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Abstract. In order to ensure privacy constraints in biometrics, new algorithms called template protection schemes
have been proposed in the last ten years in the literature. Most of these algorithms require as input a feature having a
fixed size. Texture features can be used within this context for fingerprints as the number of minutiae varies in general
for different captures. BioHashing is a two authentication factor algorithm that can be used to enhance to ensure
privacy while using biometrics. In this work, we compare different recent texture features from the literature within
the BioHashing scheme while considering many constraints: efficiency, maximal representation size and constant size
description. Experiments are conducted on three fingerprint databases from the FVC competition. Results permit us
to conclude on the texture features to be used within this context.
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1 Introduction

Biometric recognition, which consists of checking the identity of a person starting from his anatom-

ical or behavioral attributes, offers a possible solution to the problem of authentication in the

identity management systems. Several studies expect an increase of the biometric market in rela-

tion with the development of the electronic transfers of data, in particular on the Internet (home-

banking, . . . ). The interest for biometrics is explained by the fact that it offers an ergonomic

manner to authenticate or to identify a person. Moreover, it constitutes an elegant way to address

the problem of non-repudiation posed by the traditional elements of authentication such as pass-

words or tokens. However, to place biometrics in a prospect for industrial deployment may cause

several reserves, and at the same time new privacy and security risks may arise. Fingerprints rep-

resent a large proportion of the biometric market. A fingerprint has the appearance of a surface of
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alternating parallel ridges and valleys, on the majority of local regions. The minutiae details con-

stitute the most popular representation for a fingerprint (see Figure 1). The minutiae represent local

discontinuities and mark the positions where the ridges finish or fork. One problem of minutiae

description is that the number of detected minutiae for different captures for the same individual is

not constant. Comparison algorithms have to deal with this aspect.

Many attacks of a biometric system are possible such as on the capture device (spoofing

attacks), on the communication link or on the software part. One of the most critical attacks

against fingerprint recognition systems remains the hacking of the biometric templates stored in

the database, which may either be done by the security personnel or by an intruder. In such situ-

ations, this raises multiple issues of privacy. For example, personal (biometric) information could

be tracked from one application to another by cross-matching between biometric databases, thus

compromising privacy (Imagine a case where a fingerprint template stolen from a bank’s database

may be used to search for a criminal in a fingerprint database or these data may be crossed with

health records). Moreover, when the biometric template is compromised, it cannot be canceled nor

revoked, unlike a password. Therefore a question like What can I do if my biometric data has been

stolen or misused? requires urgent attention, not only to reassure users with regards to privacy, but

also to prevent abuses and improve accuracy.

Over the last decade, a new innovative research field has emerged, called cancelable biometrics,

aimed at finding algorithms dedicated to template protection.1–7 The resulting systems must fulfill

the following important properties:8 i) non-invertibility, which refers to the difficulty in recover-

ing the original biometric given the secure template; ii) revocability, which refers to the ability of
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generating a new template from the same biometric trait and iii) diversity, which is the difficulty

in guessing one secure template given another secure template generated from the same biometric

data.9, 10 Many template protection schemes have been applied on the fingerprint. For a fair re-

view, the readers can refer to.11–13 Until now, the available template protection schemes are not yet

mature for large-scale deployment. They do not meet properties mentioned above while keeping

a high accuracy performance. In fact, the process of protecting fingerprint template is quite com-

plex. Several points have to be raised before designing a compatible solution: Which biometric

feature constitutes the template? How the biometric template must be presented? How is the final

representation of the protected template? How the template can be re-issued? How alignement has

been handled? Is a pre-alignment needed? The objective of this paper is to deal with the biometric

template representation before the transformation. This step related to the feature extractor is very

important and constitutes a key question. In table 1, we present some relevant fingerprint protec-

tion schemes, whose ”Feature”, ”Original representation”, ”Approach” and ”Final representation”

are compared.

We note from table 1 that, whatever the type of the initial representation, most of the final

representation is in a binary vector form. This facilitates revocability, usually accomplished by a

simple permutation of the generated vector (in this case, the permutation vector is randomly gen-

erated from a user key). One can also notice that the vector representation offers the advantage of

reducing the comparison process to a simple distance operation such as a logical XOR. Most of

the complexity of the calculation is related to the feature extraction and the transformation process.

While the other transformations are only specific to minutiae template, the last three approaches

of table 1 are more general and can be applied to all biometric characteristics. More precisely,
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because of its revocability aspect and its ability to guarantee the unlinkability property, we focus

in this paper on the BioHashing algorithm.14, 15 The BioHashing method consists in generating a

unitary biocode from two data: the biometric one (for example face, palmprint, fingerprint char-

acteristics) and a random number which needs to be stored (for example on a USB key, or more

generally on a token), called tokenized random number. This principle is illustrated in Figure 2.

First, a biometric template (called FingerCode for the fingerprint characteristic) is extracted from

the raw image. The tokenized random number is generally mixed with the biometric template to

obtain the binary output called BioCode.

The BioHashing process is rather simple. It consists of projecting the FingerCode on an or-

thonormal basis defined by the seed value. The dimension of the projection space is at least equal

to the FingerCode size. The second step is a quantization step of the projected FingerCode. This

transformation is invertible and is a very low time computation process. Figure 3 presents in detail

the BioHashing process.

However, as specified in table 1, if we select the BioHashing (as well as the fuzzy commit-

ment or the shielding function) as the protection algorithm target, we have to adapt the classical

fingerprint feature representation to be combined with such template protection techniques. These

schemes add two main constraints: 1) They require a fixed-length feature vector, which must be

ordered, as input. (2) When combining biometric systems with template protection schemes, the

biometric features will be compared in a protected (or transformed) domain. Therefore, applying

template protection schemes also requires an alignment-free feature representation.
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Some researchers are interested in this issue. In,16 Bringer and Despiegel focus on fuzzy com-

mitment as target protection algorithm. They highlight the difficulty to directly use minutiae with

such construction and emphasize the need of binary vector representation for fingerprints. They

propose a vector fingerprint representation from minutiae vicinities based on the use of a global

representative dataset of vicinities with a fixed size. Xu et al.17 focus on the same protection algo-

rithm and propose a construction of a feature vector via the spectral representation of the minutiae

set. In our work, we focus on BioHashing transform. Our objective is to define a FingerCode that

must keep a fixed size for different fingerprints. Therefore, minutiae cannot be used directly within

this context. We propose the use of texture features to deal with this problem as ridges of a finger-

print look like a texture. In this paper, we address the problem of choosing the most appropriate

texture feature within this task. The required properties are the following:

• FingerCode must be discriminant, i.e. it should be able to provide a correct recognition

without any transformation and used within the BioHashing context,

• The size of the FingerCode must be as high as possible as the BioCode can be considered as

cryptographic key.

• The redundancy of information in the FingerCode must be as low as possible to guarantee

the difficulty for an attacker to guess the BioCode.

Other benefits can be derived from a texture-based feature, namely:

• Given a minutiae set, it is possible to reconstruct the original image and to create a fake

fingerprint that can fool the system, as detailed in.18 This is not the case with texture based

features, that are more secure.
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• The multibiometric fusion is facilitated by the use of such features.

• The integration of minutiae is possible, since we can look for local comparisons between

minutiae by describing each one with the texture feature of its neighborhood region.19

The paper is organized as follows. In section 2, we present the state of the art on texture analysis in

order to identify among the most recent texture features the ones that can be applied on fingerprints.

Section 3 is dedicated to a comparative study of selected texture features used within the context

of privacy compliant fingerprint recognition. Experimental results are given in section 4, aim at

comparing the ability of each texture feature to provide the best recognition efficiency using the

BioHashing algorithm. We conclude in section 5 the study and give some perspectives.

2 Texture Analysis

Texture analysis provides an important cue as it conveys physical information about the charac-

teristics of objects and surfaces. Several intuitive properties are often associated with texture such

as roughness, coarseness, contrast, variation, regularity, randomness, element, shape and arrange-

ment. Texture analysis has been studied for decades in computer vision and image processing

field to address several problems such as: scene segmentation, object recognition, object tracking,

content-based image retrieval, material inspection, visual effects, etc., in a variety of domains and

applications. Many types of texture features have been proposed in the literature.20 Among the suc-

cessful techniques, one can refer to the frequential methods such as Gabor filter and local pattern

based methods. These techniques have been extensively used in image processing and computer

vision showing useful properties for recognition and classification. We address in this paper the

use of texture features for fingerprint recognition.21
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2.1 Texture features

Here, we consider fingerprint as a particular texture upon which we can extract some properties

that can be used to enforce the fingerprint description. For that purpose, we list several recent

techniques, in order to show their reliability in terms of biometric recognition.

• Gray Level Cooccurrence Matrix (GLCM):22 is one of the first approach for texture anal-

ysis, it uses a joint gray level histogram; where several statistics are extracted from this

histogram (i.e moments, contrast, correlation, entropy, etc.)

• Gabor filters (GABOR):23 the general form results from the multiplication of Gaussian en-

velope and complex sinusoid functions. The Gabor kernel is band-pass filter with tuneable

center, frequency, orientation and bandwidth. Each configuration of these parameters pro-

duces a response image. The combination of different values of the parameters yields several

responses which can be considered as GABOR features.

• Local Binary Pattern:24 the computation of LBP descriptor is performed in two steps. In the

first one, elementary structures called binary patterns, are extracted in the local regions. In

the second step, binary patterns are encoded with a histogram which represents their spatial

distribution. The basic LBP technique uses a local thresholding over a 3 × 3 neighborhood

associated to each pixel. The central pixel intensity is chosen as the threshold value. A value

of 1 is assigned to each neighboring pixels whose intensity is above or equal to the threshold,

and 0 for others. The resulting pattern is captured as an 8-bit binary number representing

one of 256 distinct known patterns. Then, the histogram is computed for the transformed

image and considered as a texture descriptor.
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• Median Binary Pattern (MBP):25 is similar to the LBP but uses the median as the local

threshold instead of using the center pixel value. MBP is determined by mapping from the

intensity space to a localized binary pattern by thresholding the pixels against their median

value within a neighborhood. The histogram of the MBPs is used to measure the distribution

of these patterns over the image and forms the texture descriptor.

• Patch based (PLBP):26 this method uses small regions (patches) around each pixel belong-

ing to a circular neighborhood. The binary code is produced by comparing the values of

these patches to produce a single bit value in the code assigned to each pixel. Like LBP, the

information is represented by histogram of binary strings. This technique has been proposed

with two versions, three patches (TPLBP) and four patches (FPLBP).

• Local Relational String (LRS):27 is an operator that uses symbolic representation of the

local neighborhood. For each pixel, a local string is extracted by comparing the center pixel

to its neighbors. The difference between two pixels is modeled by the comparison operator

(<,=, >). 4-connected pixels schemes have been used, shaping a string of symbols that

represent the relationship between the neighborhood pixels. Since there are three symbols

and 4-connected pixels, the maximum number of possible strings is 34 = 81. The LRS

descriptor encodes the frequency of the local symbolic strings using the histogram.

• LBP Histogram Fourier Features (LBPFT):28 uses the phase shift property of Discrete

Fourier Transform (DFT) to make the LBP descriptor invariant to the rotation. The LBPFT

computes, first, the regular non-invariant LBP histogram, then the DFT is applied to this

histogram to handle the global effect of the rotation. As the rotation affects only the phase in

the Fourier space, the descriptor contains merely the Fourier magnitude spectrum values of
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uniform patterns. The non uniform patterns frequency is also concatenated to the descriptor

as an additional feature.

• Completed LBP (CLBP):29 uses three operators, the first one consists in the signs of lo-

cal differences between the center pixel and its neighbors, this turns into the original LBP

scheme. The second operator uses the magnitude of these differences to encode binary num-

ber by thresholding over the local magnitudes, where the threshold value is set to the global

mean of all magnitudes in the image. Finally, the third operator produces the local binary

numbers by using a global threshold defined as the average of gray levels in the whole image.

A joint histogram is used to encode the binary patterns obtained from the three operators.

We show in the next section how these texture features can be used for cancelable biometrics.

2.2 BioCode generation

Texture features are good candidates to compute the FingerCode to be used with the Bio-

Hashing algorithm. In general, fingerprint recognition requires many pre-processing over

the images such as contrast enhancement, binarization and skeletonization. These pre-

processing permit to better detect minutiae. In this work, we identified four scenarios for

the computation of the FingerCode with texture features:

– On the original image containing the fingerprint;

– On the binarized image: We used the Ostu’s method30 to define the binarization thresh-

old;

– On a region of interest (ROI) of the original image: This ROI embeds the ridges of the

fingerprint. The ROI is determined after applying different operations (normalization
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+ erosion + binarization);

– On the ROI of the binarized image: We applied the same method for the binarization

than used previously.

Figure 4 shows an illustration of the different computation scenarios on a fingerprint.

We intend to compare different recent texture features described previously considering these

scenarios for the BioHashing algorithm.

3 Experimental results

In this section, we present the experimental results we obtained considering different texture

features and the benchmark databases. We first define the experimental protocol we used.

3.1 Experimental protocol

For the protocol, we need to define multiple aspects: 1) Texture features used in the com-

parative study, 2) Fingerprint benchmark databases, 3) Comparison algorithm between two

fingerprints and 4) Performance evaluation methodology.

3.1.1 Texture features

The comparative study considers 11 different features from the 8 texture features described

in section 2.1 with different parameters. Indeed, by using different stages and orientation in

the computation of Gabor features, we can obtain different sizes of the description. In this
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paper, we considered 4 sizes (64, 128, 256, 512). All these features have been computed for

the four scenarios described in section 2.2.

3.1.2 Benchmark databases

In this study, we used three databases, each one is composed of 800 images from 100 indi-

viduals with 8 samples from each user:

– FVC2002 benchmark database DB2: the image resolution is 296× 560 pixels with an

optical sensor ”FX2000” by Biometrika ;

– FVC2004 benchmark database DB1: the image resolution is 640× 480 pixels with an

optical Sensor ”V300” by CrossMatch ;

– FVC2004 benchmark database DB3: the image resolution is 300 × 480 pixels with a

thermal sweeping Sensor ”FingerChip FCD4B14CB” by Atmel.

Figure 5 presents one image from each database. We can observe that fingerprints are quite

different and representative of what we could process for fingerprint recognition.

3.1.3 Comparison algorithm

Given the biometric reference of an individual, we realize a comparison trial. We have

performed two tests:

– Recognition efficiency using FingerCodes: we quantify the accuracy of the texture

features (without applying the BioHashing algorithm). We use the Minkowski distance

as a comparison metric;
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– Recognition efficiency using BioCodes: in this case, the comparison metric is the Ham-

ming distance on BioCodes (after transformation of the FingerCode with the BioHash-

ing algorithm).

The comparison methods are far from being the best solution compared to the state of the

art, but we are mainly interested in a relative comparison of the different texture features.

3.1.4 Performance evaluation

We need to define some evaluation metrics in order to compare texture features when used

on fingerprints before and after transformation with the BioHashing algorithm.

First, we consider the size of the texture feature as it is related to the size of the BioCode.

The FingerCode size must be as high as possible as the size of the BioCode is smaller. Sec-

ond, we intend to estimate the statistical redundancy of texture features. We use the Principal

Component Analysis (PCA) method31 consisting in projecting data on an orthonormal basis

by suppressing redundant information. This is a well known tool in pattern recognition. In

this study, we use 99.9% as threshold and we measure the dimension after reduction. The

higher it is, the better the texture feature is (less redundant information).

During the experiments, we use a single enrollment process meaning that one sample is

used to generate the biometric reference of an individual and other samples for testing the

accuracy of the recognition system. As we have 8 samples for the 100 users of each database,

We can use 7 × 100 = 700 comparison scores (called intra-class) with samples of the same
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user and 7 × 99 × 100 = 69300 comparison scores (called inter-class) with other users. As

the number of intra-class and inter-class scores are unbalanced, we apply an iterative process

for performance evaluation. A fixed number N of scores are randomly selected among the

700 intra-class ones and the 69300 inter-class ones. We compute the considered evaluation

criterion C for each random selection of the scores. By averaging its value for each random

selection, we obtain a more precise estimate of the criterion. A confidence interval at level

95% can be computed for the evaluation criterion C to be in [E[C] ± ε] where E[C] is the

average value of the criterion and ε is computed as following:

ε = 1.96× σ√
k

(1)

where k is the number of random selections of intra-class and inter-class scores and σ is the

standard deviation of the criterion C for each random selection. A low value of ε indicates

a good approximation of the evaluation criterion. In our experiments, we set N = 500 and

k = 100 (N ∈ [0 700] in our case and k can be as high as possible but has an impact on the

computation time).

Based on the result of the comparison algorithm, we have to decide if the identity of the

user is verified or not (authentication scheme). We use a threshold for that. As we know the

expected result, we can compute two metrics:

– False non-match rate (FNMR): proportion of the completed biometric mated compari-

son trials that result in a false non-match;
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– False match rate (FMR): proportion of the completed biometric non-mated comparison

trials that result in a false match.

These two metrics vary depending on the value of the threshold. A DET (Detection Error

Tradeoff) curve represents the evolution of the couple (FMR,FNMR) for different values

of the threshold. This curve describes the global behavior of a biometric system. In our

case, it gives some indications on the accuracy of texture features for different values of the

decision threshold. The Equal Error Rate (EER) corresponds to the point on the DET curve

where the FMR value equals the FNMR one. The performance of biometric systems is often

characterized by the EER value (even if it is not an interesting operational functioning point).

3.2 Results

Table 2 gives the size of the representation provided by each descriptor on the FVC2002

DB2. Statistical redundancy is estimated by using the principal component analysis method

(PCA). The dimension of the space while keeping 99.9% of the information from descrip-

tors computed on fingerprints data (800 samples) allows us to estimate the redundancy. As

for example, after applying the PCA, the size of the LBP features (initial dimension 256)

is reduced to 38, so the computed redundancy is computed as (256 − 38)/256 = 85%. As

one can see from this table, nearly all descriptors have a high redundancy. Gabor parameters

have a lower redundancy compared to others and they have the advantage to be adjustable

in term of size. Considering only these aspects, Gabor512 is a good choice for representing

fingerprints (results are similar on other databases).
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Table 3 gives the obtained EER value for each texture descriptor and computation scenarios

when using the FingerCode on the FVC2002 DB2 database as illustration. If we only con-

sider the state of the art, results are poor but we are interested here by the relative comparison

of texture features. As we can see, the confidence interval is very small (near 2.10−3) mean-

ing we have a good estimate of the EER value for each case. In the following, we do not

show anymore the confidence interval associated to an evaluation criterion for clarity rea-

sons even it still remains very small. For most features, better results are obtained on binary

images. Using a region of interest sometimes decreases the performance of the recognition

for some features like LBP, TPLBP, LRS or MBP. Gabor parameters permit to obtain the

best results. Using the binary image instead of the original one permits a huge gain of 9%

of the EER value. The best computation scenario is the region of interest on the binary image.

Figures 6, 7, 8 present the DET curves of the different biometric systems when using the dif-

ferent texture features as FingerCode (i.e. without any protection) for the different scenarios

for each database. We can see clearly that the relative performance of texture features are

similar for each database. We can also see the relative difficulty of each benchmark database.

Table 4 presents for each database the most efficient texture feature and the associated EER

values. Even if the obtained efficiency is different for each database (the second one is more

complex as for example), the best feature is always Gabor whatever the used computation

scenario. As a conclusion on fingerprint recognition with texture features, we can say that

Gabor is the most appropriate choice.
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In the following, we study the efficiency of texture feature for fingerprint recognition using

the BioHashing algorithm (i.e. using BioCodes). Figures 9, 10, 11 present the DET curves

of the different biometric systems when using the different texture features after applying

the BioHashing algorithm (i.e. BioCodes) for the different computation scenarios for each

database. We can notice that many DET curves are not or partially present, this is due to a

perfect performance (i.e. with an area under the curve near 0%).

Table 5 presents for the FVC2002 DB2 database (that can be considered of medium complex-

ity) the EER values of the different texture features when used for computing the BioCodes

with the algorithm given in Figure 3. We can see clearly that the EER values are very low

; it is well known that the BioHashing improves the performance (because the seed value

defining the projection can be seen as an a priori information). We can notice that 5 features

among LBP, CLBP, LBPFT, GABOR512 and MBP permit to obtain a perfect recognition

for all computation scenarios. Others have very low error rates for few scenarios.

It is possible to compare BioCodes from different databases. We made another experiment to

illustrate this point. We concatenated the three databases to obtain a chimeric one composed

of 300 individuals with 8 samples. We computed the EER value when we use the BioCode

from the Gabor features (256 bits) on the ROI binary image. It equals 4 10-̂4 showing the

reliability of obtained results.
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The previous case assumes the attacker does not know the secret that can be seen as one of

the two-factor authentication scheme. We made another experiment consisting in simulating

the stolen token attack. If this case, we suppose the attacker knows the secret of the user

he/she wants to impersonate. In this case, impostors scores are computed from BioCodes

generated with impostors samples and the secret of the individual to impersonate. We es-

timate the EER value using the BioCode. Table 6 presents results on the FVC2002 DB2

database for the four computation scenarios. We obtained similar results to Table 3 and even

slightly better (this is normal). Conclusions on efficiency are identical concerning the ro-

bustness to attack (especially considering the stolen token one that is the most problematic

for the BioHashing algorithm). Gabor features present the best behavior on fingerprints.

Table 7 presents a comparison of the studied texture features with some recent papers (most

of them are using the BioHashing algorithm or a variant) on the FVC2002 DB2 database.

Other papers improve the robustness to the stolen token attack that is not our purpose in this

paper. Results obtained by using the best features are not very far from them and they are

computed on the global images or on a ROI.

Figure 12 shows the comparison of the performance when using GABOR Features of size

256 and 512 as Fingercode and BioCode in the context of the stolen token attack. This shows

a slight improvement even in the context of an attack.
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4 Conclusion and perspectives

In this paper, we studied different texture features from the state of the art for fingerprint

recognition. We are particularly interested in the cancelable biometrics approach consisting

in projecting the texture feature in a secret place. We tested also four computation scenarios

(original image, binary image, region of interest on the original image, region of interest on

the binary image). We considered 4 criteria: dimension of the representation of the texture

feature, redundancy, performance before and after transformation with the BioHashing al-

gorithm. For all these criteria, Gabor features reveal themselves as the best candidate for

this issue. For a better performance and robustness, a dimension at least equal to 256 or 512

should be chosen.

Perspectives of this study concern the study of the robustness of the BioHashing algorithm

for the different texture features we studied in this paper. We intend to quantify to what

extent some attacks are possible for the different texture features.
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Fig 1 Different representations of a fingerprint: 1) ridge, 2) minutiae and 3) pores (source International Biometric
Group)
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Technique Feature Original rep. Approach Final rep.
Transformation ”key”32 Minutiae Point set Random projection and

binarization
Binary vec-
tor

Yang & Busch33 Minutiae Point set minutiae vicinities Binary vec-
tor

Bringer & Despiegel16 Minutiae Point set minutiae vicinities Binary vec-
tor

Nagar et al.2 Minutiae Point set Local aggregates Binary vec-
tor

Jin et al.4 Minutiae Point set Transformation minutiae
points

Minutiae set

Wang and Hu5 Minutiae Point set Pair-minutiae quantiza-
tion and mapping

Binary vec-
tor

Ferrara et al.13 Minutiae Point set Cylinder representation Binary vec-
tor

Fuzzy commitment34 Fixed length vector Binary vec-
tor

Error correction code
scheme

Binary vec-
tor

Shielding function35 Image-based Real vector Secret extraction from
common randomness

Binary vec-
tor

BioHashing14 Image-based Real vector Random projection and
binarization

Binary vec-
tor

Table 1 Comparison of fingerprint template protection algorithms
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Fig 2 General principle of the BioCode generation
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Fig 3 BioHashing description
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original image binarized image ROI original image ROI binarized image

Fig 4 Example of pre-processing used for the computation of the FingerCode with a texture feature.
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(a) (b) (c)

Fig 5 One fingerprint example from each database: (a) FVC2002 DB2, (b) FVC2004 DB1, (c) FVC2004 DB3
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Texture features Dimension Redundancy
LBP 256 85%
TPLBP 7280 89%
CLBP 512 92%
GLCM 8 50%
LBPFT 152 75%
GABOR64 64 9%
GABOR128 128 23%
GABOR256 256 38%
GABOR512 512 67%
LRS 81 79%
MBP 256 88%

Table 2 Texture features: Dimension and redundancy
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Features Original image Binary image ROI original image ROI binary image
LBP 32.0 ± 0.002 33.8 ± 0.0027 40.6 ± 0.003 35.6 ± 0.003
TPLBP 43.7 ± 0.0033 40.0 ± 0.0033 45.6 ± 0.0031 42.5 ± 0.003
CLBP 38.4 ± 0.0026 33.7 ± 0.0029 40.0 ± 0.0029 38.8 ± 0.0028
GLCM 46.3 ± 0.0032 38.1 ± 0.0027 43.3 ± 0.0035 38.7 ± 0.0027
LBPFT 37.9 ± 0.003 36.1 ± 0.0029 41.2 ± 0.0034 37.0 ± 0.0029
GABOR64 40.5 ± 0.0033 41.2 ± 0.0031 43.1 ± 0.0031 40.0 ± 0.0028
GABOR128 35 ± 0.0027 28.0 ± 0.0027 35.2 ± 0.0028 27.2 ± 0.0029
GABOR256 32.1 ± 0.0035 22.9 ± 0.0028 32.0 ± 0.003 21.8 ± 0.0027
GABOR512 32.2 ± 0.0029 22.9 ± 0.0026 32.5 ± 0.0029 21.6 ± 0.0023
LRS 36.4 ± 0.0027 35.1 ± 0.003 39.8 ± 0.0031 35.1 ± 0.0028
MBP 32.1 ± 0.0026 33.8 ± 0.0031 40.0 ± 0.0027 35.5 ± 0.0032

Table 3 FingerCode efficiency for the different scenarios (EER in %) for the FVC2002 DB2 database and the associ-
ated confidence interval (at level 95%).
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Fig 6 FingerCode DET curve (database 1): original image (left 1st row), region of interest (right 1st row), binary
image (left 2nd row) and region of interest of the binary image (right 2nd row)
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Fig 7 FingerCode DET curve (database 2): original image (left 1st row), region of interest (right 1st row), binary
image (left 2nd row) and region of interest of the binary image (right 2nd row)
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Fig 8 FingerCode DET curve (database 3): original image (left 1st row), region of interest (right 1st row), binary
image (left 2nd row) and region of interest of the binary image (right 2nd row)
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Databases Original image Binary image ROI original image ROI binary image
FVC2002 DB2 Gabor256 Gabor256 Gabor256 Gabor512

32.1 22.7 32 21.7
FVC2004 DB1 Gabor256 Gabor512 Gabor256 Gabor256

29.9 30.5 36.9 30.1
FVC2002 DB3 Gabor512 Gabor512 Gabor512 Gabor512

9.5 9.9 15.1 9.2

Table 4 FingerCode efficiency for the three databases (EER in %).
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Fig 9 BioCode DET curve on database 1: original image (left 1st row), region of interest (right 1st row), binary image
(left 2nd row) and region of interest of the binary image (right 2nd row)
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Fig 10 BioCode DET curve on database 2: original image (left 1st row), region of interest (right 1st row), binary
image (left 2nd row) and region of interest of the binary image (right 2nd row)
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Fig 11 BioCode DET curve on database 3: original image (left 1st row), region of interest (right 1st row), binary
image (left 2nd row) and region of interest of the binary image (right 2nd row)
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Texture features Original image Binary image ROI original image ROI binary image
LBP 0 0 0 0
TPLBP 8.10−3 0 9.10−3 0
CLBP 0 0 0 0
GLCM 5.10−2 4.10−2 5.10−2 3.10−2

LBPFT 0 0 0 0
GABOR64 6.10−3 6.10−2 10−2 2.10−2

GABOR128 4.10−3 9.10−3 10−2 10−2

GABOR256 0 0 10−4 0
GABOR512 0 0 0 0
LRS 3.10−4 0 6.10−3 0
MBP 0 0 0 0

Table 5 BioCode efficiency for the different scenarios (EER in %) for the FVC2002 DB2 database.
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Texture features Original image Binary image ROI original image ROI binary image
LBP 28.2 42.8 35.5 41
TPLBP 42.6 42.3 44.8 44.8
CLBP 32.3 30 38.3 37.5
GLCM 50 48.6 50 48.5
LBPFT 39.9 37.9 42 37
GABOR64 41.3 39.6 45 35.1
GABOR128 28.7 28 29.5 25
GABOR256 22.2 18.3 24 18
GABOR512 25.1 18.3 26.2 17
LRS 34.7 37.6 37.1 36
MBP 30.7 39.6 35.1 37.7

Table 6 BioCode efficiency for the different scenarios (EER in %) for the FVC2002 DB2 database under the stolen
token attack.
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Methods Best case (without attack) Worst case (stolen token attack)
BioHashing with Gabor256 0 17
Topcu et al.6 0 13.1
Brahnam et al.7 0.45 5.68
Nanni et al.3 1.81 3.45

Table 7 Comparison of different methods from the state of the art on the FVC2002 DB2 database (EER in %).
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Fig 12 Comparison of ROC curves when using GABOR Features of size 256 and 512 as Fingercode and BioCode in
the context of the stolen token attack.
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