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� Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly chal-
lenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic
model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothe-
sizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape.
� Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest
roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a
given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50mm thick;
and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the
model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree
density and species composition.
� Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good
fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the
fit to the observed data.
� Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the
tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual.
Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a
good compromise between the complexity of the case study area and that of the global model structure.
ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides
a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems.

Key words: Heterogeneous forest ecosystems, plant growth modelling, tree root density, fine root, coarse root, root
system architecture, logistic function, Weibull distribution, log-normal distribution, Gompertz distribution, Abies
alba, silver fir, Picea abies, Norway spruce.

INTRODUCTION

Tree roots can constitute >60 % of total biomass in forest
ecosystems (Vogt et al., 1996). To evaluate below-ground eco-
system services, a reliable characterization of the spatial distri-
bution of root density is fundamental. However, determining
root density can be challenging, especially in remote locations
or protected areas where root excavation is difficult or limited,
e.g. at high altitudes or in naturally regenerated forests. These
forests also possess particularly heterogeneous distributions of
roots in both space and time (Soethe et al., 2006; Schwarz
et al., 2010; Mao et al., 2012, 2013), and therefore reliable data
remain scarce. Developing an accurate model that could predict
root density from above-ground tree dimensions would be
highly useful in complex forest ecosystems and could likely be
applied to other types of forest.

In naturally regenerated montane and subalpine forests,
trees commonly grow in clusters named tree islands, i.e.

canopy-closed zones surrounded by clusters of trees. Between
the clusters are gaps, i.e. canopy-open zones (Mao et al., 2012).
In each cluster there is usually more than one species, tree ages
are different and there is an irregular distribution of tree loca-
tions. Soil is also spatially heterogeneous, due, for example, to
a high presence of stones that can obstruct root extension. Root
growth of trees might also be in competition with that of
shrubby and herbaceous understorey plants, rendering more
difficult the modelling of root density distribution.
Models of tree root spatial distribution have been developed

for the last 40 years (Böhm, 1979; Coutts, 1983; Schenk and
Jackson, 2002; Zianis et al., 2005; Picard et al., 2012). The dis-
tribution of root density, either horizontal (e.g. along a gradient
of canopy openness) or vertical (e.g. along a gradient of soil
depth), is supposed largely to be a consequence of intrinsic and
ontogenic traits and environmental factors (Picard et al., 2012).
Different tree species possess different root system
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architectures, which change throughout the life of a tree.
Environmental factors affecting root density distribution can be
(1) abiotic, including climatic, e.g. altitudinal trends (Hertel and
Schöling, 2011; Mao et al., 2015), edaphic, e.g. water and nutri-
ent availability in soil (Coutts et al., 1999), soil texture and
compaction level (Dexter, 2004) and topographic, e.g. the pres-
ence of physical obstructions such as stones (Hoffmann and
Usoltsev, 2001; Soethe et al., 2006) and slope angle (Di Iorio
et al., 2005; Chiatante and Scippa, 2006), and (2) biotic, e.g. in-
teractions between trees and between trees and understorey spe-
cies (van Noordwijk et al., 1996; Cardinael et al., 2015).
Existing models have been developed on the basis of the above
sources of effects. Most models are allometric relationship-
based (ARB) models, in which root density varies as a function
of dendrometric properties of aerial tree organs and spatial dis-
tance [horizontal and/or vertical (for reviews see Hoffmann and
Usoltsev, 2001; Schenk and Jackson, 2002; Zianis et al., 2005;
Day et al., 2010)]. The ARB models generally have a simple
and empirical structure and a small number of easy-to-measure
parameters, and thus are easy to operate. However, most ARB
models are developed at the scale of the plant individual and do
not take into account the effects of interactions between trees.
Thus, the relevance of up-scaling and applying tree individual-
based ARB models to the whole-forest scale remains question-
able, especially for heterogeneous mountain forests.
Another group of models developed at the plant individual

scale aims at simulating spatio-temporal root growth dynamics.
These models can be either (1) pseudoroot system architecture
(RSA) models, which simulate the spatio-temporal distribution
details of root density in a given soil volume as a proxy of RSA
via diffusion or carbon allocation processes (Mulia et al.,
2010), or (2) true RSA models, which simulate RSA skeletons
via stochastic approaches (Doussan et al., 2003). Compared
with ARB models, both pseudo-RSA and true RSA models are
more sophisticated because they are more mechanistic, consid-
ering both root proliferation and certain biological parameters.
The RSA models are more dynamic in time and space (i.e. root
growth can be integrated) and can simulate two-dimensional
(2-D) or three dimensional (3-D) root architecture skeletons or
proxies of RSA that are highly realistic. Such models also have
a strong potential to take into account interactions between trees
(Pagès et al., 2004) and between trees and understorey species
(Collet et al., 2006), although most RSA models have not con-
sidered these interactions yet. Nevertheless, the existing RSA
models are mostly designed for agricultural crops or agroforest
trees, which constitute relatively regular and homogeneous eco-
systems in both above- and below-ground compartments
(Mulia et al., 2010). Thus, the applicability of RSA models to
naturally regenerated trees within highly heterogeneous moun-
tain ecosystems remains uncertain. Furthermore, most models
require many complex parameters related to root traits and de-
velopment. These parameters are either unavailable for natural
species or are time-consuming to estimate.
High-altitude, mixed, naturally regenerated forest ecosystems

are complex in vegetation distribution and environmental con-
ditions and therefore new models for predicting the spatial dis-
tribution of root density are needed. It is preferable that these
models possess the advantages of both ARB and RSA
approaches and comprise simple equations with easy-to-
measure inputs for forest and environmental characteristics.

Models should also combine mechanistic processes and ecologi-
cally meaningful parameters. It is also desirable that model pre-
dictions are spatially explicit and can be used for up-scaling.
Such models are lacking, especially for highly heterogeneous
forest ecosystems. Nevertheless, some modelling studies on root
distribution exist (Gersani et al., 2001; Müller and Wagner,
2003; Roering et al., 2003; O’Brien et al., 2007), as they are
simple and include plant interactions. For example, Müller and
Wagner (2003) and Roering et al. (2003) developed models
whereby they hypothesized that root density at a given point
was affected by the presence of roots from the surrounding trees
and that density varied between this point and the tree stem. On
the basis of game theory, Gersani et al. (2001) and O’Brien
et al. (2007) considered that a plant produces fewer roots when
in competition with its neighbour than if it is isolated. Root
overlapping was also taken into account. These models appear
suitable to capture some features of complex forest stands (e.g.
spatial heterogeneity of trees and tree interactions), although
several were not initially developed for modelling forest ecosys-
tems (e.g. Gersani et al., 2001; O’Brien et al., 2007).
We developed a model based on the hypothesis that root den-

sity at a given point is affected by the presence of roots of sur-
rounding trees forming a polygon shape, with a possible
saturating effect depending on the total density of surrounding
trees. The effect of tree size and distance to a given point, spe-
cies, presence of rocks and competition with roots of the under-
storey vegetation was investigated. Data to test the model were
collected in the French Alps. The root density indicator was
root interception density (RID, number of roots m–2), which is
one of the most commonly used root indicators characterizing
root density (Van Noordwijk et al., 2000; Maurice et al., 2010;
Mao et al., 2012, 2013). RID can be used in the calculation of
root area ratio (i.e. total root cross-sectional area per soil area)
and is a key input for assessing the role of roots in reinforcing
soils against shallow landslides (Stokes et al., 2009; Mao et al.,
2012, 2013). RID is also considered a suitable proxy to evaluate
above- and below-ground carbon allocation at a stand level
(Mao et al., 2015). As RID is easy to measure, it has been fre-
quently used for estimating root length density (RLD) (Van
Noordwijk et al., 2000; Chopart et al., 2008; Maurice et al.,
2010; Cardinael et al., 2015). Root length density is often used
as a proxy to characterize plant water and nutrition uptakes in
forest or agricultural systems (Chopart et al., 2008). The poten-
tial of our model is discussed with regard to its more wide-
spread use in several types of forest ecosystems.

MATERIALS AND METHODS

Description of the model

The model, called ChaMRoots (Characterisation of Mountain
forest Roots) comprises three sub-models for predicting the fol-
lowing parameters (Note: according to the international stand-
ard ISO 31–11, ]x, y] denotes a left half-open interval from
x (excluded) to y (included)):

1. Spatial heterogeneity of tree roots. The sub-model predicts
the RID of roots ]0, 1] mm in diameter within the top
0�2m of soil as a function of tree species, tree dimension
[e.g. basal area at breast height (g)], tree position [i.e. the
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distance between the tree and a given point (D)] and the
presence/absence of obstacles (e.g. stones) in soil that
emerge on the ground (O).

2. Diameter spectrum. The distribution of RID as a function
of root diameter class for roots �1mm in diameter is pre-
dicted by the second sub-model.

3. Vertical profile. The vertical distribution of RID as a
function of soil depth (z) is predicted by the third
sub-model.

Sub-model of spatial heterogeneity of tree roots The fundamental
principle of the first sub-model is that a tree contributes more to
total root density at a given point when it is large, close to
that point and no obstacles are present between the tree and
the given point. The higher potential production of roots also
depends on species and site conditions. The contribution of
roots to total density is implicitly modulated by the presence
of other trees due to inter-tree competition. Distance, tree size,
obstacles and species were therefore selected as the main
factors influencing tree root density (Hoffmann and Usoltsev,
2001).

The core of the first sub-model of root spatial heterogeneity is
based upon root production efficiency (E) at a given point,
which depends on the surrounding trees. E is defined by:

E ¼ dRIDt;0�1

dp
(1)

where p is the potential of trees to grow roots at a given point
in the soil. The term ‘tree root potential’ or p will be used here-
after. The value of p depends on the dimension and position of
the surrounding trees. p differs from E, which measures the ca-
pacity of trees to convert a unit of p to root density. RIDt,0–1 is
the RID of the finest tree roots; dRIDt,0–1/dp is the production
of RIDt,0–1 per p metric.

p at a given point is defined by the following general form:

p ¼
XNs

s

XNe

e

pe;s ¼
XNs

s

XNe

e

gkse;s

bþ ðDa
e;sÞ

us
Oe;s

 !

(2)

Ns is the number of tree species around the target point (Ns � 0,
s [ [0, Ns]). Ne is the number of tree individuals of a given spe-
cies s around the target point (Ne � 0, e [ [0, Ne]). pe,s is the tree
root potential contributed by a tree (e, s). ge,s is the basal area at
a height of 1�3m of an individual tree e of species s (m2). De,s is
the horizontal distance from the centre of a tree (e, s) to the tar-
get point (m) and has a value �0. Oe,s is the absence of emerged
obstacles (diameter >�30 cm) on the ground between the target
point and tree e of species s. The value of Oe,s can be either bi-
nary (1¼ yes, absence of obstacles; 0¼ no, presence of obsta-
cles) or unique (1¼ yes, indifferent to the absence or presence
of obstacles), depending whether the effect of obstacles is con-
sidered. a and b are scaling parameters of the surrounding trees’
influence on p, while ks and us are RSA parameters (see below).
These four parameters are fitted parameters.

a and b are generic coefficients (a and b �0) accounting for
the effect of intrinsic tree allometry regardless of tree species,
as they allow an alteration of the weight of De,s relative to ge,s.

When b¼ 0, both pe,s and p [ [0, þ1[, if De,s tends to approach
0, i.e. the given point is situated at the centre of the tree (e, s),
then p tends to infinity. When b> 0, b is effectively limiting
the ratio between gi and Di, without the drawback of pulling
pe,s towards infinity. To estimate a and b, we tested the follow-
ing cases:

1. a, b [ [0, þ1[
2. a [ [0, þ1[, b¼ 0
3. a [ [0, þ1[, b¼ 1

ks and us are specific coefficients (ks, us � 0) accounting for
the effect of RSA. Species that differ in architecture may pos-
sess variable capacities for root extension, which results in a
disparity in the spatial distribution of roots in the soil. We di-
vided species into three groups according to the morphology of
the root system, using the classification of Köstler et al. (1968),
as follows.

1. Plate-like morphology, with a greater superficial, horizon-
tal root extension compared with that of the vertical roots,
e.g. Picea abies. In this case, ks¼ kp, us¼up.

2. Taproot morphology (ks¼ ka), with a greater extension of
vertical roots compared with the extension of horizontal
and lateral roots, e.g. Abies alba. In this case, ks¼ ka,
us¼ua.

3. Heart-like morphology, where the root system is a
mixture of the above two types, e.g. Fagus sylvatica,
Sorbus aucuparia, Acer pseudoplatanus. In this case,
ks¼ kb, us¼ub.

To facilitate the estimation of coefficients, we consider
P. abies as the reference species and let kp¼ 1 and up¼ 1. The
p of A. alba and broadleaves based on ka, ua and kb ub can be
considered as relative p compared with P. abies. In this study,
due to a small population of broadleaves, pb was forced to share
the same coefficient with either pp or pa, i.e. Ns¼ 2. The
following two cases were tested:

1. kp¼ 1; up¼ 1; ka¼ kb[ [0, þ1[, ua¼ub[ [0, þ1[
2. kp¼ kb¼ 1, up¼ub¼ 1, ka[ [0, þ1[, ua [ [0, þ1[

where broadleaves were grouped together with A. alba and P.
abies, respectively.
To estimate ks and us, we tested the following cases:

1. ks [ [0, þ1[, us¼ 1
2. ks¼ 1, us [ [0, þ1[
3. ks [[0, þ1[, us [ [0, þ1[, ks¼us

These three cases represent different biological phenomena
concerning the effect of species on tree root extension. Options
(1) and (2) assume that the effect of species on p is uniquely ef-
fective with regard to tree size and the distance between the
tree and the target point, respectively; while (3) assumes that
the effect of species on p is effective with regard to ge,s and
De,s

a, i.e. both tree size and position.
We modelled E using two approaches. Firstly, in a

semi-mechanistic approach, E was assumed to be dependent on
two factors: (1) the ‘root-providing pool’, which represents the
existing quantity of roots from which the finest roots can be
borne; (2) the ‘restraining pool’, representing the upper limit of
the finest root production due to root competition, which can be
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both intra- and inter-species specific. Therefore, E can be writ-
ten as a derived form of the logistic function:

E ¼ rRIDt;x�y 1� RIDt;0�1

K
� h

RIDu;0�1

K

� �
(3)

Here, K is the maximum density of RID0–1 of both tree and
understorey species that the soil can support, RIDu,0–1 is the
RID of understorey species and h is the coefficient describing
the relationship between understorey species’ roots and tree
roots. If h¼ 0, there is a neutral relationship of root growth be-
tween tree and understorey species, and E is uniquely deter-
mined by the RID of the trees. If h> 0, understorey species’
roots are in competition with tree roots; for a given K, a higher
h value reflects a greater detrimental effect of understorey
species’ roots on tree roots. Theoretically, h can be negative,
suggesting that roots of understorey species are in a mutualistic
relationship with tree roots, but this phenomenon might be
rarely observed in reality. r is the average branching rate for the
production of RID0–1, and RIDt,x–y is the RID of tree roots in
the class of root diameter ]x, y] mm from which fine roots can
be borne.
Preliminary regression analyses based on our monolith data

(see section Tree and root data) revealed that RIDu,0–1 had no
significant effect on RIDt,0–1 (P> 0�40, data not shown),
suggesting a low competitive effect between understorey
species’ roots and tree roots in our study sites. Hence, we set
h¼ 0, simplifying eqn (3) by removing the non-significant in-
teractions between RID of trees and that of the understorey
species:

E ¼ rRIDt;x 1� RIDt;0�1

Kt

� �
(4)

where K in eqn (4) is replaced by Kt, which denotes the maxi-
mum density of RID0–1 of tree roots.
Field observations from rhizotrons at the same field sites

showed that roots ]0, 1] mm in diameter could be branches ini-
tiated on roots of ]1, 5] mm or those of ]0, 1] mm (Mao et al.,
2013). Hence, we have:

RIDt;x�y ¼ RIDt;0–5 ¼ RIDt;0–1 þ RIDt;1–5 (5)

Here we chose to use a linear relationship between RIDt,1–5

and RIDt,0–1 regardless of site rather than non-linear curves or
fitting one curve per site, as a linear relationship leads to a
more simple integral equation, i.e. eqn (5).

RIDt;1�5 ¼ a RIDt;0–1 þ b (6)

where a and b are the slope and intercept coefficients of the
linear univariate equation a � 0; b >0.
By linking eqns (1), (5) and (6), the integrated form

of eqn (4) (see Supplementary Data S1 for details of
deduction) is:

RIDt;0�1 ¼
b ðU � 1Þ

1þ aþ bU=Kt

(7a)

where:

U ¼ eð1þaþb=KtÞrp (7b)

According to eqns (7a) and (7b), we see that when p¼ 0
(no tree), RIDt,0–1¼ 0, and when p ! þ1 (no limitation of the
maximum tree inclusion zone), RIDt,0–1 ! Kt.
Alternatively, we modelled E and RIDt,0–1 in an empirical

approach using a power function, which is one of the most
commonly attempted functions when exploring a relationship
between two variables:

E ¼ mnð Þpn–1 (8)

RIDt;0–1 ¼ mpn (9)

where m and n are the two coefficients of the power function.
Such a comparison allowed us to discuss the efficiency of dif-
ferent approaches.

Sub-model of diameter spectrum. We modelled the cumulative
frequency Cd (dimensionless) of RID as a function of the upper
boundary of root diameter class (d). Compared with absolute val-
ues of RID, Cd enabled us to reduce the irregular jump of data
points from one diameter class to another. We tested four types of
function for the optimum fit of the sub-model of diameter spec-
trum, including a one-parameter cumulative distribution function
(CDF) of exponential distribution [eqn (10a), ‘exponential’]:

Cd ¼ 1–e–fd (10a)

and three two-parameter functions, i.e. a Weibull distribution
[eqn (10b), ‘Weibull’], Gompertz distribution [eqn (10c),
‘Gompertz’] and log-normal distribution [eqn (10d), ‘log nor-
mal’], respectively:

Cd ¼ 1� e� d=cð Þj (10b)

Cd ¼ 1� exp � g

d
edd � 1
� �h i

(10c)

Cd ¼
1

2
1þ erf

ln d � l

r
ffiffiffi
2

p
� �� �

(10d)

where Cd is the cumulative frequency of RID from the finest
roots to those of root class diameter d mm (dimensionless), d [

]0, 50] mm; Cd [ [0, 1], f, c, j, g, d, l and r are the coefficients
of root of diameter spectrum in the CDFs, and erf is the Gauss
error function.

Sub-model of vertical profile. Root density varies significantly
with soil depth, which has, in turn, commonly been used as a
key parameter when modelling vertical root distribution (Gale
and Grigal, 1987; King et al., 2003). To facilitate comparison
with previous studies, we modelled the root distribution along a
vertical soil profile using the following one-parameter exponen-
tial model:

Cz ¼ 1� e100z=zmax (11)

where Cz is the cumulative frequency of RID from ground sur-
face to the soil depth z (m); Cz [ [0, 1�0], with z [ ]0, zmax] and
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e is the coefficient of root profile shape, with e [[0, 1[. The
closer e approaches 1, the more roots tend to be less concen-
trated at the soil surface. We fixed maximum soil depth at
1�0m according to field observations from the same field site
(Mao et al., 2013). This equation is derived from the model of
Gale and Grigal (1987) for estimating the vertical distribution
of roots.

Tree and root data

Characteristics of study sites. Our study sites were located near
the village of Chamrousse, Isère, France (45�07’7N, 5�52’ E)
and comprised two mixed, mature, naturally regenerated forests
of Norway spruce (P. abies), silver fir (A. alba) and European
beech (F. sylvatica) growing at altitudes of 1400m a.s.l.
(Prémol forest) and 1700m a.s.l. (Bachat-Bouloud forest).
Mean monthly air temperature was lowest in January or
February (–5�2 �C at 1400m, –3�6 �C at 1700m) and highest in
July (13�7 �C at 1400m, 12�0 �C at 1700m). Average annual
precipitation is 1530mm at 1400m and 1710mm at 1700m.
Soils are acidic at both sites. According to the World Reference
Base (IUSS Working Group WRB, 2007) for soil resources, the
soil is classified as Cambisols (Hyperdystric) at Prémol and as
Cambisols (Humic, Hyperdystric) at Bachat-Bouloud. A high
presence of coarse elements (rocks and stones) was found at
both sites. More details about the site characteristics are avail-
able in Mao et al. (2012).

Plot settings for tree and root data. Two 25m � 25m plots
were set at each site for forest inventories, except for one plot
at 1400m, which was 25m � 30m. Within each plot, two loca-
tions were randomly selected for excavating roots: one in a tree
island and the other in a tree gap (see Fig. 1 for examples of
trench location within two chosen plots). Each root trench had a
dimension of 1�0m (length) � 0�6m (width) � 1�0m (depth,
i.e. maximum rooting depth). Sets of data on forest inventories
for global site descriptions and those for root density and
growth dynamics in each trench are available in Mao et al.
(2012, 2013).

At each site, one of the two plots was chosen for mini-
monolith excavation. Mini-monoliths were systematically
distributed on the edge and diagonal of the plots (Fig. 1)
with two exceptions: no mini-monolith was excavated at point
O at Prémol or at point J at Bachat-Bouloud, as their locations
were disturbed by an earlier excavation for rhizotron installa-
tion and root sampling in the summer of 2009 (Mao et al.,
2013). A new point P at Prémol was selected randomly in the
same plot. As a result, we obtained 25 mini-monoliths in all: 13
at Prémol and 12 at Bachat-Bouloud. Each mini-monolith had a
dimension of 0�2m (length) � 0�2m (width) � 0�2–0�3m
(depth).

Tree measurement and eligibility of ‘visible trees’. Within each
plot, species name, diameter at breast height (DBH) and loca-
tion of all the trees were registered during a forest inventory in
September 2009 (Mao et al., 2012). In the spring of 2010, a sec-
ond forest inventory was conducted. From the location of a
mini-monolith, species name, DBH, azimuth and distance of
each visible tree in any direction (0� to 360�), were registered

within a radius of 10�0m. Figure 1 shows the mapping of trees
for both inventories in the two plots.
At each mini-monolith, two values of the maximum tree in-

clusion zone (MIZ) were tested: MIZ¼ 8�0m and MIZ¼
10�0m. Within the MIZ of each mini-monolith, a tree is consid-
ered visible if the centre of the trunk is not eclipsed by the trunk
of any other visible trees. A visible tree can be either inside or
outside the plot of 25 � 25m2. For each monolith, only visible
trees are assumed to be effective in influencing root density. A
detailed protocol of visible tree selection and the outcomes of
mapping at each sampling point are available in Supplementary
Data S2.

Abies alba
Picea abies
Fagus sylvatica
Sorbus aucuparia
Acer pseudoplatanus
Pinus uncinata
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FIG. 1. Mapping of mini-monoliths (squares) and tree trunks of different species
(circles of different colours) based on forest inventories in 2009 and 2010. x-
and y-axes are distances in metres. The diameter of each tree trunk has been en-

larged five times for easier viewing.
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Root data from mini-monoliths. Root sampling in mini-mono-
liths (Fig. 2A) was carried out in the summer of 2010. For each
mini-monolith, we gave a qualitative description of the location
of the point with regard to tree canopies [three levels: outside,
transitional (i.e. on the edge of canopies) and inside] and the ab-
sence of emerged obstacles (mainly rocks of diameter >0�5m)
between the point and each of the surrounding trees (two levels:
1¼ yes, absence of obstacles; 0¼ no, presence of obstacles).
Root excavation was strictly limited within a zone of 0�2m �
0�2m. Soil was carefully removed by hand and sometimes us-
ing a long nail if rocks were present. Roots connected to the
soil to remove and on the lateral walls were cut using either
scissors (for thin and fibrous roots) or secateurs (for coarse and
highly lignified roots) so as to avoid ripping roots from the lat-
eral soil profiles. Finally, root tips were counted on the soil pro-
files, layer by layer, using a metal grid with a square unit of
0�1m � 0�1m. RID is always associated with the angle of the
soil profile and hence can be measured on a vertical, horizontal
or oblique soil profile. In this study, only RID on the lateral soil
profiles, i.e. walls perpendicular to the ground surface, were
shown and used for model fitting, as lateral soil profiles are one
of the most conventional and representative cases of root sam-
pling (Böhm, 1979). All roots (regardless of species) were
counted and classed into seven different categories of diameter:
]0, 1], ]1, 2], ]2, 3], ]3, 5], ]5, 10], ]10, 20] and ]20, 50] mm.

We assumed that the counted roots contained mostly living
roots, as decomposed or dead roots usually dropped from the
soil profile surface during excavation. Plant functional groups
(trees and shrubby and herbaceous species; the latter two are
considered understorey species) were distinguished for roots
>1mm in diameter. For root intercepts of ]0, 1] mm in diame-
ter, the plant functional group was difficult to identify in situ
due to the presence of a variety of understorey species at both
sites. Therefore, we estimated the RLD of roots that were si-
multaneously collected from the mini-monoliths, then washed
in the laboratory, sorted according to functional group, scanned
and analysed using the software WINRHIZOVR (Regent Inc.,
Canada). In the laboratory, the functional group to which a root
belonged was identified by its colour, texture and smell. To sep-
arate the RID of trees from understorey species, we assumed:

Pu;0�1 ¼
100 dRIDu;0�1

dRIDu;0�1 þ dRIDt;0�1

¼ 100 RLDu;0�1

RLDu;0�1 þ RLDt;0�1

(12a)

Pt;0�1 ¼
100 dRIDt;0�1

dRIDu;0�1 þ dRIDt;0�1

¼ 100 RLDt;0�1

RLDu;0�1 þ RLDt;0�1

(12b)

Pu is the percentage of total root density of understorey species.
Pt is the percentage of total root density of tree species, with

Pt¼ 100 – Pu. dRID is the estimated RID based on the RLD

data. RLD is the measured RLD from WINRHIZOVR analysis.
The subscripts (t,0–1) and (u,0–1) of the indicators denote roots
of ]0, 1] mm in diameter from tree and understorey species
(number of roots m–2), respectively.

Root data from trenches. The RID data based on measurements
using trenches (Fig. 2B) of 1�0m (length) � 0�6m (width) �
1�0m (depth) in Mao et al. (2012) were determined in the sum-
mer of 2009. Four trenches were dug at each site. Within each
trench, root distribution was measured along each soil profile.
Therefore, there were 16 sections in total and eight sections per
site (Mao et al., 2012). On each profile wall, root intercepts
were counted using the same protocol as for mini-monoliths,
except that the root diameter class ]2, 5] mm was used instead
of the classes ]2, 3] and ]3, 5] mm used in the mini-monoliths.
Plant functional groups were not distinguished. Since we mea-
sured neither the RID of tree species nor that of understorey
species in any trenches, we used the average values of Pu and
Pt of the mini-monoliths, which were classified as ‘inside the
tree canopies’ and ‘outside the tree canopies’, towards trenches
in tree islands and gaps, respectively:

PTI;t;x�y ¼ 100� PTI;u;x�y

¼
XNinside

n¼1

100 RIDn;t;x�y

RIDn;u;x�y þ RIDn;t;x�y

 !
=Ninside (13a)

PG;t;x�y ¼ 100� PG;u;x�y

¼
XNoutside

n¼1

100 RIDn;t;x�y

RIDn;u;x�y þ RIDn;t;x�y

 !
=Noutside (13b)

where PTI and PG are the percentages of density of roots
]x, y] mm in diameter from species in islands and gaps,

0
·2

 m
 

1·0 m

0
·6

 m

≈
1
·0

 m

A

B

FIG. 2. Measurement of root interception density using (A) mini-monolith and
(B) soil trenching techniques.
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respectively. Ninside and Noutside are the total numbers of
mini-monoliths situated inside and outside tree canopies.
Subscript n is the sequence of mini-monolith, with n [ Ninside

or Noutside; TI is tree islands; subscript G is gaps and sub-
scripts x and y are the lower and upper limits of a class of
root diameter ]x, y] mm.

Based on eqns (13a) and (13b), estimates of Pt for tree is-
lands and gaps at two sites are available (Table 1). As no roots
of ]5, 50] mm in diameter were identified as being from under-
storey species, we assumed Pt¼ 100 % and Pu¼ 0 % for these
root diameter classes.

2.3 Statistical modelling

Data from mini-monoliths (Nf¼ 25, where Nf is the number
of observations for model fit) were used to fit the sub-model of
spatial heterogeneity and that of diameter spectrum for roots
within a soil depth of ]0�0, 0�2] m. Beyond this depth, i.e. for
the depth of ]0�2, 1�0] m, the data from root trenches were used
to fit the sub-model of diameter spectrum (Nf¼ 16). Since the
roots were measured to the maximum rooting depth at each
site, these root data were also used to fit the sub-model of verti-
cal profile (Nf¼ 16). To choose the optimal sub-models, we cal-
culated (1) root mean square error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"XNf

i¼1

ðbYi � YiÞ2
#
=Nf

vuut (14)

where bY ı and Yi are the predicted and observed values;
i [ [1,Nf], (2) the Akaike information criterion (AIC), (3) the
Bayesian information criterion (BIC) and (4) the coefficient of
determination (R2, dimensionless) as quantitative indicators
(Burnham and Anderson, 2002).

All the sub-models were validated using root data that were
not used for model fitting. The sub-model of spatial heterogene-
ity was validated using the database from root trenches within a
soil layer of ]0�0, 0�2] m, in which RIDt,0–1 of four sections
within one root trench were averaged (Nv¼ 8, where Nv is the
number of observations for model validation). Regarding the
sub-model of diameter spectrum and that of the vertical profile,
only three sections out of four per root trench were chosen for

fitting and the remaining one was used for model validation
(Nv¼ 8). Statistical analyses were performed using R 2.13.0
(www.r-project.org).

RESULTS

Spatial heterogeneity

RIDt,1–5 significantly correlated with RIDt,0–1 at a soil depth of
0�2m (Fig. 3). RIDt,1–5 was significantly higher at the Bachat-
Bouloud site compared with Prémol for the same RIDt,0–1

(Fig. 3). Despite this significant site effect, occurring mainly on
the intercept (b), we calibrated one slope (a) and one intercept
(b) for both sites combined, to facilitate fits of eqns (10a) and
(10b), instead of one pair of a and b per site, as the fit per site
did not significantly improve R2 (0�34 for Prémol and 0�43 for
Bachat-Bouloud) compared with the fit for both sites combined
(0�42). A higher number of sites, as well as a higher number of
points per site, would have been necessary to better explore this
effect.
Neither the effect of obstacle nor the choice of MIZ (8�0 ver-

sus 10�0m) improved the fit regardless of fitting index (Fig. 4).
Hence, the final sub-models chosen omitted O, but included
MIZ¼ 8�0m. Power function-based sub-models possessed sig-
nificantly higher R2 and lower RMSE, AIC and BIC than their
homologous parameterization logistic function-based sub-
models (Fig. 4). RIDt,0–1 within the soil layer ]0�0, 0�2] mm
significantly increased as a function of p, regardless of the pa-
rameterization on a, b, ks in eqn (2) (Fig. 5 and Supplementary
Data S3).
We decided to select models having acceptable statistical

index values and with all their parameters as significant. We se-
lected one model per type of function (power versus logistic)
because of the different ways that models were constructed.
Both types of final sub-model selected, i.e. No. 2 for power
function and No. 10 for logistic function, possessed exactly the
same parameterisation of p (Supplementary Data S3). The most
preferential structure for modelling p omitted the intercept b
and kept the effect of species ks as effective at both nominator
and denominator. The coefficient ks> 1�0 reflected the differ-
ence in RSA between the reference species P. abies and the
other species. Despite the statistical significance, this effect
remained less pronounced, with a value of ks close to 1�0

TABLE 1. Mean and standard deviation (s.d.) of percentages of roots from tree species (Pt, %), estimated using root
interception density data from mini-monoliths

Site Location with regard
to tree canopies

Percentage of roots from tree species (Pt)

]0, 1] mm ]1, 2] mm ]2, 5] mm

Mean s.d. Mean s.d. Mean s.d.

Bachat-Bouloud Outside 24�5 9�2 72�7 19�8 85�4 22�6
Transitional 34�4 11�4 45�3 21�8 73�7 29�7
Inside 60�0 17�4 95�2 9�5 98�4 3�2

Prémol Outside 13�6 13�9 76�9 22�1 86�7 18�9
Transitional 48�1 35�3 94�2 8�0 95�3 6�6
Inside 78�5 19.7 86�0 19�4 96�6 4�9

For root diameter ]0, 1] mm, Pt was estimated using root WINRHIZOVR , which measured root length density of each type of functional
group, as it was impossible to identify to which functional group a root tip belonged. See also Mao et al. (2015).
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(Table 2). Regrouping broadleaves together with A. alba
slightly improved the models (Supplementary Data S3; number
9 versus 10 and number 1 versus 2).
Residuals were generally well distributed, although high dis-

persion was detected at low values of p, especially for the logis-
tic function-based sub-model (Fig. 5). Compared with Prémol,
the measured RID for Bachat-Bouloud tended to have a higher
baseline. Thus, global sub-models for both sites underestimated
RIDt,0–1 for Bachat-Bouloud and overestimated RIDt,0–1 for
Prémol (Fig. 5). This result was more pronounced for the
logistic function.

Diameter spectrum

The two-parameter functions (Weibull, Gompertz and log-
normal CDF) exhibited significantly better fits than the one-
parameter exponential CDF (Fig. 6A–D; Table 3, Zone I).
Decomposing the MSE (square of RMSE) into fine and coarse
roots, we observe that the lower performance of the exponential
CDF fits the fine root data (Fig. 6E). With regard to the coarse
roots, no significant deterioration of fit was found with the
exponential CDF compared with the other functions.
Concerning the three two-parameter functions, the log-

normal CDF usually performed better than the other functions
when the soil depth was <0�8m. It appeared that the log-
normal CDF was most frequently the best function (Table 3,
Zone I). This suitability was mainly due to a better fit of this
function for coarse roots (Table 3, Zone III). For fine roots, the
log-normal CDF was not better than the Weibull or Gompertz
CDF (Table 3, Zone II). The log-normal CDF fitted a ‘round
shoulder’ type of diameter spectrum, with a gradual saturation
of Cd when �0�99 (Fig. 7A). The Gompertz CDF was the best
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function to fit the ‘angular shoulder’ type of diameter spectrum
[i.e. Cd close to �0�99 up to the upper root diameter boundary
(d)¼ 2 mm] or the ‘shoulderless’ type (i.e. Cd close to �0�99
until d¼ 1 mm) (Fig. 7B). Thus, the Gompertz and Weibull
CDFs were more efficient in fitting the root diameter spectrum
for deep depths, especially the layer ]0�8, 1�0] m, where the di-
ameter spectrum was mainly of the angular shoulder or shoul-
derless type. As a consequence, we advise the use of the log-
normal CDF for predicting diameter spectrum when Cd is
<0�99 for d¼ 1mm and the Gompertz CDF for predicting di-
ameter spectrum when Cd is�0�99 for d¼ 1mm.

The two coefficients in both the log-normal and the Gompertz
CDF exhibited significantly negative linear correlations and this
result was more pronounced for the Gompertz CDF
(Supplementary Data S3). Soil depth had a significant effect on
the variation of the coefficients, but only r showed a clear de-
creasing trend with soil depth (Supplementary Data S3).

Vertical profile

The increment in Cz decreased with increasing soil depth due to
the lower root density at deeper soil layers. The quality of model
fit deteriorated at higher root diameter classes, as R2 tended to be
more dispersed and smaller with increasing root diameter (Fig.
8A). Root diameter significantly affected the value of e (Fig. 8B)
and the shape of the vertical profile (Fig. 9). Coarse roots were
more concentrated in shallow soil layers (Fig. 9C–F), which ex-
plains why e was higher for fine roots (Fig. 8B). Variation in the
curve shape was high within each of the root diameter classes and
cannot be explained by either the effect of site or that of p (data
not shown). When root diameter was 	5mm, curves of global
model per root diameter class almost overlapped with those using
median e (Fig. 9A–C). When root diameter was >5mm, global-
model curves performed better than median-e curves, as the for-
mer better approached the observed data (Fig. 9D–F). Therefore,
we selected the six global models for each root diameter class,
with their e plotted in Fig. 8B.

Validation with non-fitted data

In general, the validation of each sub-model indicated that all
sub-models of ChaMRoots had good fits (Supplementary Data
S3). The sub-model of spatial heterogeneity had a more robust
performance at higher p (Supplementary Data S3). For the sub-
model of diameter spectrum, the preference for CDF (log-
normal versus Gompertz) was well identified by soil depth.
Despite a high level of data dispersion, diameter spectrum
curves were quite evenly distributed at both sides of the pre-
dicted data when the log-normal CDF was used
(Supplementary Data S3). The performance of the sub-model
of vertical profile appeared ideal for roots in diameter classes
]0, 1] and ]1, 2] mm, but was less robust for the remaining root
diameter classes (Supplementary Data S3).

DISCUSSION

Modelling algorithm for the first sub-model: spatial
heterogeneity

The development of the parameter ‘tree root potential’, p, was
highly relevant for the semi-mechanistic modelling of root

distribution. RID increased with p in the top 20 cm of soil, thus
demonstrating the validity of this approach. The use of p al-
lowed us to adopt the classical approach used in previous ARB
models, i.e. root density was based on both tree size and
distance from the trunk. Additionally, p allowed us to take into
account two sorts of biotic interaction between plants:

1. tree interception: roots at a given point are more influenced
by immediate adjacent trees than by those at a distance.
Despite the absence of hard data, ARB models focusing on
an individual tree, support such a hypothesis, although
they do not explicitly consider it at the forest scale.

2. root crossing: adjacent plants can extend and cross their
roots in their shared soil environment (O’Brien et al.,
2007; Gao et al., 2010).

Root crossing does not necessarily lead to a greater root den-
sity. In this study, we assumed that trees of the same species
and size possess the same shape of p–distance curves. But trees
close to each other might not have an increased root density at
the mid-point between the trees, because of increased competi-
tion between roots for water and nutrients. For example,
Ammer and Wagner (2002) found that root density of a single
tree varies between closed and open canopies. In ChaMRoots,
introducing the concept of production efficiency (E) avoids the
over-estimation of root density for high values of p, because E
declines with increasing p due to the presence of too many eli-
gible individual trees. Therefore, the interaction between trees,
although not explicitly considered in p, is implicitly involved in
E. The conception of p and E in our study, especially the p and
E based on the logistic function, is comparable with the metric
G, i.e. plant individual fitness, in Gersani et al. (2001) and
O’Brien et al. (2007). These authors hypothesized that tree root
development is controlled by trade-offs between the cost of pro-
ducing roots and benefits in nutrient uptake by roots. Here, root
development is hypothesized to be a trade-off between root pro-
duction and environmental limits.
When we compared the two types of sub-models of spatial

heterogeneity, the power function-based sub-model generated a
better fit than that based on the logistic function. Nevertheless,
the latter is more ecologically meaningful and has the potential
to be more easily applied to other situations. Once p increases,
the two sub-models limit the growth of RID in different man-
ners: the power function alone decreased the increment of root
density at higher p, while the logistic function gave an asymp-
tote of root density. We suggest using both sub-models for RID
estimation, but preferentially choosing the power function for
dense forest stands (more likely to have high p) and the logistic
function for low-density stands (more likely to have low p). In
certain cases, e.g. when calculating the contribution of root sys-
tems to hillslope stability (Pollen-Bankhead and Simon, 2009;
Schwarz et al., 2010), it is safer to underestimate root density
so that the evaluation of slope stability is more conservative. In
such a case, preferring a logistic function, which tends to satu-
rate much faster (at approximately p¼ 0�15), would be more
suitable.
The polygon method we developed in the sub-model of spa-

tial heterogeneity differs from the methods used to estimate
root density developed by Roering et al. (2003) and Müller and
Wagner (2003). In the method of Roering et al. (2003), root ex-
tension of a tree was considered to be a circle and the total root
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impact of surrounding trees on an oval-shaped landslide scarp
(i.e. a surface instead of a point) was the sum of each tree’s im-
pact, which varied as a function of tree size and distance. The
method of Müller and Wagner (2003) consisted of sampling
roots using cores from the centre of a tree gap to its edge (usu-
ally the first tree at the border of the gap), rendering a pattern
resembling spokes around the gap centre. Our model is more
refined because it introduces more precise tree selection crite-
ria, as well as new factors, such as the effect of species, and the
interactions between trees and understorey vegetation.

Spatial heterogeneity: abiotic and biotic factors

The effects of both obstacle and competition between trees
and understorey species (h) were considered in the sub-model
of spatial heterogeneity, but neither increased the significance
or improved the model’s fit. We speculate that the null effect of
O may be dependent on our data, in which <30 % of mini-
monoliths encountered obstacles (mainly at Bachat-Bouloud
forest, occasionally at Prémol). Overall, although both h and O
had a null effect in our case studies, we suggest avoiding gener-
alizations and testing these factors when using our model with
data from other sites.
Comparisons between the different forms of the sub-model

of spatial heterogeneity suggested retaining MIZ¼ 8�0m. MIZ
should be equal or slightly inferior to the maximum extension
radius (MER) of the root system of trees. Schwarz et al. (2010)
found that a P. abies with DBH 30 cm had an MER of �5�5 m.
Ammer (2000, cited by Ammer and Wagner, 2005) proposed
10�0m as the MER for a P. abies of 60 cm DBH. The MER of
P. abies roots may even reach 12m, as found by Laitakari
(1929). A meta-analysis performed by Day et al. (2010) showed
that the MER of P. abies reached an asymptote of around 6�0m
when DBH was 25–30 cm. As P. abies possesses a plate-like
root system, it may have had a wider lateral root extension than
a tree of similar size in the other species examined in this meta-
analysis. The remaining species had either heart or taproot sys-
tems. At our sites, 75 % of trees had a DBH <30 cm and only
two trees possessed a DBH >60 cm. Therefore, choosing
MIZ¼ 8�0m appears to be suitable when using data from the
literature and was also appropriate for the specific
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FIG. 5. Fit of the two ultimately selected sub-models of spatial heterogeneity to the observed data. More details about the model comparison are available
in Supplementary Data S3. p is the tree root potential. Note that the metric p differs according to the modelling approaches because of the parameter values of

ks and a (Table 2).

TABLE 2. Coefficient estimate sub-model of spatial heterogeneity
for the two ultimately selected sub-models of spatial

heterogeneity

No. of
sub-model

Type of
function

Coefficient Estimate Standard error t-value

2 Power ka 1�176 0�239 4�933***
a 1�809 0�390 4�641***
m 3097�167 1064�776 2�909**
n 0�429 0�179 2�394*

10 Logistic ka 1�005 0�105 9�565***
a 1�567 0�214 7�318***
r 24�608 9�978 2�466*
Kt 1399�487 228�681 6�120***

The number of each sub-model corresponds to that in Supplementary
Data S3.
Both sub-models were fitted for the case when MIZ¼ 8�0m and the effect

of obstacle was not considered.
***P< 0�001; **P< 0�01; *P< 0�05.
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characteristics of our field site. An alternative approach for se-
lecting trees is angle count sampling, based on the use of a rela-
scope (Schreuder, 1993). Such an approach, which is mostly
used to estimate tree basal area in forest stands, requires choos-
ing a limiting angle that defines the maximum distance within
which a tree influences a point. Compared with MIZ, such a
method may potentially include trees far away from the target
point as well as excluding smaller but very close trees. The
MIZ approach can, nevertheless, be used in conjunction with

angle count sampling to explore the relationship between the
surface area of visible trees and that of the stand.
We found that RSA depended significantly on species for

the two selected forms of the sub-model of spatial heterogeneity,
but fitted ks values were only slightly superior to 1�0. This
result suggests that the effect of the plate-like root system
of P. abies was only slightly greater than that of the other
species. Therefore, in heterogeneous mountain forest stands, tree
position and size influence root density more, compared with
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species and obstacles, especially when the distance between trees
is great.
Our data points remained dispersed regardless of the type of

function used, especially at lower p. This result might be attrib-
uted to the effect of site (Prémol versus Bachat-Bouloud),
which is not an effect that could be fully investigated in the

modelling process. The most distinct difference between the
Prémol and Bachat-Bouloud sites concerns relative densities
and proportions of species, i.e. there were more P. abies and al-
most no F. sylvatica at Bachat-Bouloud, and total stem density

TABLE 3. Distribution of the best fitted sub-models of root diameter spectrum with regard to the four functions

Soil depth Data for
fitting

Total no. of
equations

Zone I: lowest global MSE Zone II: lowest MSE of fine roots Zone III: lowest MSE of coarse roots

Exponential Weibull Gompertz Log
normal

Weibull Gompertz Log
normal

Weibull Gompertz Log
normal

]0�0, 0�2] m Mini-monolith 25 0 2 2 21 4 4 17 1 8 16
]0�2, 0�4] m Root trench 24 0 2 7 15 6 12 6 3 6 15
]0�4, 0�6] m Root trench 24 0 5 3 16 10 11 3 4 5 15
]0�6, 0�8] m Root trench 24 0 6 7 11 13 8 3 4 8 12
]0�8, 1�0] m Root trench 24 0 3 18 3 20 2 2 2 18 4

Unit: number (No.) of equations.
Within each group (the three or four values in the same line and the same zone), the highest number of equations is underlined.
When the MSE is decomposed into fine roots (Zone II) and coarse roots (Zone III), only the three two-parameter functions (i.e. Weibull, Gompertz and log-

normal CDFs) are compared.
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at Prémol was higher. In ChaMRoots, the effect of site was
interpreted by the effect of species, root architecture and tree
distance. Nevertheless, Bachat-Bouloud tended to have a higher
baseline of RID compared with Prémol. This trend could be
attributed to the soil fertility in shallow soil layers, as Bachat-
Bouloud possessed a thicker humus layer than Prémol, poten-
tially providing nutrients for maintaining root growth
(Vanninen and Mäkelä 1999). Confirming such an effect would
require the investigation of more sites along a forest productiv-
ity gradient in this region.

Diameter spectrum

Empirically, past studies have used non-linear and low-
parameter distributions to model diameter spectrum, e.g. power,
exponential, Rayleigh, normal, logistic, Weibull, log-normal
and bimodal distributions (Anderson et al., 2007;
Pollen-Bankhead and Simon, 2009; Scanlan and Hinz, 2010;
Schwarz et al., 2010; Cohen et al., 2011). Results from these
different models cannot be compared due to the disparity in
species investigated and the use of different root diameter
classes. For example, Anderson et al. (2007) proposed six-
parameter bimodal functions instead of unimodal functions for
the non-cumulative density of grass roots, because the interval
of root diameter class was very small (0�064mm). By using
0�2mm as an interval of root diameter class, Scanlan and Hinz
(2010) fitted a cumulative relative density for grass roots

of ]0, 2] mm in diameter and found that log-normal and
Weibull distributions resulted in better fits than exponential,
Rayleigh, normal and logistic functions. Therefore, we adopted
the following thresholds to split root diameter: 1, 2, (3), 5, 10
and 20mm; these are frequently used for tree species
(Hoffmann and Usoltsev, 2001). These heterogeneous root di-
ameter classes can raise difficulties in modelling diameter spec-
trums because RID can be over-dispersed at large diameter
values. This problem was not the case in our study as all the se-
lected two-parameter CDFs provided satisfactory fits.
Simultaneously, we found that the Gompertz and log-normal
CDFs had complementary advantages in fitting data. The
Gompertz CDF performed better in modelling angular shoulder
and shoulderless diameter spectrums. This feature could be as-
sociated with its double exponential structure, which makes the
curve increase rapidly to the maximum. The Gompertz model,
which has been successfully applied in life sciences for model-
ling human mortality (Gompertz, 1825) and tumour growth
(Laird, 1964), has thus also demonstrated strong potential for
modelling root distributions.
Our results showed that the evolution of diameter spectrum

was more vertical than horizontal, as soil depth significantly
impacted diameter spectrum, but p did not. Soil depth also af-
fected the choice of CDF by modifying the shape of the diame-
ter spectrum, demonstrating its importance. No significant
effect of p was found on the parameters in the diameter spec-
trum, suggesting that the spectrum varied independently of
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above-ground tree positions and size. Thus, a generic equation
could be used for mountain forest sites in the future.

Vertical profile

The one-parameter exponential model of Gale and Grigal
(1987) facilitates comparisons between sites and studies due to
its unique coefficient. However, the model fit or prediction can
be significantly biased if root excavation does not attain the
maximum rooting depth. Our sub-model of vertical profile for
modelling the cumulative root density is slightly different from
the model of Gale and Grigal (1987) due to the term zmax. This
term ensures that the value of the index varies between 0 and
100. We think that it is extremely important to estimate zmax

when modelling cumulative root density, because otherwise it
would not be possible to determine at which soil depth Cz at-
tains 1�0.
Many studies have adopted the one-parameter exponential

model for modelling cumulative root density at a continental
scale (e.g. Jackson et al., 1996; Smart et al., 2006; Tao et al.,
2009) and at local site scales (e.g. King et al., 2003; Moreno
et al., 2005; Pollen-Bankhead and Simon, 2009; Meinen et al.,
2009). Previous studies seldom investigated the effect of root
diameter when characterizing or modelling vertical profiles, or
they fitted a global curve for all roots. We found that root diam-
eter significantly affected the vertical profile and that coarser
roots were more concentrated in shallow soil layers. This result
highlights the importance of taking into account root diameter
in vertical profile modelling. Simultaneously, our results chal-
lenged the relevance of applying the model of Gale and Grigal
(1987) at a local site scale, as our vertical profile showed drasti-
cally different shape variations at this local scale within and be-
tween root diameter classes. Moreover, the model fit tended to
be poorer with increasing root diameter, suggesting the less ap-
propriate use of one parameter models (Gale and Grigal, 1987)
for very coarse roots (diameter >5mm). This result was proba-
bly obtained because larger roots may have a more heteroge-
neous distribution due to their greater size and lower quantity in
a population. Testing the relevance of using multiple-parameter
functions for modelling a vertical profile is therefore of great
interest for future studies.
Vertical profiles of plant roots can be significantly affected

by functional groups (Jackson et al., 1996) or species
(Kalliokoski, 2011). We showed that the effect of species on
the vertical profile parameter e could not be tested directly
because the forest stands were mixed, but was included in tree
potential p and the effect of site. The value of e was only signif-
icantly different with regard to the site factor. However, this
significant effect might be due to multiple reasons, e.g. species
composition, tree density, and also soil properties either linked
to sites themselves or a consequence of mixture of species
(Rothe and Binkley, 2001). Therefore, more factors concerning
species and soil characteristics should be considered in future
studies in order to better explain the variation of e.

Global structure of ChaMRoots

By combining the three sub-models of ChaMRoots, RID
per class of diameter and per soil layer can be predicted.

Theoretically, the algorithm used for the sub-model of spatial
heterogeneity could have been applied to any class of diameter
at any soil layer. The ‘three sub-models’ pattern is more
adapted than the ‘one sub-model of spatial heterogeneity for
all’ pattern for two reasons. Firstly, in our RID data, only the re-
lationship between RIDt,0–1 of the upper soil layer and p was
highly sensitive and thus feasible for root density prediction.
This result was also found by Roberts (1976), who showed that
the distance-dependent relationship was uniquely sensitive to
the finest roots. Nevertheless, according to Vanninen and
Mäkelä (1999), who investigated root density of Pinus sylvest-
ris, it is more difficult to achieve a good allometric relationship
with above-ground stand characteristics for very fine roots
(]0, 2] mm) than for coarser roots (]2, 5] mm). This controver-
sial point about the feasibility of modelling fine and coarse
roots deserves further exploration. Besides, the ‘three sub-mod-
els’ pattern possessed significantly fewer parameters and thus
was easier to calibrate. The ‘three sub-models’ approach con-
nects and keeps each process (spatial heterogeneity, diameter
spectrum and vertical profile) relatively independent, with po-
tential future independent updates.

Limits and perspectives

Slope angle is an important factor affecting root distribution
(Di Iorio et al., 2005; Chiatante and Scippa, 2006) and this
might be particularly true for mountain forests with complex to-
pography. Nevertheless, considering the effect of slope would
make it necessary to take into account several factors associated
with slope, including site exposition, location of the tree trunk
(upslope/downslope), and position along a slope (crest, middle,
toe, as this influences soil depth), thus rendering the modelling
and root sampling work more complex. As this study was the
first step towards modelling root distributions based on the con-
cept of tree root potential, the effect of slope was not consid-
ered. Accordingly, our root sampling was conducted on gentle
slopes (mostly <10�). With increasing interest in modelling
root distribution along steeper slopes (�20�), the impact of
slope on root distribution will be explored on the basis of the
existing model structure. For example, it could be feasible to
weight the contribution of each tree to p by introducing parame-
ters associated with slope angle and location of the tree trunk.
The growth of roots and their spatial distribution can also be

affected by several edaphic factors [e.g. water and nutrient
availability in soil, texture and compaction level (Coutts et al.,
1999; Dexter, 2004)]. These factors may be spatially heteroge-
neous, thus resulting in patchiness. The current version of
ChaMRoots can predict the gradient of root distribution in
space, but cannot account for resource patchiness.
Incorporating edaphic factors might thus be necessary for a
more refined prediction at local scales. Nevertheless, extra soil
parameters would also increase the number and cost of mea-
surements as well as the complexity of the model. The choice
of parameters for the model should be adapted according to the
precision required.
Root grafting, defined as the functional union of two or sev-

eral roots subsequent to their formation, occurs in many tree
species, including P. abies (Külla and Lõhmus, 1999). Such a
phenomenon is not considered by ChaMRoots, as we counted

274 Mao et al. — Tree root density model for heterogeneous forest ecosystems

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/a
o
b
/a

rtic
le

-a
b
s
tra

c
t/1

1
6
/2

/2
6
1
/1

8
0
4
7
6
 b

y
 IN

R
IA

 G
re

n
o
b
le

 u
s
e
r o

n
 0

8
 N

o
v
e
m

b
e
r 2

0
1
8



root tips without identifying whether a root was grafted or not.
A better understanding of the mechanism and distribution of
root grafting is primarily desired for heterogeneous mountain
forests before it can be considered by models of root
distribution.

ChaMRoots cannot predict the exact quantity of trees con-
tributing to root density, but aims to include trees that signifi-
cantly contribute to tree root potential (p). Determining the
number of trees whose roots are present at a given point is
therefore an important issue. Combining both in situ root exca-
vation and molecular techniques to identify species would be
highly useful to address this issue.

In our study, the data for model calibration and validation
were obtained in the same plots. It would be useful to validate
the model using ground truth data from other plots or even
other types of forest. Unfortunately, data separating both tree
and understorey species’ roots and tree coordinates and dendro-
metric characteristics remain very scanty. Our mini-monolith
techniques designed for this use should therefore be applied to
other sites to improve model validation.

Conclusions

The majority of published root models have been developed
at the scale of the plant individual. These models are in general
not suitable for modelling the spatial distribution of root density
for highly heterogeneous forests with regard to both species
and environment. Alternatively, our semi-mechanistic model,
ChaMRoots, focuses on the spatial distribution of root density
at the tree cluster scale. Based on easy-to-measure characteris-
tics, simple forest inventory protocols and three sub-models, we
achieved a good compromise between the complexity of the
case study area and that of the global model structure. Overall,
ChaMRoots was a powerful tool for simulating root distribution
at the scale of the forest ecosystem. In terms of model princi-
ples, structure and algorithms, ChaMRoots can be considered
complementary to the state-of-art of modelling of root spatial
distribution.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. S1: derivation of the
logistic function-based sub-model Spatial Heterogeneity in
ChaMRoots. S2: protocol for selecting visible trees and out-
comes of the application to the forest data collected from the
French Alps. S3: supplementary table and figures giving details
of model comparison, correlation between coefficients and
model validation.
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(CIRAD), C. Jourdan (CIRAD), F.-X. Mine (ISARA), J.
Nespoulous (INRA) and H. Rey (CIRAD). Finally, we thank
H. Vogt-Schilb (WOAINI), Huaxiang Zhu (IRSTEA) and
Wentao Chen (UGA) for their inspiring comments throughout
the modelling study.

LITERATURE CITED

Ammer C. 2000. Untersuchungen zum Einfluss von Fichtenaltbeständen auf die
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Pollen-Bankhead N, Simon A. 2009. Enhanced application of root-reinforce-
ment algorithms for bank-stability modeling. Earth Surface Processes and
Landforms 480: 471–480.

Roberts J. 1976. A study of root distribution and growth in a Pinus sylvestris L.
(Scots pine) plantation in East Anglia. Plant and Soil 44: 607–621.

Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR. 2003.
Shallow landsliding, root reinforcement, and the spatial distribution of trees
in the Oregon Coast Range.Canadian Geotechnical Journal 40: 237–253.

Rothe A, Binkley D, 2001. Nutritional interactions in mixed species forests: a
synthesis. Canadian Journal of Forest Research 31: 1855–1870.

Scanlan CA, Hinz C. 2010. Using radius frequency distribution functions as a
metric for quantifying root systems - root radius frequency distributions.
Plant and Soil 332: 475–493.

Schenk HJ, Jackson RB. 2002. Rooting depths, lateral root spreads and below-
ground/above-ground allometries of plants in water-limited ecosystems.
Journal of Ecology 90: 480–494.

Schreuder HT. 1993. Sampling methods for multiresource forest inventory.
New York:Wiley.

Schwarz M, Lehmann P, Or D. 2010. Quantifying lateral root reinforcement in
steep slopes – from a bundle of roots to tree stands. Earth Surface Processes
and Landforms 35: 354–367.

Smart DR, Schwass E, Lakso A, Morano L. 2006. Grapevine rooting patterns:
a comprehensive analysis and a review. American Journal of Enology and
Viticulture 57: 89–104.

Soethe N, Lehmann J, Engels C. 2006. Root morphology and anchorage of six
native tree species from a tropical montane forest and an elfin forest in
Ecuador. Plant and Soil 279: 173–185.

Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC. 2009. Desirable
plant root traits for protecting natural and engineered slopes against land-
slides. Plant and Soil 324: 1–30.

Tao F, YokozawaM, Zhang Z. 2009.Modelling the impacts of weather and cli-
mate variability on crop productivity over a large area: a new process-based
model development, optimization, and uncertainties analysis. Agricultural
and Forest Meteorology 149: 831–850.

van Noordwijk M, Brouwer G, Meijboom F, do Rosario G, Oliveira M,
Bengough AG. 2000. Trench profile techniques and core break methods.
In: AL Smit, AG Bengough, C Engels, M Van Noordwijk, S Pellerin, Van
der Geijn, eds. Root methods: a handbook. Berlin: Springer, 211–233.
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APPENDIX

Abbreviations and symbols

Name Meaning

Abbreviations used in the text
AIC Akaike information criterion
ARB Allometric relationship-based (model)
BIC Bayesian information criterion
CDF Cumulative distribution function
DBH Tree stem diameter at breast height (1�30m)
MER Maximum extension radius
MIZ Maximum root inclusion zone
MSE Mean square error
RID Root interception density
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Continued

Name Meaning

RLD Root length density
RSA Root system architecture
RMSE Root mean square error

Expressions used in equations
a Slope of the linear correlation between RIDt,1–5 and RIDt,0–1

b Intercept of the linear correlation between RIDt,1–5 and RIDt,0–1

Cd Cumulative frequency of root interception density from the finest roots to those of class of root diameter d mm
(dimensionless)

Cz Cumulative frequency of RID from ground surface to the soil depth z (dimensionless)
Di Horizontal distance from the tree centre to the target point (m)
d Upper boundary of root diameter class (mm)
E Production efficiency (no. of roots / potential of trees to grow roots at a given point in the soil)
e Subscript standing for a tree individual e
g Basal area of tree i at height 1�3m (m2)
K Maximum RID0–1 of both tree and understorey species that the soil can support
Kt Maximum RID0–1 of tree roots that the soil can support
k Number of parameters in the model
L Maximized value of the likelihood function for the estimated model
m Coefficient of the power function, sub-model of spatial heterogeneity
Ne Number of effective trees around the target point (number of trees)
Nf, Nv Number of dataset used for model fitting and crossed validation and validation, respectively
Ninside, Noutside Number of mini-monoliths situated inside and outside of tree canopies, respectively
No Number of observations within each model fit
Ns Number of tree species
n Coefficient of the power function, sub-model of spatial heterogeneity; when it occurs as a subscript it stands for

sequence of mini-monolith
Oi Absence of emerged obstacles on the ground between the target point and tree i, either binary (1, 0) or unique

(0) value (dimensionless)
Pt, Pu Percentage of root density of tree and understorey species in total root density (%)
PTI, PG Percentage of root density from tree species at tree islands and gaps (%)
p Metric describing the potential of trees to grow roots at a given point in the soil. The term ‘tree root potential’

will be used below.
pi, pi,s Tree root potential of tree i or tree i of species s
pp, pa, pb Tree root potential of Picea abies, Abies alba and broadleaves (mainly composed of Fagus sylvatica)
ps Generic symbol standing for pp, pa, pb (subscript s denotes species p, a or b)
R2 Coefficient of determination (dimensionless)
RIDt,x–y Measured root interception density of tree roots in the class of root diameter ]x, y] mm.
RIDt,0–1,
bRIDt;0�1 Measured and estimated root interception density of tree species of the diameter class ]0, 1] mm

RIDu,0–1,
bRIDu;0�1 Measured and estimated root interception density of understorey species of diameter class ]0, 1] mm

RLDt,0–1, RLDu,0–1 Measured root length density of tree and understorey species of diameter class ]0, 1] mm
r Average branching rate for the production of RID0–1

s Subscript standing for a species
t Subscript standing for trees
U Intermediary variable in the logistic function based sub-model of spatial heterogeneity
u Subscript standing for understorey species
x, y Lower and upper boundaries of diameter class (mm)
bY ı, Yi Predicted and observed indicators
z Upper boundary of depth of soil layer (m)
zmax Maximum soil depth (m)

Symbols used in equations
a Coefficient toward Di to model tree root potential (index), sub-model of spatial heterogeneity
b Coefficient toward Di, to model tree root potential (intercept), sub-model of spatial heterogeneity
c Coefficient of the Weibull cumulative distribution function (scale), sub-model of diameter spectrum
d Coefficient of the Gompertz cumulative distribution function (scale), sub-model of diameter spectrum
e Coefficient of the root profile shape, sub-model of vertical profile
f Coefficient of the exponential cumulative distribution function, sub-model of diameter spectrum
g Coefficient of the Gompertz cumulative distribution function (shape), sub-model of diameter spectrum
h Coefficient of competitiveness of understorey species’ roots compared with tree roots, sub-model of spatial heterogeneity
j Coefficient of the Weibull cumulative distribution function (shape), sub-model of diameter spectrum
kp, ka, kb Specific coefficients of root potential for Picea abies, Abies alba and broadleaves (mainly composed of Fagus sylvatica),

sub-model of spatial heterogeneity
ks Generic symbol standing for kp, ka, kb (the subscript s denotes species p, a or b), sub-model of spatial heterogeneity
l Coefficient of the log-normal cumulative distribution function (location), sub-model of diameter spectrum
r Coefficient of the log-normal cumulative distribution function (scale), sub-model of diameter spectrum
us Specific coefficients of root potential for Picea abies, Abies alba and broadleaves (mainly composed of Fagus sylvatica),

and the subscript s that denotes species can be p, a or b, sub-model of spatial heterogeneity
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