time-consuming field trial eval-
uations, particularly in perennial crops (e.g. around
0.5 ha per cross and 15 years of data record in oil palm).

An alternative to enlarge the training set could be to also
include hybrid individuals, to take advantage of the
allelic segregation existing within hybrid crosses due to
heterozygosity in parents. For this purpose, a GS analysis
taking hybrid gametotypes and parental genotypes into
account could be implemented, as in Kinghorn et al. [6].
Furthermore, in our previous empirical study, a cross-
validation approach was applied in a single generation,
whereas it would be more interesting to assess the po-
tential of GS over the long term, taking not only the
selection accuracy but also the generation interval and
selection intensity into account. Computer simulation is
useful for this, in particular for species with long breed-
ing cycles and extensive field trials [13].
The second study on the potential of GS in oil palm

involved simulation, used to assess the potential of the
method over three generations [14]. The authors con-
cluded that GS gave a higher annual selection response
than phenotypic and marker-assisted selection. However,
they made simplifying assumptions: considering a single
additive trait instead of the multiple trait approach of ac-
tual programs, and a parental population that resulted
from selfing of a hybrid between inbred lines, which did
not correspond to existing oil palm breeding popula-
tions. Moreover, Wong and Bernardo [14] only studied
the selection response, without considering the evolution
of genetic parameters. New studies on the potential of
GS in oil palm would still be warranted, notably to cover
more complex and general situations, and over several
generations.
The aim of our study was to quantify the potential of

RRGS as an alternative to conventional RRS, when the
objective is to improve hybrid performance resulting
from the multiplicative interaction between additive an-
tagonistic components. We thus focused on the oil palm
species, for which current conventional breeding is char-
acterized by a long generation interval, due to progeny-
tests, and by small populations. We simulated two realistic
(complex) oil palm breeding populations with comple-
mentary characteristics for bunch production components
(bunch weight [BW] and bunch number [BN]). We used
these populations to compare several RRGS breeding
schemes to traditional RRS over four generations, with the
aim of improving the hybrid performance of interpopula-
tion crosses for bunch production. More precisely, the
simulations investigated the effects of four GS parameters
on the selection response obtained with GBLUP in terms
of bunch production: (1) the molecular data and associ-
ated GS model: in RRGS_PAR, we used parental geno-
types to compute G matrices specific to each parental
population and a model predicting two independent ran-
dom effects of general combining abilities, one for each
parental population, and in RRGS_HYB we used geno-
types of both parents and hybrid individuals to compute
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one G matrix taking into account the parental origin of
marker alleles and a model predicting a single random ef-
fect of breeding values; (2) the frequency of progeny tests
(i.e. GS model calibration): every generation, every two
generations or every four generations; (3) the number of
candidate individuals: 120 or 300; and (4) for RRGS_HYB,
the number of genotyped hybrids: 300, 1000 or 1700. We
also studied the evolution of the genetic parameters in the
parental populations: selection accuracy and additive vari-
ance for BW and BN, their genetic correlation and
inbreeding.

Methods
Simulation overview
The overall simulation process is summarized in Fig. 1.
It involved three steps: (i) simulation of an equilibrium
base population, (ii) simulation of initial breeding

populations derived from this base population and hav-
ing realistic genetic characteristics compared to current
real oil palm breeding populations, and (iii) simulation
of the breeding strategies (reciprocal recurrent selection
[RRS] and two reciprocal recurrent genomic selection
strategies [RRGS_PAR and RRGS_HYB]) applied to the
initial breeding populations for four generations. The
simulated genome had a length of 17 M and 16 chromo-
somes. The mutation rate was 10−5 per bp per meiosis
and was kept constant throughout the simulation.
The simulations were performed with R software version

3.0.2 [15] and the HaploSim package [16]. The following
paragraphs explain the three simulation steps in detail.

Simulation of the equilibrium base population
We simulated a population over 2400 discrete genera-
tions with a constant size of 200 individuals having an
equal contribution to the following generation and
reproducing by random mating with the exclusion of
selfing. In the first generation, 20000 bi-allelic loci (SNP)
with equal distances between adjacent loci and equifre-
quent 0 and 1 alleles per locus were simulated across
the genomes. The functions in HaploSim allowed simu-
lation of meiosis between two parental haplotypes in
order to produce a new individual. Mutation-drift equi-
librium was assessed in the final generation with the
distribution of allelic frequencies expected to follow a
typical U-shaped curve. There were 17572 segregating
SNP in the last generation. A single base population
was generated this way and used as a starting point for
the rest of the simulation process.
In the last generation, segregating SNP with a minor al-

lele frequency (MAF) above 0.1 were chosen at random to
be causative mutations (QTL). We assumed that the nega-
tive genetic correlation existing between BW and BN re-
sulted from pleiotropy and consequently some QTL were
randomly chosen to have pleiotropic effects. As the QTL
number (nQTL) and percentage of pleiotropic QTL (pQTL)
are unknown, we considered a range of values for these
two parameters, assuming that this would include the true
value of nQTL and pQTL. We simulated nQTL = 100, 500
and 1000 QTL per trait and pQTL = 60, 75 % and 90 %. We
assumed a simple additive architecture for BW and BN.
For pleiotropic QTL, the QTL substitution effects for BW
(αBW) and BN (αBN) were drawn from a normal bivariate
distribution. This distribution was defined assuming a cor-
relation of -0.9 and QTL variance equal to σ2a(BW) BP / nQTL
for BN and to σ2a(BN) BP / nQTL for BW, with base popula-
tion variances σ2a(BW) BP = 6 and σ2a(BN) BP = 12 chosen by
trial and error so that σ2a(BW) and σ2a(BN) in the simulated
initial breeding populations matched the actual values.
For non-pleiotropic QTL, αBN and αBW were drawn
from normal distributions using the same QTL vari-
ances as for pleiotropic QTL. The breeding (additive)

Fig. 1 Simulation process to create two heterotic populations (similar
to the actual Deli and La Mé oil palm breeding populations) and to
compare reciprocal recurrent selection (RRS) and reciprocal recurrent
genomic selection (RRGS) over four generations. Random mating
allowed mutation-drift equilibrium to be achieved. Natural selection
was applied to increase the bunch weight in population A and the
bunch number in population B. Deli and La Mé populations originated
from bottleneck events. In subsequent generations, artificial selection
(mass selection, RRS or RRGS) was applied to increase bunch production,
which is the bunch weight × bunch number product. Marker alleles were
simulated from the start and QTL for bunch weight and bunch number
were assigned after the first 2400 generations of random mating.
RRS: reciprocal recurrent selection, RRGS: reciprocal recurrent
genomic selection
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value for each individual and the additive variance were
defined according to the quantitative genetic model of
Falconer and Mackay [4]. As we considered bi-allelic
QTL, the breeding value for a trait at a QTL in a given
population was equal to −2pα for homozygous genotype
00, (1 − 2p) α for heterozygote 01 and 2(1 - p) α for
homozygote 11, where p was the frequency of allele 1 in
the population and α the substitution effect of the QTL for
the corresponding trait. The breeding value of each indi-
vidual was obtained by summing across all QTL the breed-
ing value at each QTL. In a given population, the
intrapopulation additive variances were σ2a(BW) = ∑QTL(BW)

2p(1 – p) αBW
2 and σ2a(BN) = ∑QTL(BN) 2p(1 – p) αBN

2 . As we
assumed purely additive genetic determinism, they were
equal to twice the interpopulation additive variances.
The residual variances σ2e(BN) and σ2e(BW) were calculated
with the formula σ2e(BW) = σ2a(BW) (1 - h2BP) / h2BP and
σ2e(BN) = σ2a(BN) (1 - h2BP) / h2BP using base population
heritability h2BP = 0.8 for each trait, chosen so that h2 in
the simulated initial breeding populations matched the
actual h2. Environmental effects on BW and BN were
generated from normal distributions with mean zero
and variances σ2e(BW) and σ2e(BN). We assumed that σ2e(BW)

and σ2e(BN) were the same for the two populations and
they were kept constant throughout the simulation. The
residual correlation between BW and BN was assumed
to be zero. The phenotype was assumed to be the sum
of the breeding value, environmental effects and mean
value of the population. Initially, the mean values of the
population for BW (kg) and BN traits were set at 15 in
order to avoid negative values for bunch production and
to obtain realistic phenotypic values for BW and BN in
the simulated initial breeding populations.

Simulation of initial breeding populations
The simulation process adopted to create the initial
breeding populations from the equilibrium base popula-
tion aimed to mimic what is known of the history of the
Deli and La Mé populations [10, 17]. We proceeded by
trial and error to set the simulation parameters that were
not known from the literature or from real data (e.g. the
selection intensity for mass selection), in order to gener-
ate breeding populations with genetic parameters that
were consistent with actual parameters.
The equilibrium base population was randomly di-

vided into two populations A and B of 100 individuals
each. For 100 generations, A and B populations evolved
independently and their sizes remained constant. Mating
was random without selfing. Each population had a dif-
ferent selection regime so they had divergent evolution
for the two traits: increasing BW in A and increasing
BN in B. The parents of individuals in a given generation
were sampled in the previous generation, where the

probability for each individual to be chosen as parent
was proportional to its phenotypic value.
After these first 100 generations, four individuals were

taken at random in population A to simulate the bottle-
neck event at the origin of the actual Deli population,
which originated from four oil palms planted in
Indonesia in 1848. This was followed by three genera-
tions of random mating without selfing with 25 individ-
uals per generation, and by six generations with an
increasing number of individuals (50, 50, 60, 75, 100 and
150 individuals per generation). Mass selection was ap-
plied on bunch production during these last six genera-
tions. For mass selection, bunch production of each
individual was computed as the product between BN
and BW phenotypes. The best 70 % individuals were se-
lected and randomly mated, with the exclusion of selfings,
to produce the following generation. Similarly, in popula-
tion B, after the first 100 generations of divergence, 19 in-
dividuals were taken at random to simulate the bottleneck
event at the origin of the actual La Mé population in Côte
d’Ivoire in the 1920s. This was followed by two genera-
tions with an increasing number of individuals (75, 150)
and mass selection on bunch production. Mass selection
was implemented in the same way as for Deli, but the top
30 % individuals were selected.
At that point, the simulated Deli and La Mé popula-

tions were submitted to two generations of RRS for
bunch production, i.e. simulating what occurred in the
real oil palm breeding populations from the 1950s. The
principle of RRS is to select among candidate individuals
based on their EBV, obtained from progeny tests. Here,
EBV were simulated as values correlated with the true
breeding values, with a correlation of 0.8 in the first RRS
cycle and 0.9 in the second RRS cycle, corresponding to
the accuracy of actual oil palm progeny tests. In each
parental population, we selected the top 20 individuals
giving crosses with highest expected bunch production.
The expected bunch production of each cross between
the progeny-tested Deli and La Mé was calculated as the
product of the mean parental EBV for BW and BN. In
each population, selected individuals reproduced by ran-
dom mating with selfings allowed according to a diallel
design in which 80 % of crosses were made. In the last
generation (generation 0 in Fig. 1), 300 individuals were
produced per population, uniformly distributed among
crosses. They are hereafter referred to as initial breeding
populations. Genotypes at SNP and QTL from the initial
breeding populations, as well as pedigree information of
the last four generations in Deli and last two in La Mé,
were retained to be used in the final step of the simula-
tion (comparison of RRS and RRGS).
The simulation process was repeated several times

from the allocation of QTL to the generation of initial
breeding populations. Runs were kept only if the genetic
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parameters in the simulated initial breeding populations
were close to the real values of the current Deli and La
Mé breeding populations. This calibration was done on:
the fixation index Fst between Deli and La Mé, profiles
of linkage disequilibrium (LD), narrow-sense heritabil-
ities (h2), additive variances for BW and BN, and genetic
correlations between BW and BN. Tables 1 and 2

summarize the observed values, mean values and stand-
ard deviations (SD) obtained for the different genetic pa-
rameters in the replicates kept for the study (five
replicates per combination of nQTL and pQTL). The real
values of the Fst, interpopulation additive variances and
genetic correlations were obtained from the dataset
described in Cros et al. [12]. It consisted of 131 Deli
crossed with individuals from various African popula-
tions, including 94 La Mé, in order to progeny test them
at Aek Loba (Sumatra). They were genotyped with 265
SSR markers. The Weir and Cockerham estimate of Fst
was computed using the Hierfstat R package [18] in the
simulated data, and with the diveRsity R package [19] in
the real data. Although the simulated populations
included SNP markers, the real value found with SSR
markers could be used to calibrate the simulations, as
the SSR had polymorphisms close to those of SNP. The
actual genetic correlation between BN and BW and
additive variances for BN and BW in the parental popu-
lations were computed from the hybrid phenotypic
values using a mixed model analysis. For LD, the abso-
lute values were affected by the marker type, so we only
used the profile of LD curves to compare the simulated
and real populations. As references, we used the LD
curves calculated by Cochard [17], which showed higher
LD in Deli over short distances (below 30–35 cM) and
higher LD in La Mé for longer distances. For h2, as tar-
get values we used the mean h2 for BN and BW in Deli
and La Mé reported in the literature [20–23]. Moreover,
simulation runs where a single QTL explained over
20 % of the total additive variance were discarded, as
this was considered unrealistically high. Finally, five rep-
licates were produced for each combination of number
of QTL (nQTL) and percentage of pleiotropic QTL
(pQTL).

Simulation of reciprocal recurrent selection and reciprocal
recurrent genomic selection
The initial Deli and La Mé breeding populations were
used as starting points to compare conventional RRS
with RRGS over four generations, in terms of the
genetic gain for bunch production in hybrid individ-
uals (selection response) and the evolution of genetic
parameters in the parental populations (selection ac-
curacy and additive variance for BN and BW, genetic
correlation between BN and BW, inbreeding).
In reciprocal recurrent selection (RRS), the EBV of the

Deli and La Mé selection candidates were obtained from
the analysis of their progeny tests. At each generation,
the progeny tests involved 120 Deli and 120 La Mé. The
mating design for progeny tests was an incomplete fac-
torial design with 300 crosses (i.e. 2.5 crosses per parent,

Table 1 Genetic parameters in the initial Deli and La Mé
breeding populations (generation 0) obtained by simulation.
Values are means over five replicates ± SD

Real Number of QTL and percentage of pleiotropic QTL

values 100

60% 75% 90%

Fst 0.49 0.49 ± 0.01 0.48 ± 0.03 0.47 ± 0.02

LD (cM)a

Deli 4.9 ± 0.25 4.91 ± 0.07 5.05 ± 0.34

La Mé 2.44 ± 0.37 2.63 ± 0.27 2.73 ± 0.27

h2

La Mé BN 0.56 0.63 ± 0.06 0.64 ± 0.04 0.64 ± 0.07

ABW 0.56 0.65 ± 0.02 0.65 ± 0.04 0.63 ± 0.03

Deli BN 0.56 0.57 ± 0.03 0.63 ± 0.07 0.6 ± 0.04

ABW 0.56 0.54 ± 0.04 0.63 ± 0.06 0.58 ± 0.05

True breeding values

Deli BN 12.51 ± 0.5 11.05 ± 1.22 9.43 ± 0.87

ABW 23.32 ± 0.9 22.18 ± 0.58 21.88 ± 0.5

La Mé BN 25.27 ± 1.07 24.14 ± 0.97 24.01 ± 0.56

ABW 12.71 ± 1.28 12.57 ± 0.87 10.85 ± 1.04

Genetic correlation r(BN, ABW)b

Deli −0.9 −0.69 ± 0.07 −0.75 ± 0.07 −0.9 ± 0.02

La Mé −1.0 −0.73 ± 0.04 −0.73 ± 0.1 −0.86 ± 0.03

Total intrapopulation additive variance

Deli BN 5.5 1.55 ± 0.22 1.86 ± 0.63 1.78 ± 0.24

ABW 2 0.76 ± 0.15 0.98 ± 0.38 0.87 ± 0.15

La Mé BN 5 2 ± 0.37 1.82 ± 0.28 2.12 ± 0.5

ABW 3 1.16 ± 0.2 1.04 ± 0.22 1.06 ± 0.2

Mean intrapopulation additive variance at QTL (in % total)

Deli BN 1.59 ± 0.1 1.57 ± 0.16 1.64 ± 0.16

ABW 1.51 ± 0.03 1.59 ± 0.11 1.64 ± 0.17

La Mé BN 1.41 ± 0.1 1.49 ± 0.06 1.45 ± 0.09

ABW 1.4 ± 0.11 1.46 ± 0.07 1.48 ± 0.11

Inbreeding

Deli 0.26 ± 0 0.26 ± 0 0.25 ± 0.01

La Mé 0.14 ± 0.01 0.13 ± 0.01 0.13 ± 0
amean distance (cM) where linkage disequilibrium (LD) measured by r2 between
adjacent loci was 0.1, calibration was made on the shape of the curves
bthe residual correlation in the real dataset was estimated at −0.15 and was
considered to be 0 in the simulation
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with variations in the number of crosses per parent kept
as small as possible). The chosen numbers of progeny-
tested individuals and crosses corresponded to what is
done in actual oil palm breeding programs. We simu-
lated 45 individuals per cross, along with their resulting
SNP genotypes, QTL genotypes and breeding and
phenotypic values for BW and BN. The progeny tests
were analyzed with a bivariate mixed model to obtain
the EBV of the 120 Deli and 120 La Mé for BW and
BN. The model was of the following form:

yBW
yBN

� �
¼ μBW

μBN

� �
þ ZDeli BWð Þ

0
0

ZDeli BNð Þ

� �
aDeli BWð Þ
aDeli BNð Þ

� �

þ ZLa Mé BWð Þ
0

0
ZLa Mé BNð Þ

� �
aLa Mé BWð Þ
aLa Mé BNð Þ

� �
þ eBW

eBN

� �

with yBW and yBNbeing vectors of phenotypic values
of the 13,500 hybrid individuals for BW and BN,
μBW and μBN being overall means of hybrid

Table 2 Genetic parameters in the initial Deli and La Mé breeding populations (generation 0) obtained by simulation. Values are
means over five replicates ± SD

Number of QTL and percentage of pleiotropic QTL

500 1000

60% 75% 90% 60% 75% 90%

Fst 0.47 ± 0.03 0.47 ± 0.01 0.48 ± 0.02 0.49 ± 0.02 0.48 ± 0.01 0.47 ± 0.03

LD (cM)a

Deli 4.47 ± 0.13 4.84 ± 0.34 4.59 ± 0.24 4.38 ± 0.12 4.18 ± 0.29 4.36 ± 0.3

La Mé 2.54 ± 0.15 2.83 ± 0.33 2.46 ± 0.31 2.31 ± 0.3 2.16 ± 0.24 2.27 ± 0.23

h2

La Mé BN 0.67 ± 0.02 0.67 ± 0.01 0.66 ± 0.02 0.66 ± 0.01 0.66 ± 0.02 0.68 ± 0.01

ABW 0.68 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.69 ± 0.01

Deli BN 0.63 ± 0.01 0.63 ± 0.01 0.64 ± 0.03 0.64 ± 0.02 0.65 ± 0.02 0.64 ± 0.02

ABW 0.61 ± 0.03 0.63 ± 0.02 0.64 ± 0.04 0.63 ± 0.02 0.65 ± 0.02 0.64 ± 0.01

True breeding values

Deli BN 12.47 ± 0.84 11.73 ± 1.62 10.11 ± 0.74 12.41 ± 1.51 10.52 ± 0.57 10.14 ± 0.98

ABW 23 ± 0.3 21.09 ± 1.11 21.53 ± 0.57 23.11 ± 1.05 22.45 ± 0.41 21.63 ± 0.39

La Mé BN 25.69 ± 0.93 24.76 ± 0.4 24.42 ± 0.75 26.43 ± 1.47 25.92 ± 0.57 24.81 ± 1.35

ABW 13.54 ± 0.56 12.65 ± 0.6 11.44 ± 0.45 12.65 ± 1.37 12.19 ± 0.93 11.26 ± 0.33

Genetic correlation r(BN, ABW)a

Deli −0.64 ± 0.05 −0.79 ± 0.05 −0.83 ± 0.03 −0.64 ± 0.08 −0.75 ± 0.07 −0.84 ± 0.04

La Mé −0.68 ± 0.03 −0.73 ± 0.03 −0.86 ± 0.04 −0.66 ± 0.01 −0.71 ± 0.05 −0.81 ± 0.03

Total interpopulation additive variance

Deli BN 1.94 ± 0.13 1.99 ± 0.14 2.03 ± 0.42 1.94 ± 0.1 1.99 ± 0.13 1.97 ± 0.18

ABW 0.91 ± 0.16 0.94 ± 0.08 1 ± 0.21 0.96 ± 0.05 0.99 ± 0.06 0.93 ± 0.05

La Mé BN 2.27 ± 0.14 2.27 ± 0.09 2.27 ± 0.3 2.2 ± 0.06 2.11 ± 0.19 2.36 ± 0.15

ABW 1.21 ± 0.03 1.11 ± 0.07 1.15 ± 0.13 1.14 ± 0.08 1.08 ± 0.1 1.16 ± 0.06

Mean interpopulation additive variance at QTL (in % total)

Deli BN 0.32 ± 0.01 0.31 ± 0.01 0.31 ± 0.02 0.16 ± 0 0.15 ± 0.01 0.16 ± 0

ABW 0.32 ± 0.01 0.31 ± 0.01 0.31 ± 0.02 0.16 ± 0 0.16 ± 0 0.16 ± 0

La Mé BN 0.29 ± 0.01 0.29 ± 0.01 0.28 ± 0.01 0.14 ± 0 0.14 ± 0 0.14 ± 0

ABW 0.29 ± 0.01 0.29 ± 0.01 0.28 ± 0.01 0.15 ± 0 0.14 ± 0.01 0.14 ± 0

Inbreeding

Deli 0.26 ± 0.01 0.26 ± 0.01 0.25 ± 0 0.26 ± 0 0.25 ± 0.01 0.26 ± 0.01

La Mé 0.13 ± 0.01 0.14 ± 0.01 0.13 ± 0 0.14 ± 0 0.14 ± 0.01 0.13 ± 0.01
athe residual correlation in the real dataset was estimated at −0.15 and was considered to be 0 in the simulation
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individuals for BW and BN, and eBW and eBN being
vectors of residual effects for BW [~ N(0,Iσ2e(BW))]
and BN [~ N(0,Iσ2e(BN))]. The vectors of EBV (actually
general combining ability) of BW and BN in Deli
aDeli(BW) and aDeli(BN) followed a bivariate normal dis-

tribution Nð0; σ2Deli BWð Þ σDeli BN ;BWð Þ

σDeli BN ;BWð Þ σ2
Deli BNð Þ

 !
⊗0:5ADeliÞ;

with σDeli(BN,BW)being the additive covariance between
BN and BW. The vectors of general combining ability
of La Mé aLa Mé(BW) and aLa Mé(BN) had a distribution
similar to that of the population specific parameters
ALa Mé, σ2La Mé(BW), σ2La Mé(BN) and σLa Mé(BN, BW).
ADeli and ALa Mé were matrices of additive relation-
ships among Deli and La Mé individuals computed
from pedigrees. ZDeli(BW), ZDeli(BN), ZLa Mé(BW) and
ZLa Mé(BN) were incidence matrices and I was an
identity matrix. The R-ASReml package [24] was used to
obtain variance component estimates and EBV of Deli and
La Mé individuals. In each population, the best 20 individ-
uals giving the crosses with highest expected bunch pro-
duction were selected based on their EBV, as described for
the previous step of the simulation, and they reproduced
by random mating with selfings allowed according to a
half diallel design in which 80 % of crosses were made
(consequently, 168 different within-population crosses
could be made). The number of crosses was the same for
all individuals. 120 progenies per population were pro-
duced. The generation interval for RRS was 20 years.
Reciprocal recurrent genomic selection (RRGS) gave

genomic estimated breeding values (GEBV) of the Deli
and La Mé selection candidates, from an analysis com-
bining their genotype and their progeny tests or from
their sole genotype. As in RRS, the progeny tests in-
volved 120 Deli and 120 La Mé. GEBV were obtained
using 2500 SNP markers with MAF > 4 % and the
GBLUP statistical method. In the simulations, we stud-
ied the effects of reducing the generation interval and
increasing the selection intensity on the RRGS perform-
ance. First, a reduction in the generation interval was
obtained when applying RRGS in the generation(s) fol-
lowing the progeny-tested individuals. In this case, the
selection candidates were not progeny tested but only
genotyped; and they were selected based on their sole
genotype and reproduced once they were sexually ma-
ture. We considered the generation interval was conse-
quently reduced to six years (instead of 20 years in the
generations where progeny tests were performed, as in
RRS). We varied the progeny-test frequency to assess
the potential of RRGS when used to reduce the gener-
ation interval. They were simulated every generation,
leading to a total number of 80 years to complete the
four cycles, every two generations (52 years to complete
four cycles) or every four generations (38 years to

complete four cycles). The GEBV of the 120 Deli and
120 La Mé individuals in the generations with progeny
tests were predicted from the phenotypic data of hybrid
individuals and molecular data of either only Deli and La
Mé individuals (RRGS_PAR, see model below) or Deli and
La Mé individuals plus hybrid individuals (RRGS_HYB,
see model below). The GEBV of the Deli and La Mé indi-
viduals in the generations without progeny tests were pre-
dicted in the same way, except that the phenotypic data
used to calibrate the GS model were those from the last
generation of progeny tests. Secondly, to study the effect
of increasing the selection intensity, we also applied RRGS
to a number of selection candidates (300 per population)
larger than the number of progeny-tested individuals
(120 per population). As 168 different within-population
crosses could be made, the 300 individuals were obtained
by simulating one or two individuals per possible cross,
up to a total of 300. In the generations with progeny tests
and when using 300 candidates, 120 individuals were ran-
domly chosen to be progeny tested among the 300 and
the selection was made among them and their 180 non-
progeny-tested sibs.
In RRGS_PAR, the progeny tests were analyzed with the

same bivariate model as for RRS, except that matrices of
additive relationships ADeli and ALa Mé were replaced by
molecular relationship matrices GDeli and GLa Mé com-
puted from parental genotypes, using observed allele fre-
quencies [2, 3] and normalized to have average diagonal
coefficients equal to one [25]. Therefore, RRGS_PAR used
two population-specific molecular relationship matrices.
In RRGS_HYB, the molecular relationship matrix G of

the genotyped individuals (all the Deli and La Mé and
the ngenotyped hybrid individuals) was computed using
Deli and La Mé genotypes and hybrid gametotypes, tak-
ing the parental origin of marker alleles for hybrid indi-
viduals into account. Each SNP was thus converted into
a multiallelic marker with alleles 0Deli, 1Deli, 0La Mé and
1La Mé. From these molecular data, G was computed ac-
cording to Van Raden [2] and Habier et al. [3], using ob-
served allele frequencies and a modification implemented
by Legarra (pers. comm.) for the multiallelic case, and it
was normalized to have average diagonal coefficients equal
to one [25]. The number of genotyped hybrid individuals
was ngenotyped = 300, 1000 and 1700. The corresponding
breeding strategies were named RRGS_HYB300,
RRGS_HYB1000 and RRGS_HYB1700. The genotyped
hybrid individuals were randomly sampled among the
13,500 existing hybrids, taking the same number of
individuals per cross (i.e. one when ngenotyped = 300). As
the progeny tests included 13,500 phenotyped hybrids, the
non-genotyped hybrids were also included in the model,
as their phenotypic values contributed to estimate the
GEBV of their parents. For this purpose, we used the
single-step approach of Legarra et al. [26], which involved
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combining the G matrix with the genealogical addi-
tive relationship matrix Aall of all the Deli and La
Mé individuals and all the hybrids, according to:

H−1 ¼ Aall
−1 þ 0 0

0 G−1− A22
−1

� �
; with A22 being the

matrix of the genealogical additive relationship matrix
of the genotyped individuals (parents and hybrids).
The bivariate model for RRGS_HYB was:

yBW
yBN

� �
¼ μBW

μBN

� �
þ ZDeli BWð Þ

0
0

ZDeli BNð Þ

� �
aBW
aBN

� �
þ eBW

eBN

� �

The vectors aBN and aBW of breeding values of all in-
dividuals (hybrids and their parents) for BN and for BW

followed Nð0; σ2a BWð Þ σa BN ;BWð Þ
σa BN ;BWð Þ σ2a BNð Þ

� �
⊗HÞ; with σ2a(BN)

and σ2a(BW) being the additive variances and σa(BN, BW)

being the additive covariance between BN and BW.
We did not consider genotyping more than 1700 hy-

brid individuals or using more than 300 candidate indi-
viduals per population for computational reasons.

Analysis of results
We distinguished between two types of factors: technical
factors under the breeder’s control (breeding strategy
[RRS, RRGS_PAR and RRGS_HYB], number of selection
candidates, frequency of progeny tests and number of
genotyped hybrids); and the biological factors defining
the genetic architecture of the traits under selection
(number of QTL, percentage of pleiotropic QTL). The
effects of biological factors and the interaction between
biological and technical factors are crucial, because the
genetic architecture is unknown in actual situations. The
breeder has to design a breeding program where tech-
nical factors will give the highest annual selection
response, regardless of the unknown genetic architecture
of the traits.
We defined a breeding scheme as a combination of

breeding strategy (RRS, RRGS_HYB and RRGS_PAR),
frequency of progeny tests (every generation, every two
or every four generations), number of selection candi-
dates (120 or 300) and number of genotyped hybrid in-
dividuals (0, 300, 1000 and 1700). Each of these
combinations had five replicates, which had different
simulated initial breeding populations.
At the end of the simulation (i.e. in generation 4 of

Fig. 1), we measured the cumulative selection response
in hybrid individuals, expressed as a percentage of hy-
brid production in the initial generation (generation 0),
and the annual selection response in hybrid individuals,
which was the cumulative response divided by the num-
ber of years required to carry out the four breeding gen-
erations. Analyses of variance (ANOVA) were performed

to study the effect of the different technical and bio-
logical factors and their interactions on the selection re-
sponse, as well as on the genetic parameters in the
parental populations (selection accuracy and additive
variance for BW and BN, genetic correlation between
BW and BN, inbreeding). The means for the levels of
factors in the ANOVA were compared using the Tukey’s
honest significant difference method.

Results
Number of genotyped hybrids in RRGS_HYB
In order to simplify the interpretation of the results, we
first focused on the number of genotyped hybrid individ-
uals, as it had a major effect on the annual selection re-
sponse in RRGS_HYB. Table 3 presents the ranking of
the breeding schemes according to their annual selection
response, and shows that the annual response of
RRGS_HYB increased with the number of genotyped hy-
brids. RRGS_HYB could outperform RRS when 1000 or
1700 hybrids were genotyped. The difference between
RRGS_HYB1700 and RGGS_HYB1000 was generally
small but was always to the advantage of RRGS1700
across all combinations. RRGS_HYB with 300 genotyped
hybrids was worse than the other two alternatives, with
1000 and 1700, as its annual response was always lower or
equal to RRGS_PAR and RRS. Therefore we only consid-
ered the RRGS_HYB1700 results for the rest of the study.

Selection accuracy
The selection accuracy with RRS was very high and
remained constant over generations, i.e. around 0.967 ±
0.003 (SD), with a negligible effect of trait and popula-
tion (not shown).
For RRGS, we first considered its simplest implemen-

tation i.e. when calibrating the GS model every gener-
ation and using sets of candidate individuals limited to
the 120 progeny-tested individuals. In this case, the ac-
curacy of RRGS_PAR (0.968 ± 0.008) was similar to that
of RRS, while that of RRGS_HYB1700 was slightly but
significantly less good (P < 0.001), with an accuracy of
0.934 ± 0.008 (see Fig. 2 concerning the example of BN
in Deli). Secondly, we assessed how the selection accur-
acy was affected by the absence of progeny tests. The
accuracy of the progeny-tested individuals was much
higher than that of non-progeny-tested individuals of
the following(s) generation(s), which fell to 0.748 ±
0.058 for RRGS_HYB and even lower for RRGS_PAR
(0.615 ± 0.101). When three generations of selection
were made without calibration of the GS model, the se-
lection accuracy kept decreasing and this occurred at a
higher pace for RRGS_PAR than for RRGS_HYB
(Fig. 2). The accuracy of the progeny-tested individuals
was also higher than that of their 180 non-progeny-
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tested sibs, which was 0.852 ± 0.019 for RRGS_HYB
and 0.744 ± 0.020 for RRGS_PAR. This can be seen
when comparing levels of equivalent combinations be-
tween Fig. 2a and b: the inclusion of 180 non-progeny
tested individuals in the latter decreased the overall
level of accuracy. For all non-progeny tested individuals,
the accuracy was significantly lower with RRGS_PAR than
with RRGS_HYB (P < 0.001).
The key results here were that the selection accuracy

was reduced in individuals that were not progeny tested,
and that the two RRGS methods behaved differently in
terms of selection accuracy for progeny-tested individuals
(RRGS_PAR slightly more accurate than RRGS_HYB) and
non-progeny-tested individuals (RRGS_HYB much more
accurate than RRGS_PAR).

Additive variance
The additive variance decreased with generations, which
is a well-known effect of selection and genetic drift. The
decrease in additive variance with RRS was identical to
RRGS_PAR when using 120 candidates and calibrated
every generation (not shown). Fig. 3 shows the results
obtained with RRGS in Deli when using 120 and 300
candidates, with the example of BN (similar trends were
obtained for both traits and both populations). The
major factor affecting the cumulative decrease in additive
variance was the number of candidates, with 300 resulting
in a more rapid decrease in variance than with 120 candi-
dates (see Fig. 3a versus Fig. 3b, where the additive vari-
ance decreased by 27 % after four generations with 120
candidates but by 35 % with 300 candidates, P < 0.001). A

Table 3 Ranking of breeding schemes according to their mean annual response

Rank Breeding
strategy

Progeny test
frequency

Number of
candidates

Number of genotyped
hybrids

Annual response (%) Change compared to
RRS (%)

1 RRGS_HYB GMMM 300 1700 0.45 a 71.8 %

2 RRGS_HYB GMMM 300 1000 0.41 b 53.8 %

3 RRGS_HYB GMMM 120 1700 0.39 bc 47.7 %

4 RRGS_PAR GMMM 300 0.38 bcd 45.7 %

5 RRGS_PAR GMGM 300 0.38 bcd 45.0 %

6 RRGS_HYB GMGM 300 1700 0.36 cde 38.3 %

7 RRGS_HYB GMGM 300 1000 0.36 cde 38.2 %

8 RRGS_HYB GMMM 120 1000 0.35 de 34.2 %

9 RRGS_PAR GMMM 120 0.34 e 30.7 %

10 RRGS_PAR GMGM 120 0.34 ef 27.6 %

11 RRGS_HYB GMGM 120 1700 0.33 ef 25.8 %

12 RRGS_HYB GMGM 120 1000 0.31 fg 17.3 %

13 RRGS_PAR GGGG 300 0.28 gh 7.7 %

14 RRGS_HYB GMGM 300 300 0.28 gh 6.3 %

15 RRGS_HYB GGGG 300 1700 0.28 gh 5.1 %

16 RRGS_HYB GMMM 300 300 0.27 hi 3.4 %

17 RRGS_PAR GGGG 120 0.26 hi 0.1 %

18 RRS GGGG 120 0.26 hi 0.0 %

19 RRGS_HYB GGGG 300 1000 0.26 hi −0.5 %

20 RRGS_HYB GMMM 120 300 0.25 hij −4.3 %

21 RRGS_HYB GGGG 120 1700 0.24 ijk −8.3 %

22 RRGS_HYB GMGM 120 300 0.24 ijk −9.0 %

23 RRGS_HYB GGGG 120 1000 0.22 jk −15.2 %

24 RRGS_HYB GGGG 300 300 0.21 kl −20.6 %

25 RRGS_HYB GGGG 120 300 0.18 l −32.8 %

The annual response is expressed in percentage of hybrid production in the initial generation (generation 0) per year. Breeding scheme includes the breeding strategy
(RRS: reciprocal recurrent selection, RRGS: reciprocal recurrent genomic selection), individuals genotyped to calibrate the GS model (_PAR: genotyping only parents of
progeny tests when calibrating the GS model, _HYB: genotyping, in addition, hybrid individuals), number of candidates per population and generation (120 and 300, in
RRS the set of candidates is limited to the 120 progeny-tested individuals of each parental population), progeny test frequency (GGGG: every generation, GMGM: every
two generations and GMMM: every four generations) and for RRGS_HYB number of genotyped hybrids (300, 1000 and 1700). Values are means over 45 replicates
(3 numbers of QTL × 3 percentage of pleiotropic QTL × 5 replicates). Values with the same letter are not significantly different at P = 0.001
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similar result was obtained for both populations and traits.
On average, using 120 candidates decreased the additive
variance in RRGS strategies by 32 % while using 300 indi-
viduals led to a decrease of 39.6 %. This occurred as the
number of selected individuals was kept constant, so in-
creasing the number of candidates led to the selection of
individuals with a higher average value but lower genetic
variability. We also noted that with 300 candidates the de-
crease in additive variance with RRGS_HYB after four
generations (−41.3 %) was similar than with RRGS_PAR
(−37.8 %), the difference being not significant. This indi-
cated that the number of candidates was the major factor
affecting the decrease in variation.
The number of QTL that were assumed in the model

also had a role regarding the decrease in additive vari-
ance. In the same example (BN in Deli), the additive

variance decreased by around 27 % with either 1000 or
500 QTL but by 37 % with 100 QTL (P < 0.001). This oc-
curred as the simulation was designed to have the same
additive variances in generation 0 regardless of the num-
ber of QTL. Consequently, when the QTL were fewer they
also had stronger effects and were correspondingly under
higher selection pressure up to their fixation. Therefore,
the fewer the number of QTL, the stronger the effect of
selection was in depleting the additive variance.

Selection response
All the biological factors (number of QTL and percentage
of pleiotropic QTL) had significant effects on the selection
response at P < 0.001. The percentage of pleiotropic QTL
was the most important factor of the study. The number
of QTL also had a strong effect. The selection response

Fig. 2 Accuracy of reciprocal recurrent genomic selection (RRGS) for bunch number in the Deli population according to years and the RRGS breeding
scheme with (a) 120 and (b) 300 selection candidates. The breeding scheme includes individuals genotyped to calibrate the GS model (parents and
1700 hybrids in RRGS_HYB and only parents in RRGS_PAR) and the progeny test frequency (GGGG: every generation, GMGM: every two generations
and GMMM: every four generations). Means are calculated over 45 values

Fig. 3 Additive variance for bunch number according to years and the reciprocal recurrent genomic selection (RRGS) breeding scheme in Deli with (a)
120 and (b) 300 selection candidates. The breeding scheme includes individuals genotyped to calibrate the GS model (parents and 1700 hybrids in
RRGS_HYB, and only parents in RRGS_PAR) and the progeny test frequency (GGGG: every generation, GMGM: every two generations and GMMM: every
four generations). Means are calculated over 45 values
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increased when the percentage of pleiotropic QTL de-
creased and when the number of QTL increased. The cu-
mulative response was 14.7, 18.6 % and 22 % with 90, 75
and 60 % pleiotropic QTL, respectively (P < 0.001 for all
differences), and the annual response was 0.26, 0.33 and
0.40 % (P < 0.001). This resulted from the fact that the
genetic progress potential depended mostly on the fixation
of favorable alleles at QTL controlling either BN or BW,
rather than at the pleiotropic QTL, as they had antagonis-
tic effects on both traits. When the percentage of pleio-
tropic QTL decreased, the number of QTL controlling
only BN or BW increased, therefore giving a higher gen-
etic progress potential. Similarly, the genetic progress
potential was higher when the total number of QTL
controlling each trait increased.
The major technical factors affecting the selection re-

sponse was the progeny-test frequency, followed by the
number of candidates, the breeding strategy and, to a
lesser extent, the interaction between the breeding strat-
egy and the progeny-test frequency (P < 0.001). Their ef-
fects are detailed in the following paragraphs.
We first compared the selection response of RRS with

RRGS strategies that differed with RRS only by the use
of relationship matrices computed with markers instead
of the pedigrees, i.e. considering only RRGS_HYB1700
and RRGS_PAR with calibration every generation and
sets of candidates limited to 120 progeny-tested individ-
uals. In this case, the selection response was similar for
RRGS_HYB1700, RRGS_PAR and RRS (20.5 % over four
generations, or 0.26 % per year, see Table 3). Therefore,
obtaining a higher selection response with RRGS com-
pared to RRS could not be achieved without modifying
the breeding scheme in order to reduce the generation
interval or to increase the selection intensity.
Secondly, to study the effect of reducing the gener-

ation interval in RRGS (by a decrease in the progeny-
test frequency), we considered RRGS_HYB1700 and
RRGS_PAR with calibration of the GS model every two
or four generations and with the same number of candi-
dates as in RRS (120). In this case, decreasing the
progeny-test frequency led to a lower cumulative selec-
tion response, i.e. 13.9, 17.4 and 20.2 % with progeny
tests performed every four generations, every two gener-
ations and every generation, respectively (all differences
significant at P < 0.001). With generations without pro-
geny tests, the selection accuracy was reduced and con-
sequently the cumulative selection response decreased.
An opposite effect was noted in the annual response, i.e.
0.37, 0.33 and 0.25 % with progeny tests performed every
four generations, every two generations and every gener-
ation, respectively (P < 0.001). This was due to the favor-
able effect of the decreased frequency of progeny tests
on the ratio between the selection accuracy and the
generation interval (rAÂ/L), where the decrease in

generation interval more than balanced out the decrease
in accuracy, while the other factors (selection intensity,
additive variance) remained unaltered. Indeed, perform-
ing progeny tests every two generations decreased the
generation interval by 35 % compared to those per-
formed every generation and decreased the selection ac-
curacy to 0.90, which was 4 % lower than with progeny
tests performed every generation and with 120 candi-
dates for RRGS_HYB and 10 % lower for RRGS_PAR.
With progeny tests performed every four generations,
the generation interval decreased by 52.5 % and the se-
lection accuracy dropped to 0.84 for RRGS_HYB (10 %
decrease compared to progeny tests performed each
generation and 120 candidates) and to 0.80 for
RRGS_PAR (17 % decrease). Therefore when the GS
model calibration frequency declined, the cumulative se-
lection response was lower but the rAÂ/L ratio and an-
nual selection response were higher. With the decrease
in the progeny test frequency, the relative potential of
RRGS_HYB and RRGS_PAR varied due to their different
accuracy in generations with and without progeny tests.
With calibration every generation, as the RRGS_HYB ac-
curacy was lower than that of RRGS_PAR, the annual
selection response of RRGS_HYB was lower than that of
RRGS_PAR, although not significantly (Table 3). With
progeny tests performed every two generations, as the
RRGS_PAR accuracy decreased more than that of
RRGS_HYB, both methods had the same annual selec-
tion response, which was significantly higher than the
annual selection response of RRS. With progeny tests
performed every four generations, RRGS_HYB finally
outperformed RRGS_PAR in accuracy and had a signifi-
cantly higher annual selection response than the other
breeding schemes (+50 % compared to RRS for
RRGS_HYB, +30 % for RRGS_PAR).
Thirdly, regarding the RRGS gain, we studied the effect

of an increase in selection intensity, which was obtained by
increasing the number of candidates, as the number of se-
lected individuals was constant. With 120 candidates, the
best 16.7 % individuals were selected, while with 300 candi-
dates only the top 6.7 % were selected, which is a 2.5-fold
more stringent selection intensity. This significantly in-
creased the selection response, as a consequence of the ef-
fect of the number of candidates on the rÂA × i × σa product
with the increase in i (×2.5) being much higher than the
joint decrease in rÂA (−8.8 % in RRGS_HYB, −23.1 % in
RRGS_PAR) and σa (−3.3 %). Again, due to the superiority
of RRGS_HYB over RRGS_PAR in maintaining the selec-
tion accuracy for non-progeny-tested individuals, the in-
crease in the number of candidates benefited RRGS_HYB
more than RRGS_PAR (Table 3). The annual response
was always higher with 300 candidates than with 120
candidates, but this difference was only significant for
RRGS_HYB (+12.8 %, P < 0.001 for RRGS_HYB, +7.1 %
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for RRGS_PAR). We also found that the number of can-
didates significantly interacted with the percentage of
pleiotropic QTL and the number of QTL on the selec-
tion response, although these interactions had less im-
pact than the previously mentioned factors. This was
not surprising as, with the largest numbers of non-
pleiotropic QTL per trait (either due to a high number
of QTL or to a low percentage of pleiotropic QTL), 120
selection candidates were not enough to capture all of
the existing additive variation. In this case, using 300
candidates led to a higher selection response. By contrast,
with a smaller number of non-pleiotropic QTL, 120 can-
didates were enough to capture all of the additive variation
and an increase in the number of candidates did not
markedly increase the selection response.
Finally, when RRGS was used to both decrease the

generation interval and increase the selection intensity
compared to RRS, the best breeding scheme was
RRGS_HYB1700 with progeny tests conducted every
four generations and 300 candidates, with an annual se-
lection response of 0.45 % per year, i.e. 71.8 % higher
than RRS and significantly higher than all other breeding
schemes at P < 0.001 (Table 3).
This advantage of the RRGS_HYB1700 scheme did not

come without risks, and the higher gains also came with a
larger variation in response compared to the less perform-
ing alternatives (Fig. 4). The coefficient of variation (CV)
for the annual selection response of that best scheme
reached 0.27, which was 35.6 % higher than that of RRS,
and 19.1 % higher than the average CV over all the breed-
ing schemes. The three following breeding schemes in the
ranking of gain had similar levels of performance and CV
for the annual response: RRGS_HYB1700 with progeny
tests performed every four generations and 120 candidates
(annual response of 0.39 % ± 0.23, +47.7 % compared to
RRS), and RRGS_PAR with 300 candidates and calibration
every four or two generations, which gave the same results
(annual response of 0.38 % ± 0.22, +45.3 % compared to
RRS).

Inbreeding
As expected, inbreeding increased with the generation
turnover (see Fig. 5, with the example of RRGS in the
Deli population). The annual increase in inbreeding
(ΔFy) with RRS was 0.41 % in Deli and 0.64 % in La Mé
(expressed in percentage inbreeding in the initial paren-
tal populations) (Fig. 6). The factors affecting cumulative
ΔF (ΔFc) over four generations and ΔFy were the same in
both populations. ΔFy was mostly affected by the pro-
geny test frequency, the number of candidates and the
breeding strategy (P < 0.001). A decrease in progeny test
frequency reduced the number of years per selection
cycle, and therefore could substantially inflate ΔFy. The
number of candidates affected both ΔFc and ΔFy. In Deli,

ΔFy reached 0.77 % with 300 candidates versus 0.64 %
with 120, and in La Mé it reached 1.16 % with 300 can-
didates versus 1.0 % with 120 (all differences significant
at P < 0.001). Increasing the selection intensity by in-
creasing the number of candidates from 120 to 300
therefore resulted in a subsequent increase in ΔFy, due
mainly to an increase in the co-selection of related can-
didates. With 120 candidates, they all belonged to differ-
ent full-sib families due to the method used to mate the
selected individuals. However, the sets of 300 candidates
mostly consisted of pairs of full-sibs, which increased the
probability of having full-sib individuals among the se-
lected individuals. In addition, we noticed that RRGS_HYB
was associated with a slightly higher ΔFc and ΔFy than
RRGS_PAR. In Deli, RRGS_HYB led to a ΔFy of 0.75 %
compared to 0.69 % with RRGS_PAR (P < 0.001). In La
Mé, ΔFy was also higher with RRGS_HYB (1.12 %) than
with RRGS_PAR (1.10 %), but this was not significant.
Finally, the four best breeding schemes previously

identified in terms of annual selection response also had
a high ΔFy, with the exception of RRGS_PAR with pro-
geny tests performed every two generations and 300
candidates, because of its higher progeny test frequency.

Fig. 4 Variation in annual selection response associated with each
breeding scheme. The breeding scheme includes the breeding
strategy (RRS: reciprocal recurrent selection and RRGS: reciprocal
recurrent genomic selection), individuals genotyped to calibrate
the GS model (RRGS_HYB: genotyping parents and 1700 hybrids,
RRGS_PAR: genotyping only parents), number of candidates (120
and 300) and the progeny test frequency (GGGG: every generation,
GMGM: every two generations and GMMM: every four generations).
The filled dots represent the means, calculated over 45 values
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Genetic correlation between BW and BN
The evolution of the genetic correlation between BN
and BW was similar for the Deli and La Mé populations.
The magnitude of the genetic correlation between BW
and BN increased markedly in the generations in which
progeny tests were conducted (Fig. 7), while it usually
decreased in the generations without progeny tests. In
absolute value, the increase in the generations with pro-
geny tests was greater than the decrease in the genera-
tions without progeny tests, so the correlation thus
tended to increase over the four generations, except in
the case where progeny tests were only performed in the
first generation.

Discussion
We showed that reciprocal recurrent genomic selection
(RRGS) was a valuable method to achieve a long-term
increase in the performance for a trait showing heterosis
due to the multiplicative interaction between additive
and negatively correlated components.
In our oil palm case study, RRGS was superior to trad-

itional RRS as it allowed accurate selection of individuals
without progeny tests. It led to a significant increase in
the annual selection response, through generations of se-
lection based on markers alone and, to a lesser extent,
through an increase in the selection intensity. This
advantage of RRGS over RRS was a consequence of the

Fig. 5 Inbreeding according to years and the reciprocal recurrent genomic selection (RRGS) breeding scheme in the Deli population using (a) 120 and
(b) 300 candidates. The breeding scheme includes individuals genotyped to calibrate the GS model (parents and 1700 hybrids in RRGS_HYB, and only
parents in RRGS_PAR) and progeny test frequency (GGGG: every generation, GMGM: every two generations and GMMM: every four generations).
Means are calculated over 45 values

Fig. 6 Ranking of breeding schemes according to their mean annual increase in inbreeding for (a) Deli and (b) La Mé populations. Inbreeding
is expressed as a percentage of inbreeding in the parental populations in the initial generation (generation 0) per year. The breeding scheme
includes the breeding strategy (RRS: reciprocal recurrent selection [black], RRGS: reciprocal recurrent genomic selection), individuals genotyped to calibrate
the GS model (_PAR: genotyping only parents of progeny tests when calibrating the GS model [dark gray], _HYB: genotyping in addition hybrid individuals
[light gray]), number of candidate individuals per population and generation (120 and 300; in RRS, the set of candidate individuals is limited to the 120
progeny-tested individuals of each parental population), the progeny test frequency (GGGG: every generation, GMGM: every two generations and GMMM:
every four generations) and the number of genotyped individuals (0, 300, 1000 and 1700). Values are means over 45 replicates (3 numbers of QTL × 3
percentage of pleiotropic QTL × 5 replicates). Values with the same letter are not significantly different at P= 0.001. Bars indicate standard deviations
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tradeoffs between the selection intensity (i), generation
interval (L) and selection accuracy (rAÂ). RRGS could
substantially increase the rAÂ × i / L ratio, with the best
breeding scheme (when considering only the annual se-
lection response) being RRGS_HYB1700 with calibration
every four generations and 300 candidates per gener-
ation and population. In our oil palm example, the an-
nual selection response of this RRGS best strategy
reached 0.45 %, compared to 0.26 % in RRS. Interest-
ingly, both RRGS strategies with and without hybrid
genotyping outperformed RRS. In RRGS_HYB, there
was a marked increase in annual response when the
number of genotyped individuals increased from 300 to
1000, but it was minor from 1000 to 1700 (although sig-
nificant). Therefore, it seemed that genotyping more in-
dividuals would have been useless here. However, the
number of hybrids to genotype should be dependent on
the heterozygosity in the parental populations. Indeed,
RRGS_HYB could perform better than RRGS_PAR be-
cause it exploited the within-cross phenotypic variation
by associating it with the within-cross segregation of
marker alleles. With a higher level of heterozygosity in
the parental population, the phenotypic variation within
crosses would likely increase, making more relevant hy-
brid genotyping of hybrids in order to capture this vari-
ation. On the contrary, in the extreme case of fully
inbred and/or related parents, genotyping hybrids would
become useless due to the absence of valuable within-
cross variation.
Aspects other than just the expected annual selection

response need to be taken into account when choosing an
optimal breeding scheme. The RRGS_HYB1700 breeding
scheme achieved the highest annual selection response
but this also led to the highest variability in annual re-
sponse (indicating a higher risk regarding the true genetic

progress that could be achieved), and also the highest in-
crease in inbreeding per year. Furthermore, the efficiency
cost and operational complexity must be considered.
RRGS_HYB would be more difficult and costly to imple-
ment than RRGS_PAR, because it would require the
collection of more samples than RRGS_PAR, more
genotyping and the gametes contributing to each hybrid
individual would have to be inferred in order to identify
the parental population of origin of marker alleles at
each locus [6], which was assumed to be known in the
simulation. Other breeding schemes could thus offer in-
teresting alternatives, with good compromises between
costs, operational complexity, expected annual selection
response, risk regarding this expectation and evolution
of inbreeding. Here the most interesting alternative was
RRGS_PAR with 300 candidates and progeny tests every
two generations. Indeed, it was among the best four
breeding schemes in terms of annual selection response
(0.38 %), but it also had a lower risk regarding its ex-
pected response and an inbreeding increase that was
intermediate among all the scenarios studied, together
with low cost and less operational complexity associated
with the RRGS_PAR strategy. Furthermore, this
RRGS_PAR scenario gives an opportunity to pool data
from two progeny tests when making the calibration in
the third generation, which would likely increase the ac-
curacy in the two last generations and therefore the
mean annual selection response over the four cycles.
The relative importance of the decrease in generation

interval and the increase in selection intensity depends
on the characteristics of the species. In oil palm, the
length of the generation interval (20 years) is mostly due
to the progeny tests, while sexual maturity is reached
relatively early (within 3–4 years). This makes the spe-
cies an excellent candidate for the implementation of

Fig. 7 Genetic correlation between BN and BW in the Deli population according to years and the reciprocal recurrent genomic selection
(RRGS) breeding scheme with (a) 120 selection candidates and (b) 300 candidates. The breeding scheme includes individuals genotyped to
calibrate the GS model (parents and 1700 hybrids in RRGS_HYB and only parents in RRGS_PAR), the number of candidate individuals (120 and
300) and the progeny test frequency (GGGG: every generation, GMGM: every two generations and GMMM: every four generations). Means are
calculated over 45 values
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early genomic evaluation, with RRGS having a high po-
tential compared to RRS. By contrast, oil palm breeding
populations have a quite narrow genetic base, with ef-
fective sizes under 10 [27], and this creates relatively
small additive variances, therefore reducing the interest
of increasing the number of candidates.
Our results confirmed the usefulness of GS for oil

palm, in line with the simulation results of Wong and
Bernardo [14]. However, we extended their results to a
more general situation, closer to actual oil palm breeding
program conditions, by applying GS to complex breed-
ing populations and by considering two antagonistic
traits, i.e. BN and ABW, which are crucial in oil palm
breeding. Our results were consistent with the findings
of our previous empirical study [12], which was con-
ducted using an approach similar to the RRGS_PAR
method used here. The accuracies we obtained in this
previous study when applying GS to full-sibs of the
training individuals could be compared with the accur-
acies we obtained here on the 180 full-sibs of the 120
progeny-tested individuals. We previously obtained
mean accuracies of 0.74 for BN and BW using 105 Deli
individuals to calibrate the GS model, which were the
same values as in our present simulation. For the La Mé
population, we previously obtained accuracies of 0.60
for BN and 0.65 for ABW with 74 individuals to cali-
brate the model (unpublished results), which in this case
was smaller than the accuracies obtained here (0.75 for
BN and 0.74 for BW). This was likely due to the fact
that our previous training population was smaller than
that used here (120). The consistency between the em-
pirical results and our present simulations suggests that
the actual genetic architecture for BN and BW could be
close to the average scenario of our simulations, i.e. 500
QTL and 75 % of pleiotropic QTL.
Surprisingly, RRGS_HYB with 300 hybrid individuals

genotyped had poor results, with a selection response
lower than that of RRGS_PAR. We expected that
RRGS_HYB would outperform RRGS_PAR even with a
small number of genotyped hybrids due to the extra
molecular information provided. We believe that
RRGS_HYB300 performed poorly because, with such a
small number of genotyped hybrids, the molecular rela-
tionships between the genotyped hybrids and their Deli
and La Mé parents (or among genotyped hybrids) were
biased and not compatible with the genealogical rela-
tionships involving their non-genotyped sibs. This
could be due to the fact that the molecular relation-
ships in RRGS_HYB were gametic relationships, where
only half of the molecular data of hybrid individuals
were used to relate them to each of their two parents.
This could possibly be resolved by using more markers or
by improving the computation of the H matrix used in
RRGS_HYB, which requires further investigation.

Actually, we chose different GS models for RRGS_HYB
and RRGS_PAR for computational reasons: two G matrices
were required in the model chosen for RRGS_PAR. When
no molecular data from hybrids were used, the G matrices
were small (from 120 × 120 to 420 × 420). However, using
the same model for RRGS_HYB would mean having two
large H matrices (from 13,740 × 13,740 to 14,340 × 14,340).
This would result in a high computation time that would
be hard to manage in a simulation study due to the many
replicates, and memory problems. For this reason, we used
a different GS model for RRGS_HYB, requiring a single re-
lationship matrix. Hence, in RRGS_HYB, the breeding
values of the Deli and La Mé parents and hybrid individ-
uals were assumed to belong to the same distribution with
a common additive variance, which was out of line with
the actual situation. However, this should not be a problem
here as the mixed models were used to predict GEBV, not
to estimate genetic parameters.

Management of genetic variability
We found that the increase in inbreeding (ΔF) per gen-
eration was higher with GS than with RRS, which was
somewhat out of line with previous animal breeding re-
sults, as reviewed in Bouquet and Juga [28], where GS
was found to reduce ΔF per generation compared to
traditional breeding. According to these authors, this oc-
curred because the Mendelian sampling terms (i.e. indi-
vidual genetic effects) were more accurately estimated
with GS than with phenotypic selection, thus reducing
the probability of selecting sibs and consequently the ΔF
per generation. We assumed the different trend existing
in our study was related to the drop in accuracy ob-
served for non-progeny-tested individuals, which oc-
curred because the calibration of the GS model was
based on the progeny tests of only 120 individuals per
population. Consequently, our estimates of Mendelian
sampling terms were likely not as accurate as those ob-
tained in animal species. However, it was not clear why
RRGS_HYB led to a higher increase in ΔF than noted
with RRGS_PAR, whereas it was more accurate. De-
pending on the reduction in generation interval allowed
by GS (which is dependent on the species), Bouquet and
Juga [28] noted that this would lead to a lower or similar
annual ΔF than in traditional breeding. In oil palm, the
reduction in the generation interval allowed by GS is
very high (only 38 years to complete four cycles when
calibration was carried out only in the first generation,
compared to 80 years for traditional RRS). Consequently,
the best breeding schemes in terms of annual response
had the highest annual increase in inbreeding, with the
exception of RRGS_PAR with 300 candidates and pro-
geny tests performed every two generations, which had
an intermediate annual ΔF.
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Good genetic variability management is necessary to
avoid inbreeding depression in parental populations,
which has been reported in oil palm [10, 29, 30], and to
maintain the genetic progress potential over the long
term. Furthermore, the negatively correlated BN and
BW studied in this simulation are key traits for oil palm
breeding, and when dealing with antagonistic traits
breeders must find a compromise between the selection
response, variance in the response induced by antagonis-
tic traits and ΔF [31]. Therefore, the RRGS breeding
schemes we presented here should be combined with
methods to explicitly manage genetic diversity and in-
breeding. The simplest inbreeding management method
is to increase the number of selected individuals, which
would slow down the increase in inbreeding, possibly
with only a small reduction in selection response [28].
Another option that does not necessarily lead to gain
losses is optimal contribution selection [32] and its ex-
tension in the GS context [33]. This involves the use of
the genetic value of individuals and their relationships
with other individuals to determine their contribution to
the following generation, in order to maximize genetic
gain at a desired inbreeding rate under the assumption
of random mating among selections. A step further is
mate selection [34, 35], where the optimum contribution
is applied to mates among all candidates, so that selec-
tion and mating are simultaneously handled for im-
proved management of inbreeding beyond what is
expected by random mating. Mate selection optimizes
the number of parents to be selected, the actual matings
between them and the distribution of the contribution
in the offspring of these mates, in order to maximize the
expected selection response in the following generation
while respecting a restriction on the expected increase
in inbreeding.

Genomic selection model
Here we studied a GS approach to select individuals
within two parental populations for their crossbred per-
formance, as in several animal studies [6, 36–38] and in
maize [39]. We used models with population-specific ef-
fects of SNP alleles, using either a parental model with
two independent parental effects (RRGS_PAR) or by
distinguishing alleles depending on their population of
origin (RRGS_HYB). However, Ibánez-Escriche et al.
[36] and Toosi et al. [37] suggested that GS models
using crossbred populations to predict GEBV of parental
pure breeds may not need to fit breed-specific SNP
effects, especially with high marker density. However, we
did not considered this point, as in Ibánez-Escriche et al.
[36] breed-specific allele models performed better than
models with allele effects common to all breeds when
the breeds where distantly related, which was the case in
our simulations.

In this study we considered that heterosis in bunch pro-
duction was a consequence of the multiplicative inter-
action between the negatively correlated bunch number
and bunch weight, both assumed here to have complete
additive genetic determinism. This multiplicative inter-
action between complementary component differences in
the parents is a heterosis model without dominance, but
heterosis in a multiplicative trait can also be due to the
multiplicative interaction of component dominance [7]. In
this case, dominance in the component traits generates
heterosis in the complex trait, to a greater extent than the
dominance in the components, due to the multiplicative
nature of the complex trait. Here we did not study the ef-
fect of this type of genetic determinism (or a combination
of the two types). This would require further investigation,
which could be done by modifying the script used for our
simulations and including dominance effects in the GS
models (see for instance Su et al. [40] for a GBLUP model
including dominance effects).

Genetic correlation between BW and BN
Wu and Sánchez [41] showed that in a model associat-
ing pleiotropic and non-pleiotropic QTL, simultaneous
selection on the two traits increased the magnitude of
the genetic correlation. Presumably their result applied
in the case where selection was highly accurate, such as
when based on progeny tests, which was not the case
here when selection was made on markers alone using a
GS model calibrated with a small training set.

Conclusions
Reciprocal recurrent genomic selection (RRGS) appeared
as a valuable method to achieve a long-term increase in
the performance for a trait showing heterosis due to the
multiplicative interaction between additive and nega-
tively correlated components. In our oil palm case study,
RRGS was superior to traditional RRS in terms of annual
selection response as it could decrease the generation
interval and increase the selection intensity. With 1700
genotyped hybrids, calibration every four generations
and 300 candidates per generation and population, selec-
tion response of RRGS was 71.8 % higher than RRS.
RRGS without genotyping hybrid individuals, with cali-
bration every two generations and 300 candidates was a
relevant alternative, as a good compromise between the
annual response, risk around the expected response, in-
creased inbreeding and cost.
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