Clément Viricel 
  
David Simoncini 
  
David Allouche 
  
Simon De Givry 
  
Sophie Barbe 
  
Thomas Schiex 
  
Approximate Counting with Deterministic Guarantees for Affinity Computation

Keywords: computational protein design, protein-ligand affinity, constraint Programming, cost function network, soft arc consistency, counting problems, weighted #CSP

Computational Protein Design aims at rationally designing amino-acid sequences that fold into a given three-dimensional structure and that will bestow the designed protein with desirable properties/functions. Usual criteria for design include stability of the designed protein and affinity between it and a ligand of interest. However, estimating the affinity between two molecules requires to compute the partition function, a #P-complete problem. Because of its extreme computational cost, bio-physicists have designed the K * algorithm, which combines Best-First A * search with dominance analysis to provide an estimate of the partition function with deterministic guarantees of quality. In this paper, we show that it is possible to speed up search and keep reasonable memory requirement using a Cost Function Network approach combining Depth First Search with arc consistency based lower bounds. We describe our algorithm and compare our first results to the CPD-dedicated software Osprey 2.0.

Introduction

Proteins are polymer chains composed of amino-acids. Natural evolutionary processes have fashioned by means of amino-acid sequence variations (mutations, recombinations and duplications) an array of proteins endowed with functions ranging from catalysis, signaling to recognition and repair [?]. These functions are made possible by the ability of proteins to self-assemble into well-defined three-dimensional (3D) structures specified by their amino-acid sequences and hence, to interact with various types of molecular partners with high affinity and selectivity. Despite a plethora of functionalities, there is still an ever-increasing demand for proteins endowed with specific properties/functions which are not known to exist in nature. To this end, protein engineering has become a key technology to generate the proteins with the targeted properties/functions [?].

However, despite significant advances, protein engineering still suffers from a major drawback related to the limited diversity of protein sequences that can be explored in regard to the huge potential sequence space. If one considers that each position of a small protein of 100 amino-acid can be replaced by any of the 20 possible natural amino-acids, a theoretical space size of 20 100 sequences is reached. One can thus easily imagine that sampling such large spaces is out of reach of wet methods. Consequently, approaches aiming at rationalizing protein evolution and favoring exploration of sequence regions of particular relevance for the targeted property/function are crucially needed to increase the odds of success to tailor the desired proteins while decreasing experimental efforts. In this context, computational methods have gained a prominent place in protein engineering strategies. Structure-based Computational Protein Design (CPD) has emerged with the increasing number of protein structures available in databases and the advents in computational structural biology and chemistry to understand fundamental forces between atoms and (macro)molecules. CPD uses the tight relationships existing between the function and the structure of a protein to design novel functions by searching the amino-acid sequences compatible with a known 3D scaffold, that should be able to carry out the desired function. CPD can thus be seen as the inverse folding problem [?] which can be formulated as an optimization problem, solvable computationally. In recent years, CPD has experienced important success, especially in the design of therapeutic proteins [?], novel enzymes [?]. . . . Nevertheless, the computational design of proteins with defined affinity for a given partner (such as a small molecule, a substrate or a peptide) which is essential for large range of applications, continues to present challenges.

Estimating the binding affinity between two molecular partners requires to compute the so-called partition function of each of the molecules and of the system formed by the two bound molecules. The partition function of a molecule that can have states ∈ Λ each with energy E is defined through the Boltzmann distribution as ∈Λ exp(-E k B •T ) where T is the temperature and k B is the Boltzmann constant. Computing the partition function of a system at constant temperature therefore requires to sum a simple function of the energy over a large set of possible states Λ. This computation is easy for systems with a small number of states. It becomes extremely complex for systems that have a number of states which is exponential in the size of their description. Even with the usual simplifying assumptions adopted in the field of CPD, the problem is actually #P-complete, a computational complexity class of problems with extreme complexity.

A protein is defined by a supporting skeleton (or backbone) which is built by polymerization. Each amino-acid in the protein is composed of two parts: one part participates in the construction of the linear backbone of the protein and the remaining part is called the side-chain of the amino-acid. At each position, one may choose among 20 different possible side-chains, each defining a different amino-acid type, associated with a specific letter in the alphabet. A protein can therefore be described as a sequence of letters. To perform their function, proteins need to be folded into a specific 3D shape which is defined by the amino-acid composition and the effect of various atomic forces (torsion angles, electrostatic, van der Waals, solvation effects). The precise conformation of a protein is therefore defined by the conformation of the backbone and the relative conformation of all its side-chains. A usual simplification assumption in CPD is to assume that the backbone is rigid (it has only one conformation) and that the side-chains can only adopt a specific set of discrete low-energy conformations, called rotamers. Several rotamer libraries have been defined over the last two decades. For a protein with a sequence S of length n, with a known composition (side-chains), the set of reachable conformations Λ S is then defined as the cross-product of the set of the rotamers of every amino-acid. A conformation is just a choice of rotamer for each side-chain of the protein.

The computation of the partition function Z A of a molecule A requires the computation of the energy of every conformation. A second usual assumption of CPD states that the energy of a molecule, defined as a function of the conformation , can be decomposed as a sum of a constant term (describing the energy of the backbone), a variable term for each side-chain (describing the interaction between the side-chain and the backbone and side-chain internal interactions) and a variable term for every pair of side-chains that interact (describing the interaction between the two corresponding side-chains). Stated otherwise, the energy can be pairwise decomposed. Different such pairwise decompositions of the energy have been built over the last decades.

The affinity of 2 molecules A and B is then proportional to the ratio of the partition function of the complex formed by the two molecules denoted Z AB to the product of their partition functions Z A × Z B . One affinity estimation therefore requires to compute three partition functions. The estimated affinity being just the criteria used for molecule design, i.e. to fix the amino-acid sequence, it must be repeatedly evaluated for each possible sequence considered for design. With a choice among 20 naturally occurring amino-acids at every position, the size of the sequence space is also exponential. This is why most affinity based designs or analysis are usually done on very small or drastically simplified systems.

In this paper, we focus on the problem of computing a lower estimate of the partition function of a protein with deterministic guarantees, enabling to approximate the affinity. The algorithm we define can be seen as an evolution of a traditional approximate partition function computation algorithm developed for affinity approximation called K * [?]. The K * algorithm combines dominance analysis with A * Best First Search to produce a sequence of conformations of increasing energy. This sequence can be used to compute a running sum of contributions to the partition function and prune conformations that cannot contribute sufficiently to the partition function (because of their high energy).

Our method follows the same idea but relies on the use of specific lower bounding techniques that have been developed for exact combinatorial optimization in the last decades in the field of weighted Constraint Programming [?] and more precisely Cost Function Network and local consistencies [?]. While the use of such bounds is usual for exact optimization, this is, in our knowledge, the first use of soft local consistency to prune the search space of approximate partition function computation. The second new ingredient is a shift from spaceintensive best-first search to depth-first search, completed by on-the-fly variable elimination [?].

We compare our algorithm to the K * algorithm implemented in Osprey [?], a CPD-dedicated platform.

Background and Notations

We denote by A A the set of all 20 amino-acid types. We consider an initial protein defined by sequence of amino acids S = s 1 , . . . , s n , s i ∈ A A . The protein S has a 3D scaffold which is selected amongst high resolution 3D structures determined either from X-ray crystallography or Nuclear Magnetic Resonance (and deposited in the Protein Data Bank). This defines an initial fixed backbone.

Among all positions of S, some positions M ⊂ {1, . . . , n} are considered as mutable and can be replaced by any amino acid in a subset A Ai of A A . For each amino-acid type t in A A , we have a discrete library of possible conformations (or rotamers) denoted as Λ t . Given the sequence S, the atomic coordinates of the associated backbone and a choice i ∈ Λ Si of a given conformation for each side-chain, the energy of the global conformation can be written as a function of the vector of rotamers used, denoted as ∈ Λ S = i Λ Si :

E S ( ) = E S ∅ + i E S ( i ) + i j>i E S ( i , j )
where E S is the potential energy of the protein S, E S ∅ is a constant energy contribution capturing interactions between fixed parts of the model, E S ( i ) is the energy contribution of rotamer i at position i capturing internal interactions or interactions with the backbone, and E S ( i , j ) is the pairwise interaction energy between rotamer i at position i and rotamer j at position j [?]. Thanks to this decomposition, each energy terms, in kcal • mol -1 , can be pre-computed and cached, allowing to quickly compute the energy of a conformation once the rotamer used at each position is fixed.

Assuming for the sake of simplicity that no symmetry or state degeneracy exists in the molecule considered, the partition function of a protein S for a fixed position, rotation and backbone over all side-chain conformations is defined as:

Z S = ∈Λ S e - E S ( ) k B T
This sum contains an exponential number of terms. The exponential distribution leads to terms with sharp changes in magnitude. Most significant terms correspond to low energies. Our aim is to provide a deterministic algorithm that computes a lower approximation ẐS such that:

Z S 1 + ε ≤ ẐS ≤ Z S (1) 
The problem of exactly computing Z S in this case is known to be #Pcomplete. The "simple" problem of finding a rotamer vector with energy below a value k is NP-hard [?]. Usual methods for estimating Z S are stochastic methods using Monte-Carlo (Markov-chain) approaches with no non-asymptotic guarantees [?]. In the context of protein design, the K * algorithm is a simple algorithm that provides an approximation to Z S satisfying (??). We now quickly present it.

The K * Algorithm

The K * algorithm is an approximate counting algorithm that exploits optimization techniques. The first component is a dominance analysis called "Dead End Elimination" (DEE [?]). This process compares a worst case energy for a rotamer i ∈ Λ Si with a best case cost for a different rotamer i ∈ Λ Si and prunes i ∈ Λ Si if its best case energy is larger than the other energy (replacing i by i in any solution can only improve the energy) i.e., iff:

E S ( i ) + j =i min j ∈Λ S j E S ( i , j ) -E S ( i ) + j =i max j ∈Λ S j E S ( i , j ) > 0 (2)
This is done iteratively on all positions i and all possible pairs of rotamers in Λ i , pruning the space of conformations.

The second component is a best-first branch and bound A * optimization algorithm exploring a tree where each node corresponds to a partially determined conformation where a subset of all positions have fixed rotamers. The sons of a node are defined by choosing a position i with a yet unfixed rotamer and creating one node per possible rotamer i ∈ Λ Si . Leaves correspond to completely determined conformations . At a given node at depth d with fixed rotamers = ( 1 , . . . , d ), it is possible to compute a lower bound Lb( ) on the energy of any complete conformation below this node. Following the A * terminology, this lower bound defines an "admissible heuristics" and is defined as

Lb( ) = d i=1 E( i) + d j=i+1 E( i, j ) Fixed + n j=d+1 min j ∈Λ S j (E( j ) + d i=1 E( i, j ) Fixed-Unfixed + n k=j+1 min k ∈Λ S k E( j , k ) Unfixed )
Starting from the root, if the node with the best lower bound is always developed first, the sequence of leaves explored by A * will produce a stream of complete conformations, starting with the optimal conformation with minimum energy (and thus maximal contribution to the partition function) and followed by sub-optimal conformations sorted by increasing energy.

For optimization alone, it is amazing to see that the simple algorithm combining DEE and A * (DEE/A * ) is only slightly dominated by 01-Linear programming models solved using CPLEX [?] and outperforms very concise quadratic programming formulations solved using CPLEX or BiqMac [?].

For counting, the DEE preprocessing may remove sub-optimal conformations whose energy is sufficiently low to significantly contribute to the partition function. It is therefore weakened by using an energy threshold E w > 0, replacing the rhs zero in equation ??. Then DEE can only prune conformations with energy at least E w away from the optimum energy.

As A * produces conformations in decreasing order, the space of all conformations Λ S is split in 3 subsets: a set P of conformations that have been pruned by DEE(E w ), a set V of conformations already visited by A * and a set U of yet unexplored conformations. This splits the partition function in 3 terms: Z S = Z S P +Z S V +Z S U , each summed on the corresponding conformation space. The value of the second term is known. It is possible to bound the value of the first term: we compute a lower bound Lb P = min i pruned Lb( i ) on the energy of every conformations pruned by DEE(E w ) and conclude that Z S P ≤ |P |•exp( -Lb P k B T ). Finally, if E A * is the energy of the last conformation produced by A * , since the sequence of conformation is decreasing, we have

Z S U ≤ |V | • exp( -E A * k B T
). Thus:

Z S ≤ Z S V + |P | • e -Lb P k B T + |V | • e -E A * k B T . Hence, if E A * ≥ -k B T • [log(Z S V • ε 1+ε -|P | • e -Lb P k B T ) -log(|U |)), we know that Z S
V is an ε-approximation of Z S and we can stop A * search, possibly pruning a lot of conformations that do not contribute enough to Z S . However, it is also possible that too many conformations have been pruned by DEE(E w ) and this threshold is never reached. In this case, the A * must exhaust all conformations and a sufficient (easy to determine) number of conformations in P must be restored and the A * search redone. Remind that A * is a worst-case exponential space and time algorithm. The dominance analysis of DEE is a double-edged sword: it may prune a lot of conformations but if too many conformations are pruned, a full search is required and another search needs to be done on a larger set of conformations.

Cost Function Network and Local Consistency

Following our previous work on optimization for CPD presented in [?,?], we model the distribution of energies as a Cost Function Network (CFN) or Weighted CSP. In a CFN (X, D, C, k), X is a finite set of variables, each variable i ∈ X has a finite domain D i ∈ D, each cost function c S ∈ C is a function from i∈S D i to {0, . . . , k} and k is an upper bound defining an intolerable cost. For a given assignment of X, the cost of is the sum of all cost functions (if it is less than k) or k otherwise. A complete assignment is a solution of the CFN is its cost is strictly less than k. Notice that all costs being non negative, c ∅ ∈ C is a lower bound on the cost of any assignment.

The energy distribution of S can be obviously modeled in a CFN with one variable i ∈ X for every position, the domain of i is the set of rotamers Λ Si and the cost functions include one zero-ary, unary and binary cost functions representing respectively E S ∅ , E S ( i ) and E S ( i , j ). If K * relies on DEE and A * , our new algorithm combines soft local consistencies (instead of DEE) and a Depth First Branch and Bound (DFBB) algorithm (instead of A * ). The DFBB algorithm performs counting instead of minimization and uses a dedicated dynamic pruning condition that guarantees to compute an ε-approximation of Z S .

We quickly present the fundamental properties of soft local consistencies, without details. The reader is invited to read [?] for a precise description of existing arc consistencies for CFN. Enforcing a given soft local consistency transforms a CFN (X, D, C, k) into an equivalent CFN (X, D , C , k) that satisfies the corresponding local consistency. By equivalence, we mean that the two CFNs have the same set of solutions with the same cost. The fact that (X, D , C , k) satisfies the local consistency usually means that c ∅ has increased (it cannot decrease in any case), providing a stronger lower bound on the optimum and that domains have been reduced (some values that cannot participate in a solution are deleted). Naturally, the lower the k is, the stronger is the pruning.

DFBB+Arc Consistency to Compute Z with Pruning

Traditional DFBB algorithms for CFN maintain a given level of soft arc consistency at each node (producing a non naive lower bound c ∅ at each node) and use the cost of the current best known solution as the current upper bound k. This allows to prune efficiently as k decreases rapidly as search proceeds.

To transform this algorithm in a counting algorithm:

each time a leaf with cost (energy) E is encountered we contribute exp( -E k B T ) to a running lower estimate ẐS of Z S (initially set to 0).

each time we prune a node with partial assignment , we compute an upper bound U b( ) on the contribution to the partition function of all the leaves below the pruned node and contribute this upper bound to a running upper bound Z S + of the partition function over pruned conformations to decide when to prune, we enforce the invariant ẐS ≥ ẐS +Z S + 1+ε . We prune if and only if adding U b( ) to Z S + does not break this invariant.

Theorem 1. The algorithm is correct: it provides a final estimate ẐS such that

Z S ≥ ẐS ≥ Z S 1+ε
Proof. Initially, ẐS = Z S + = 0 and the invariant is satisfied. When the search finishes, all conformations have either been explored or pruned and therefore ( ẐS + Z S + ) ≥ Z S . Using the invariant, we conclude that ultimately ẐS ≥ Z S 1+ε . By construction, Z S ≥ ẐS .

The remaining ingredient is the upper bound U b( ). We know that all conformations below the current node have a cost (energy) larger than c ∅ , thus a contribution to Z S smaller than exp( -c∅ k B T ). Denoting by N ( ) the product of the domain sizes of all unassigned variables, we can conclude that U b(

) = N •exp( -c∅ k B T
) is an upper bound on the contribution of all leaves below the current node. This general schema is improved using on-the-fly variable elimination [?]. If a variable i has only few neighbors (typically 2 or 3) at the current node, we eliminate this variable using a simple sum-product algorithm. We call the resulting algorithm Z * 0 (to leave room for future improvements). Z * 0 can be easily improved by providing it with either a set of conformations of low energies or with any available lower bound on the partition function Z S . These can be used to strengthen the pruning condition in the beginning of the search. Double counting of identical conformations can be easily avoided using efficient direct comparison of conformations by discrimination trees or hash tables or simply by using the maximum of this initial upper bound and the running upper bound ẐS in the pruning condition.

Experimental Comparison

To compare Z * 0 to K * , we examined the binding affinity of different protein/ligand complexes. The 3D model of these molecular systems were derived from crystallographic structures of the proteins in complex with their ligands, deposited in the protein data bank (Table 1). Missing heavy atoms in crystal structures as well as hydrogen atoms were added using the tleap module of the Amber 14 software package [?]. The molecular all-atom ff14SB was used for the proteins and the ligands while the gaff force field was used for the cofactor AMP (present in one studied system, PDB: 1AMU). The molecular systems were then subjected to 1000 steps of energy minimizations with the Sander module of Amber 14. Next, we have selected a portion of the proteins including residues at the interface between the protein and the ligand as well as a shell surrounding residues with at least one atom within 8 to 12 Å (according to the molecular system) of the interface.

The residues at the interface protein/ligand and the ligand were considered flexible and represented by rotamers from the Lovell's penultimate library [?]. At most 2 of the flexible residues of the protein were allowed to simultaneously mutate, while the remaining flexible residues were allowed to change their sidechain conformation. In addition to the wild-type identity for the positions allowed to mutate, a selective subset of amino-acid types (ranging from 7 to 19 aminoacids) was allowed in the redesign. All energy matrices were generated using Osprey 2.0 [?]. The energy function is the sum of the Amber electrostatic, van der Waals and dihedral terms. Floating point energies were translated, multiplied by a large constant K and truncated to the nearest integer in the CFN. We implemented our algorithm in our open source solver toulbar23 . Our DFBB algorithm maintains Existential Directional Arc Consistency (EDAC) [?], on-the-fly elimination [?], a value heuristics using the existential support and a variable ordering combining weighted degree [?] and last conflict [?] heuristics.

To compare Z * 0 as implemented in our C++ solver toulbar2 to the algorithm K * implemented in Osprey 2.0 in Java, we set ε to 10 -3 and toulbar2 and asked to estimate the affinity of each mutated proteins sequence with the substrate. For Osprey 2.0, we used the options doMinimize = false, gamma = 0.0. This last option guarantees that all mutations will be evaluated. The default values initEw = 6.0, pruningE = 100.0, stericE = 30.0 were also used. For toulbar2 0.9.7, we used options -logz -zub=0 that selects the Z * 0 algorithm and the upper bounding U b( ) described before and turns DEE processing off. For the 1AMU model, this represents a total of around 3,168 counting problems, each with different energy landscapes. The proxy to the affinity defined by the ratio of the partition functions is only approximated by the two methods, and these approximations may differ and rank sequences with close values differently. We compared the rank of the first 40 sequences and the two sets were identical and identically ordered.

For the 1AMU model, K * explored 6,451,997 nodes in 76,654 seconds (CPU user time) while toulbar2 explored 84,993 nodes in 30 seconds (CPU user time) for the same value of ε. So, Z * 0 is around 2,500 times faster and offers stronger pruning. While the difference in efficiency between C++ and Java may contribute to this difference, it can only explain a small part of this ratio. For the other models, K * took over the time limit (1000 hours CPU user time) that we set and it is therefore impossible to compare precisely. We also studied the influence of ε on the computing time and pruning. The influence is not really drastic. Notice that a value of ε = 1 means that our estimate is guaranteed to be only withing a factor 2 of the true value of Z S . 2. For each system, and for different values of ε we give the number of nodes and user cpu-time in seconds. The value ε = 0 was also tried for 1AMU. In this case, steric clashes are the only possible cause of pruning (infinite energy) and more than 340,000 nodes were explored in 72". In tight interfaces, this is an important source of pruning.

ε = 1 ε = 10 -3 ε = 10

Conclusion

In statistical physics in general and specifically in Computational Protein Design, computing or estimating the partition function is a central but difficult problem. The computation of the simple pure conformational partition function of an amino-acid based system with fixed backbone and flexible side-chains represented as rotamer sets with a pairwise decomposed energy already defines a #P -complete problem.

In general, this problem has a very dense graph which makes exact graphstructure based approaches inadequate. It also has a very sharp energy landscape that allows for efficient optimization but does not facilitate a stable probabilistic (Monte Carlo-based) estimation of the partition function. Such estimates also offer no deterministic guarantee on the quality of the estimation.

The K * approach developed for CPD and our new Z * 0 algorithm instead exploits the fact that in some cases, a very small fraction of the conformational space may contribute enough to essentially define the partition function. In our knowledge, our algorithm is the first deterministic algorithm for weighted counting that exploits soft local consistency reformulation based lower bounds for counting with deterministic guarantees. Naturally, these results are preliminary. Several directions can be pursued to reinforce these results:

consider larger molecular systems for comparison. The combinatorial advantage of Z * 0 compared to K * that results from the stronger lower bound of local consistencies, the absence of DEE, together with the space effectiveness of DFBB compared to A * should lead to even stronger speedups. shift to higher resolution rotamer libraries. The penultimate library has a lower resolution than alternative libraries such as [?] or [?]. In Osprey, another approach using continuous pre and post minimization is used instead. We could then compare the two approaches in terms of consistency of the predicted affinity ranking. compare Z * 0 to exact counting algorithms such as Cachet [?], Sentential Decision Diagrams [?] both on CPD problems (with sharp changes in contributions to Z S ) and other usual probabilistic systems such as classical instances of Markov Random Fields and Bayesian Nets.

it is known that our lower bounds have corresponding lower bounding mechanisms in Weighted Satisfiability [?]. They could therefore be used to improve Cachet or SDD solvers for approximate computations with deterministic guarantees.

improve Z * 0 with stronger bounds and alternative search strategies that favors the early discovery of low energy conformations and possibly exploits the interaction graph structure through a tree-decomposition. These preliminary results also show the interest of using these bounds instead of DEE dominance analysis for pruning the conformational space. Local consistency provides good lower bounds and its pruning can be easily controlled to avoid pruning sub-optimal solutions that can participate significantly to the partition function. This is a major advantage compared to DEE.

Fig. 1 .

 1 Fig. 1. A local view of a protein backbone and side-chains. Changes can be caused by amino acid identity substitutions (for example D/L) or by side-chain reorientations (rotamers). A typical rotamer library for one amino acid is shown on the right (ARG=Arginine).

Table 1 .

 1 For each ID, we give the ligand, the number of variable residues (flexible, mutations/mutable residues) and the number of sequences represented.

	PDB ID Ligand Variable res. Seq. Number
	1AMU	F	(10,2/9)	1584
	1TP5 KKETWV (12,2/3)	1121
	1B74	Q	(10,2/9)	1809
	2Q2A	R	(13,2/12)	4716

mulcyber.toulouse.inra.fr/projects/toulbar2/