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Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling
using LDF approximation and a multisite model
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The adsorption of toluene (TOL) as a target volatile organic compound has been studied experimentally and modelled
on various hydrophobic zeolites: Faujasite (FAU), ZSM-5 (Z) and Mordenite (MOR). The influence of the nature of the
compensating cation (H+ or Na+) has also been investigated for ZSM-5 zeolite, which is known to possess three kinds
of adsorption sites (sinusoidal channels, straight channels and intersections). Type I isotherms observed on FAU, Na-Z
and MOR fitted well with the Langmuir model. A deviation from a type I isotherm was observed for H-Z, because of the
structure of this zeolite. The Successive Langmuir Model was more successful to fit the ‘bump’ of the experimental curve
than the Double Langmuir. Classical shapes were found for MOR, FAU and Na-Z breakthrough curves that were fitted with
good accuracy using the Linear Driving Force (LDF) approximation. In the case of H-Z, a change of profile was observed
during the dynamic adsorption and the differences seen between the Na-Z and H-Z behaviours were explained by the strong
interactions between Na+ and adsorbed TOL at the intersection sites. The Na+ cations prevented reorientation of TOL
molecules at the intersection and thereby avoided the filling of the sinusoidal channel segments. Thus, a specific model was
developed for fitting the breakthrough curve of H-Z. The model developed took into account these two types of adsorption
sites with the overall uptake for each site being given by an LDF approximation.

Keywords: volatile organic compounds; adsorption; breakthrough curve modelling; hydrophobic zeolite; compensating
cation

1. Introduction
Volatile organic compounds (VOCs) are used extensively
in many industrial processes. The main anthropogenic
sources of emissions of VOCs are oil and gas refiner-
ies, and the surface treatment or the evaporative emissions
due to the use of solvents.[1,2] Emissions of VOCs are
responsible for different problems of indoor and outdoor
air pollution [3] that may affect human health, as many
of these compounds are toxic or even carcinogenic.[4]
They have also been identified as playing a major role in
serious environmental problems such as the photochem-
ical smog that can cause damage to both humans and
the environment.[5–7] Therefore, the removal of VOCs
is of significant importance in air quality control and
has triggered the interest in the development of abate-
ment technologies to comply with the latest environmental
regulations.

The usual way to reduce the harmful effects of VOCs
is to reduce their concentration. Many processes are used
in industry for controlling environmental pollution such
as adsorption and catalytic oxidation.[8–10] Nowadays
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among the treatments used for reducing VOCs, adsorption
technology appears to be the best strategy as it removes
pollutants economically in terms of simplicity of design,
ease of operation and low energy requirements.[11–13]
Adsorption has also been found to be effective at low
concentration levels.[14]

The success of an adsorption process depends on the
performance of adsorbents in terms of both equilibria and
kinetics: a solid support that has a favourable adsorption
isotherm as well as rapid kinetics is the ideal. Several
adsorbents have been extensively studied for VOC removal
from air streams, such as silica gel, zeolites, mesoporous
materials and activated carbons. Activated carbon is the
most widely used adsorbent thanks to its high surface
area, pore structure [15,16] and low price.[17] However,
there is increasing interest in developing new adsorbents as
an alternative to activated carbon because of its humidity
dependence [18] and the difficulty in regenerating it.[19]
The use of hydrophobic zeolites is interesting because it
is reported that these materials have chemical and ther-
mal stability, are not flammable and retain good adsorption
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capacities at relatively high humidity.[17] Moreover, they
can easily be regenerated.[9]

Zeolites are crystalline aluminosilicates with unique
microporosity properties. The crystalline framework struc-
ture, high specific area and their structural and compo-
sitional flexibility make zeolites potential candidates for
VOC adsorption.[11,18] Adsorption on zeolite has been
reported to depend on the adsorbent crystalline frame-
work, pore structure, compensating cation and chemical
properties.[20]

Numerous models have been published to describe the
phenomena taking place in fixed-bed adsorption. Indeed,
adsorption is composed of several steps: mass transfer
in the boundary layer surrounding the adsorbent parti-
cles (external transfer), diffusion inside the pores (internal
transfer), adsorption onto the pore walls and surface dif-
fusion along the internal pore surface. The drawback of
sophisticated models taking both external and internal
transfer into account is that they require the determination
of a large number of parameters and that they are difficult
to solve numerically.[21,22] Therefore, in most studies,
the adsorption process is modelled using simplistic math-
ematical expressions allowing significant savings in com-
putation time. The most simplistic approach is to assume
equilibrium, and to neglect resistance to mass transfer [23];
obviously, this approach can be only used in certain condi-
tions or to obtain an order of magnitude of the adsorption
parameters. The Thomas model, which is a lumped param-
eter model, can give good results.[24,25] In this model,
a pseudo adsorption kinetic coefficient is determined by
fitting the calculated breakthrough curve to experimental
data. This parameter includes external and internal transfer
as well as adsorption kinetics. Another well-known simple
model is the Linear Driving Force (LDF) approximation
[15,26–28]: the mass balance equation within the parti-
cle is replaced by an expression giving the overall uptake
rate in the particle. This adsorption rate is assumed to be
linearly proportional to a driving force defined as the dif-
ference between the surface concentration and the average
adsorbed-phase concentration. Several authors have pro-
posed a relationship linking the global transfer coefficient
kp to the effective intrapellet diffusivity. Tien [28] noticed
that although this relationship has been obtained on a the-
oretical basis, kp should above all be considered as an
adjustable parameter in modelling adsorption calculations.
However, all these models assume only one single type of
adsorption site and dynamic models that consider adsorp-
tion in multi-compartment porous media are rare.[29,30]
Lesage et al. [29] assumed that the different types of pores
are parallel, while Ding et al. [30] proposed a model where
the two types of pores are interconnected, leading to a
complex numerical resolution.

Our current research encompasses the development of
a process combining VOC adsorption and catalytic ozona-
tion on hydrophobic zeolites. The study presented here
focused on the adsorption, ‘that is, the first step of this

combined process, and its aims were: (i) to investigate
the effects of zeolite channel size and pore structure on
the adsorption using three commercial hydrophobic zeo-
lites: mordenite (MOR), ZSM-5 and faujasite (FAU); (ii)
to analyse the effect of the compensating cation and (iii)
to obtain and model the breakthrough curves for toluene
(TOL). For these purposes, gas–solid equilibrium exper-
iments and dynamic adsorption experiments were carried
out. The breakthrough curves obtained by dynamic adsorp-
tion were compared to the theoretical prediction of the
models. The influence of the pore structure of the zeolites
on mass transfer was studied to understand the adsorption
mechanism. In this study, two models are used: the LDF
model and a two-adsorption sites model that was specially
developed for this work.

2. Materials and methods
2.1. Adsorbents
Four kinds of hydrophobic microporous zeolites were used
as adsorbents: MOR, FAU and two ZSM-5 (Z). For the lat-
ter, the nature of the compensating cation is different: Na+

and H+. The schemes of the structure of these three zeo-
lites are shown in Figure 1. Mordenite type zeolites consist
mainly of 12-membered straight channels and apertures of
6.5 × 7 Å with the presence of side pockets (2.6 × 5.7
Å). FAU-type zeolites consist of cubic-octahedrons called
sodalite cages or β-cages.[31] The assembly of β-cages
linked together by hexagonal prisms gives 13 Å diameter
supercages interconnected by 12 oxygen atom apertures
(7.4 Å diameter). ZSM-5 zeolite has a three-dimensional
pore network with 10-membered straight and sinusoidal
ring channels and apertures of 5.3 × 5.6 Å and 5.1 × 5.5
Å, respectively.

The four zeolites were provided by Tosoh and
Zeochem. Zeolite pellets consist of microcrystals fixed
together as cylindrical pellets with a binder (clay, alu-
mina), creating a meso/macroporous structure. A thermal
degassing procedure was applied prior to the experiments.
The zeolite samples were oven-dried at 500°C for 6 h, and
stored in desiccators until further use.

2.2. Characterization of zeolite samples
Specific surface areas and pore volumes were obtained
by nitrogen adsorption–desorption at − 196°C using a
Micromeritics ASAP 2010 instrument. Prior to nitrogen
adsorption, the zeolite samples were degassed at 90°C
for 1 h and then at 350°C for 4 h. Specific surface areas
(SBET) were calculated from nitrogen adsorption isotherms,
using the Brunauer–Emmett–Teller (BET) equation.[32]
Micropore volumes (Vmicro) were determined by applying
the Horvath–Kawazoe method.[33] Table 1 summarizes
the physicochemical characteristics of the zeolite samples.
Samples are named according to the compensating cation
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Figure 1. Zeolite structure: MOR (a), FAU (b), ZSM-5 (c).

Table 1. Physical–chemical properties of the zeolites.

Sample Zeolite
Compensating

cation
Pore size

aperture (Å)
dp

a

(mm)
Binder

weight (%)
ab (m²
m−3)

SBET (m²
g−1)

Vmicro
(cm3 g−1)

Si/Al2
ratioc

Na-Z ZSM-5 Na+ 5.1 × 5.5 1.7 / 3529 309 0.12 360
5.3 × 5.6

H-Z ZSM-5 H+ 5.1 × 5.5 1.6 20 3750 308 0.11 2100
5.3 × 5.6

H-FAU FAU H+ 7.4 1.8 20 3333 608 0.23 13.8
H-MOR MOR H+ 2.6 × 5.7 1.8 20 3333 508 0.21 230

(pocket)
6.5 × 7 (channel)

Note: / – Not given by the provider.
aEquivalent spherical particle diameter of the cylindric pellets: Vpellets/Spellets.
bEquivalent spherical specific area (6/dp).
cGiven by the provider.

and the name of the zeolite. As it can be seen, the phys-
ical properties of H-Z and Na-Z are similar although the
Si/Al2 ratio and the nature of the compensating cation are
different.

2.3. Adsorbate / Analytical procedure
TOL was used as a model VOC (Sigma-Aldrich, purity
more than 99%). The kinetic diameter of this molecule is
5.8 Å.[16]



The concentration of TOL was analysed using a GAS
chromatograph Varian 3800 GC equipped with Flame Ion-
ization Detectors. Separation was achieved using a CP-SIL
8 capillary column (30 m × 0.53 mm ID) with a 1.0 μm
film thickness.

2.4. Adsorption isotherms
Adsorption isotherms were determined at 25°C ( ± 1°C)
using a volumetric method detailed in a previous
publication.[15] All the points were obtained in triplicate.
The adsorbed quantity (Qe) was calculated from a mass
balance in the gas phase:

Qe = V
m

(Co − Ce), (1)

where Co and Ce are the initial and equilibrium concen-
trations (mol m−3), respectively , V is the volume of the
reactor (m3) and m is the mass of solid (kg).

2.5. Experimental breakthrough curves
The experimental set-up used is shown in Figure 2.
Dynamic adsorption experiments were conducted in a
fixed-bed flow reactor (4.5 cm ID; length 15 cm), at 21°C
( ± 1°C) and 101 kPa. The dry air/VOC mixture was gen-
erated using a bubbling system and diluted by adding dry
air. The flow rate was fixed at 1.83 m3 h−1 and the VOC
concentration was fixed at 0.011 mol m−3. The VOC con-
centrations at the inlet and at the outlet of the reactor were
analysed on-line.

The experimental conditions are summarized in Table
2. Total adsorbed TOL Q (mol kg−1) was calculated from
a mass balance using the following equation:

Q = FCTOLin

m

∫ ts

0

(
1 − C

CTOLin

)
dt, (2)

where CTOLin is the inlet concentration of TOL (mol
m−3); F is the volumetric flow rate (m3 h−1) and ts is the

Figure 2. Experimental set-up for dynamic adsorption. (1) Dry
air inlet; (2) flowmeter; (3) bubbler; (4) thermostated tank; (5)
adsorption bed; (6) gas sample outlet; (7) three-way valve to gas
analyser; (8) exhaust gas.

Table 2. Experimental conditions used to carry out
the breakthrough curves.

Sample H (m) m (g) ρ (kg m−3) ε (-)

Na-Z 0.09 132 845 0.36
H-Z 0.09 98 680 0.39
H-FAU 0.09 70 490 0.35
H-MOR 0.09 91 658 0.34

Note: With H, m, ρ, ε being the length, the mass,
the density and the void fraction of the fixed-bed of
zeolite pellets.

time needed to reach zeolite saturation (h); C is the outlet
TOL concentration as function of time (mol m−3).

3. Results and discussions
3.1. Isotherms
The adsorption isotherms of TOL are shown in Figure 3.
It can be noted that the H-FAU, H-MOR and Na-Z curves
are type I isotherms. A higher adsorption capacity can be
observed for H-FAU than for H-MOR and for Na-Z, prob-
ably due to a higher specific surface area (SBET) for H-FAU
than for H-MOR and for Na-Z as shown on Table 1. How-
ever, in the case of zeolites, the value of SBET is not the
only important parameter since the kinetic diameters of
the pollutants are often of the same order of magnitude
than the pore aperture. In the present study, it can be noted
that H-FAU possesses larger pore aperture, avoiding steric
hindrance. Although the micropore volume of H-MOR is
similar to H-FAU, the side pocket (2.6 × 5.7 Å) is not
accessible to the molecules of TOL (5.8 Å) and the avail-
able adsorption volume is then reduced by 53%.[31] The
usual Langmuir model gives a very good representation of
the experimental H-FAU, Na-Z and H-MOR isotherms as
expected for type I isotherms.

However, the Langmuir model does not fit well with
the experimental adsorption isotherm of H-Z, as shown in
Figure 3(b). In fact, the isotherm of H-Z shows two steps:
the first step is observed for Qe around 0.6 mol kg−1; then,
a second step seems to start when Ce is superior to 0.051
mol m−3. This leads to a higher capacity for H-Z than for
Na-Z although its specific surface is the same than Na-Z.
S-shaped isotherms usually describe multilayer adsorption.
However, the kinetic diameter of TOL (5.8 Å) is of the
same order of magnitude than the pore aperture so that
a second layer is not possible. A similar isotherm profile
has been reported in the case of the adsorption isotherm
of aromatic compounds over silicalite-1 zeolite by Song
et al.[34]. The authors clearly pointed that this behaviour
is not due to multilayer adsorption but it is suggested that
two sites of adsorption are active for H-Z: the intersections
and the channels. Therefore, two different variations of
Langmuir models can be used: the Double Langmuir (DL)
model and the Successive Langmuir (SL) model. Both
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Figure 3. (a) Adsorption isotherm of zeolites at 25°C and 101 kPa: (�) Na-Z; (�) H-MOR; ( + ) H-FAU; (–) simulated with Langmuir
model. (b) Adsorption isotherm of zeolites at 25°C and 101 kPa: (♦) H-Z; (–··) simulated with Langmuir model; (···) simulated with two
successive Langmuir models; (–) simulated with Double Langmuir model.

consider two sites of adsorption, but not with the same
assumptions. The DL model describes a simultaneous fill-
ing of the two adsorption sites (just like heterogeneous
surface with many adsorption sites [28]) whereas the SL
model considers a successive filling of the two adsorption
sites. The equations can be read in Table 3 and the results
of the modelling can be seen in Figure 3(b). It can be shown
that both the models give a good accuracy for the first part
of the curve. As suggested by Wang et al.[35], low-loading
adsorptions take place at the energetically preferred site
and thus, for low loadings, the DL model is as accurate

as the SL model. This is not the case for higher loadings.
Despite the high degree of accuracy with the experimental
data, compared to a simple Langmuir model, the DL model
does not represent the second step very well. This is prob-
ably due to the fact that this model describes a filling up
of both sites at the same time (just like for a heterogeneous
surface). The better result obtained by the SL model seems
to show that the two sites do not fill up at the same time.
It can be supposed that the intersections are the preferen-
tial adsorption site of the zeolite H-Z and in the case of
high loadings, and after the complete loading of the TOL



Table 3. Identified parameters fitting Langmuir, DL or SL
models to the experimental isotherm data.

Qmax
Isotherm model (mol kg−1) b (m3 mol−1)

H-MOR Langmuira 0.75 552
H-FAU Langmuir 1.70 227
Na-Z Langmuir 0.57 810
H-Z Langmuir 0.75 309

Successive Langmuirb 0.69/0.12 426/264
Double Langmuirc 0.66/0.43 437/3.35

Note: bi, Qmaxi, bc, Qmaxc are the parameters of the Successive
Langmuir model or DL model with subscripts i and c denoting
the intersections and channels, respectively.
a Qe = b Qmax Ce

1+b Ce
.

b Qe = bi Qmaxi Ce
1+bi Ce

if Ce ≤ Clim = 0.051 mol m−3,
Qe = bi Qmaxi Clim

1+bi Clim
+ bc Qmaxc (Ce−Clim)

1+bc(Ce−Clim)
if Ce > Clim.

c Qe = bi Qmaxi Ce
1+bi Ce

+ bc Qmaxc Ce
1+bc Ce

.

molecules on these sites, the adsorption goes on inside the
sinusoidal channels. This assumption is reinforced by the
fact that the second step appears when four molecules per
unit cell is sorbed corresponding to the number of the inter-
sections per unit cell.[34] Song et al [34] suggested that
there is redistribution and/or reorientation of molecules
sorbed in the framework when the sorbed molecules start
to populate the sinusoidal channels. Hence, we suggest
that some of the molecules sorbed on the intersections can
migrate to the sinusoidal channels, so that new molecules
can again be adsorbed at the intersections. Then the two SL
models seem to be more adapted to fit the isotherm of TOL
on H-Z.

The identified values of the parameters of the models
are given in Table 3. In the cases of the DL model and of
the SL model, it should be noted that the value of Qmaxi
(0.66 or 0.69 mol kg−1) is close to the value correspond-
ing to a loading of four molecules per unit cell (0.56 mol
kg−1). Moreover, bi is greater than bc, indicating that the
adsorption at the intersections is easier than the adsorp-
tion in the channels. Indeed, at low loadings, the TOL
molecules only move along the straight channels up to the
intersections. However, they have to reorient at the level of
the intersections in order to populate the sinusoidal chan-
nels [34,36] because of the strong adsorbate–adsorbate
interactions, leading to a lower coefficient bc.

These results are consistent with other studies.[18,34]
The difference between the Na-Z and H-Z isotherms is
probably related to the nature of compensating cation. A
steric hindrance can be induced by the larger size of Na+

(1.16 Å) compared to the diameter of H+ (1.6.10−5 Å).
Since the kinetic diameter of TOL and the dimensions of
the sinusoidal channels are 5.8 Å and 5.1 × 5.5 Å, respec-
tively, Na + can block the entry of the sinusoidal channels.
The strength of the interaction between the cation and TOL
can be another explanation. Indeed, the cation Na+ acts

as a Lewis acid to form a strong interaction with π elec-
trons in the case of TOL adsorption.[37] The interaction
between Na+ and TOL is greater than that between H+

and TOL. This characteristic may affect the adsorption of
the hydrocarbon on ZSM-5. Indeed, as explained by Song
et al., [34] the strong adsorbate–adsorbate interactions for
aromatic adsorbates leads to redistribution and/or reorien-
tation of the molecules adsorbed in the framework when
the adsorbed molecules start to populate the channel seg-
ments. Thus, we can postulate that, in the case of Na-Z, the
reorientation of TOL is not possible due to stronger inter-
actions between Na+ and TOL and thus TOL cannot enter
the sinusoidal channels. Therefore the adsorption cannot
continue inside the channels and is probably limited to the
intersections for Na-Z, contrary to H-Z.

3.2. Breakthrough curves
Figure 4(a) and 4(b) shows the breakthrough curves of
TOL for the different zeolites. The H-MOR gives a better
breakthrough curve with a longer breakthrough time and a
steeper slope than the other zeolites. The mass transfer of
TOL into the pores of MOR is favoured compared to the
other zeolites. The breakthrough of H-FAU appears ear-
lier but the slope of the curve is more extended, leading
to a later complete loading. Despite the similar physical
properties of ZSM-5, the appearance of the breakthrough
curve is different between Na-Z and H-Z as was observed
for the adsorption isotherms. A change of slope is observed
in the course of the breakthrough curve for H-Z whereas
a classical shape is observed for Na-Z. This can be due to
the strong interaction between the adsorbed molecules [38]
and to the presence of two sites of adsorption for the H-Z
as mentioned earlier.

3.2.1. Modelling
According to the previous results, two models were devel-
oped. One kind of site is considered in the first model
whereas the second model considers two kinds of adsorp-
tion sites. The following assumptions are used for both the
models: (i) the pressure drop is negligible; (ii) the system
is isothermal for low concentrations; (iii) the plug flow is
assumed and the effect of the axial dispersion is considered;
(iv) the volumetric flow rate is constant; (v) the adsor-
bent particles are spherical. In the gas phase, an external
film around the particle is postulated. The second model
assumes that TOL uptake at the i-sites and c-sites occurs
simultaneously. This assumption is consistent with the DL
model. However, this second model will be used with the
SL model with an adaptation which will be discussed later.

3.2.1.1. Model with one adsorption site According to
the hypotheses stated earlier, the dynamic adsorption
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Figure 4. (a): Influence of zeolites on TOL breakthrough: (�) Na-Z; (�) H-MOR; ( + ) H-FAU; (—) simulated with Model-1. (b)
TOL breakthrough curve on H-Z: (♦) Experimental data; (– ··) adsorption on the two sites using the parameter of the Double Langmuir;
(– – –) adsorption on the two sites using the parameter of the Successive Langmuir model; (—) adsorption using Qmaxi and Qmaxc of
the Successive Langmuir model but identifying bi and bc to compensate for the lack of the interconnection of the two sites. Operating
conditions: 21°C, 101 kPa, CTOLin: 0.01 mol m−3.

model consists of the following equations.

∂C
∂t

= − u ∂C
ε ∂z

+ Dax
∂2C
∂z2 − ρ ∂Q̄

ε ∂t
, (3)

with the boundary conditions:

z = 0,
Dax ∂C

u ∂z
= C − CTOLin, (4)

z = H ,
∂C
∂z

= 0. (5)

Q̄ is the mean quantity adsorbed and its derivative is
given by the following LDF approximation [15] where kp
is the internal mass transfer coefficient taking into account
inter and intracrystalline diffusion (i.e. diffusion through
the binder and surface diffusion into the crystals).

∂Q̄
∂t

= kp(Qs − Q̄). (6)

At the surface of the particle, the concentration
of adsorbate in the solid phase Qs is linked to the



concentration in the gas phase, Cs by the Langmuir
equation (Table 3).

The equality of flux through the surface leads to the
following equation:

kca(C − Cs) = ρkp

(1 − ε)
(Qs − Q̄), (7)

where kc is the external mass transfer coefficient. It can be
determined by the semi-empirical equation of Wakao and
Funazkri (1978).[39]

The initial conditions of the system were:

z ≥ 0, q̄ = 0, (8)

z = 0, C = CTOLin, (9)

z > 0, C = 0. (10)

3.2.1.2. Model with two adsorption sites Two kinds of
sites are considered with their transport features. Thus, two
terms of consumption are present (∂Qi/∂t and ∂Qc/∂t).
The first and second adsorption sites are respectively the
intersections and the channels. According to the hypothe-
ses stated earlier, the dynamic adsorption model consists of
the following equations:

• Mass balance in the fixed-bed is given by the follow-
ing equation:

∂C
∂t

= − u ∂C
ε ∂z

+ Dax
∂2C
∂z2 − ρ

ε

(
∂Qi

∂t
+ ∂Qc

∂t

)
. (11)

• For each site, a system of equations similar to those
of the first model is used.

∂Qx

∂t
= kpx(Qsx − Qx) (12)

kpx is the internal mass transfer coefficient for the site x
(x being i for the intersections and c for the channels).

kca(C − Csx) = ρkpx

(1 − ε)
(Qsx − Qx), (13)

Qsx = bx Qmaxx Csx

1 + bx Csx
. (14)

For both the sites, kc is the same external mass transfer
coefficient. As already mentioned, kc is determined by the
correlation of Wakao and Funazkri.[39] Yang has pointed
out that this correlation should be used when axial dis-
persion is included in modelling fixed-bed adsorbers and
that other correlations have to be used if the dispersion
is neglected.[40] In order to estimate the axial dispersion
coefficient Dax, several correlations exist and give a wide
range of values for each zeolite. However, Tien [28] has
pointed out that some of these correlations (like the well-
known correlation of Edwards and Richardson) have only
limited accuracy if the particulate diameter is lower than 3

mm (that is the case for the four zeolites selected in this
study), because in this case the limiting value of the Peclet
number Pe can deviate significantly from the theoretical
value of 2 which appears in these correlations. This prob-
lem is taken into account in the correlation used which is
given by the following equation [41]:

Dax = Dm

τ
+ 0.65dP(u/ε)(

1 + 7
√

Dm
(dPu/ε)

) , (15)

which is valid for Re < 100 (Re is about 70 for the four
zeolites).

The initial and boundary conditions are similar to those
of the first model. The total quantity adsorbed is the sum of
the quantity at both types of site.

3.2.2. Determination of parameters and numerical
solution

The two models contain a set of parameters available from
experimental data and measurements. The two models are
solved in the same way: the space variable is discretized in
N values. Each variable (C, Q̄, Qs, Cs for the first model
and C, Qi, Qsi, Csi, Qc, Qsc, Csc for the second) is replaced
by N variables leading to a set of 4N variables for the
first model and 7N variables for the second one. The mass-
balance partial differential equation (Equation (3) or (11))
is then transformed into a system of N ordinary differen-
tial equations (time) using finite differences of order 2 to
represent the space derivatives. Each ordinary differential
equation is replaced by a system of N ordinary differen-
tial equations, and each algebraic equation is replaced by a
system of N algebraic equations. Then the global algebro-
differential system (of 4N equations for the first model, 7N
equations for the second model) was numerically solved
using the ode15s function in MATLAB®.

The model parameters are determined by fitting the
modelled results to the experimental data. An optimization
procedure based on the Levenberg–Marquardt algorithm
was used to fit the parameters to the experimental data. The
following LS criterion is minimized:

LS =
√√√√ 1

nexp

nexp∑
j =1

(Coutj ,mod − Coutj ,exp)
2

(Coutj ,exp)
2 (16)

nexp is the number of experimental data and Cout is the
concentration of the TOL in the gas phase at the outlet of
the fixed-bed.

The identified parameter of the first model is kp. The
identified parameters of the second model are: kpi, kpc.

3.2.3. Results of the simulation
As shown in Figure 4(a), the mathematical model with one
site fitted well the experimental breakthrough of the three



Table 4. Adsorbed amounts and mass transfer coefficients.

Q (mol kg−1) Qe
a (mol kg−1) kp ( × 104 s−1) kc

b ( × 102 m s−1)

H-MOR 0.66 0.67 5.8 5.9
H-FAU 1.22 1.18 1.7 5.9
H-Z 0.51 0.50 see Table 5 6.2
Na-Z 0.53 0.51 2.1 6.0

aFrom isotherm models.
bkc Obtained from the relationship of Wakao and Funazkri: (kc dp/Dm) = 2.0 +
1.1Re0.6Sc0.3.

Table 5. Equilibrium parameters and mass transfer coefficients for the two site models.

Qmaxi / Qmaxc (mol kg−1) bi/bc (m3 mol−1) kpi ( × 104 s−1) kpc ( × 104 s−1) kc ( × 102 m s−1)

Parallel adsorption 0.66 / 0.43 437 / 3.35 1.7 25.0 5.9
Successive adsorption 0.69 / 0.12 426 / 264 0.07 19.0 5.9

0.69 / 0.12 162 / 307 1.1 16.0 5.9

Note: Identified values are in bold.

zeolites characterized by the isotherms well-described by
the Langmuir model. However, among these three zeolites,
the result for H-FAU was less accurate. The second model
with two sites of adsorption also failed to represent the
H-FAU breakthrough curve with good accuracy. Another
model with one site of adsorption has been tested: the
Thomas model.[24,25] It led to a slightly better representa-
tion suggesting that the adsorption kinetics might be taken
into account, though it lacked accuracy in the intermediate
zone of the breakthrough curve. This could be explained by
the lack of precision of the isotherm modelling in the area
of inlet concentration as mentioned earlier.

The adsorbed quantities and the parameters of the one
site model are reported in Table 4. The quantities are
close to those obtained at equilibrium and estimated using
adsorption isotherms. It appears that the intrapellet mass
transfer coefficients kp is greater for H-MOR than for Na-Z
and H-FAU. The mass transfer depends on several param-
eters: hydrodynamics, the affinity between the adsorbent
and adsorbate, the pore size and so on. The closer to one
the ratio between the kinetic diameter of TOL and the pore
size of zeolites is, the higher the affinity between the sur-
face and the adsorbate, thanks to Van Der Walls forces.
This ratio is lower for FAU (0.78) than for MOR (0.88).
Thus, the breakthrough is steeper as observed for H-MOR.
The size of the pore for TOL is similar in the case of H-Z
and Na-Z (1.02), but the ratio is slightly higher than 1. In
fact when the ratio is identical or slightly higher than 1, the
transport of molecules is more difficult. These results are
consistent with other studies.[42]

As far as H-Z is concerned, neither the first model with
one site of adsorption nor the Thomas model described
the profile of the experimental breakthrough curve of H-Z.
Three breakthrough curves predicted by the second model
are shown in Figure 4(b). First, the parameters Qmaxi,
Qmaxc, bi, bc of the DL model are used. Hence, a parallel

adsorption is simulated, and internal mass transfer coeffi-
cient is determined for each site (reported in Table 5). As
shown in Figure 4(b), this model does not fit well with the
experimental data. Moreover, surprisingly, kpc is greater
than kpi although the molecules that reach the sinusoidal
channels have to pass through the straight channels and the
intersections before being adsorbed in the sinusoidal chan-
nels. This result reinforces our conviction that adsorption
at intersections and adsorption in sinusoidal channels takes
place successively rather than simultaneously. In Figure
4(b), it can be seen that the use of the parameters of the SL
model instead of the parameters of the DL model gives bet-
ter results but fails to represent the end of the breakthrough
curve. Indeed, since the model does not interconnect the
two sites, it seems to us that the use of the parameters of
the SL model could not be suitable, particularly bi, because
some of the molecules adsorbed at the intersections will
migrate to the channels. So if it is only considered that
the molecules finally stay at the intersections, the param-
eter bi would be lower. That is why in order to simulate
the successive adsorptions, bi and bc have been identified
together with kpi and kpc. This simulation fits the experi-
mental breakthrough curve very well, as shown in Figure
4(b). Initially, the adsorption of TOL occurs in the inter-
sections of the framework and then continues inside the
sinusoidal channels after a reorientation of the molecules
adsorbed at the intersections. The global mass transfer then
becomes more limiting leading to a change in the slope,
which explains why the identified mass transfer coefficient
for the intersections is lower for H-Z than for Na-Z (Table
4). Indeed, for Na-Z, the intersections are probably the
only adsorption site, as reported before, and no change
in diffusion rate can then be observed. The identified val-
ues of the parameters are reported in Table 5. It should be
noted that kpi is lower than kpc. Indeed, for intersections,
intracrystalline diffusion is important since the molecules



move along the straight channels to reach the intersections.
While for the sinusoidal channels, intracrystalline diffusion
is lower since this adsorption results from a reorientation of
the molecules already adsorbed at the intersections. It can
also be seen that the value of bc is more-or-less the same as
for the isotherm. However, the value of bi is much lower
as expected and previously explained.

4. Conclusion
Thanks to the results of experimental and modelling stud-
ies, a better understanding of adsorption phenomena is
proposed according to the nature of the zeolites.

(i) It is obvious that adsorption is dependent on
the way the zeolites are structured. According to
the size of the pores, TOL can enter easily into the
network (FAU) or can only enter with difficulty
(Mordenite or Na-Z). The Langmuir model fits
these ‘type I’ isotherms with a good accuracy and
the LDF approximation gives a good simulation of
breakthrough curves for these three adsorptions.

(ii) However, some chemical phenomena can occur
and change the adsorption characteristics. For
example, with ZSM-5, the compensating cation
can play a role. Because of some strong inter-
actions, the solute can be blocked in one site
of adsorption (in the case of Na-Z) whereas it
can spread to a secondary internal network if no
interaction occurs (in the case of H-Z).

(iii) In that latter case, two sites of adsorption are high-
lighted and two SL models fit the experimental
isotherm much better than a DL model suggest-
ing that adsorption on the two sites occur in series
rather than in parallel.

(iv) In the case of the breakthrough curves, the devel-
opment of a model is proposed, taking into
account two different sites of adsorption, sinu-
soidal channels and intersections. This model fails
to represent the breakthrough curve if parallel
adsorption is assumed but can give a high level
of accuracy with the hypothesis of successive
adsorption.

Nomenclature
a specific area (m² m−3)
b Langmuir constant (m3 mol−1)
C concentration of the TOL in the gas phase at the

outlet of the fixed-bed (mol m−3)
Cs gas concentration at the surface of the pellet

(mol m−3)
Ce equilibrium concentration in gas phase (mol

m−3)
C0 initial concentration (mol m−3)
CTOLin inlet concentration (mol m−3)

Dax axial dispersion coefficient (m² s−1)
Dm molecular diffusivity (m² s−1)
dp particle diameter (m)
DL Double Langmuir
F fluid flow (m3 h−1)
H height of bed (m)
kc external mass transfer coefficient (m s−1)
kp intrapellet mass transfer coefficient (s−1)
kpi intrapellet mass transfer coefficient in the first

adsorption site for model 2 (s−1)
kpc intrapellet mass transfer coefficient in the second

adsorption site for model 2 (s−1)
LS minimized criterion
m mass of zeolites (g)
M molecular weight (g mol−1)
N number of discretization points
nexp number of experimental data
Q adsorbed quantity of TOL (mol kg−1)
Qe moles of adsorbate adsorbed per unit mass of

adsorbent at the equilibrium (mol kg−1)
Qi mean adsorbed quantity in the first adsorption

site for model 2 (mol kg−1)
Qc mean adsorbed quantity in the second adsorption

site for model 2 (mol kg−1)
Q̄ mean adsorbed quantity in micropores (mol

kg−1)
Qmax Langmuir Parameter – maximum adsorbed

quantity (mol kg−1)
Qs concentration adsorbed on at the surface of

adsorbent (mol kg−1)
SL Successive Langmuir
t time (s)
ts time needed to reach the saturation
T temperature (K)
u superficial velocity (m s−1)
V volume of reactor (L)
z axial coordinate in the column (m)
ε porosity of bed
ρ bed density (kg m−3)
τ tortuosity factor (about four for the four studied

zeolites)

Dimensionless Numbers

Re Reynolds number (ρudp/μ)

Sc Schmidt number (μ/ρDm)

Pe Peclet number (udp/εDm)
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