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The present work focuses on collective effect on both bubble dynamics and mass trans-
fer in a dense homogeneous bubble swarm for gas volume fractions α up to 30%. The
experimental investigation is carried out with air bubbles rising in a square column filled
with water. Bubble size and shape are determined by means of a high speed camera
equipped with a telecentric lens. Gas volume fraction and bubble velocity are measured
by using a dual-tip optical probe. The combination of these two techniques allows us to
determine the interfacial area between the gas and the liquid. The transfer of oxygen
from the bubbles to the water is measured from the time evolution of the concentration
of oxygen dissolved in water, which is obtained by means of the gassing-out method.
Concerning the bubble dynamics, the average vertical velocity is observed to decrease
with α in agreement with previous experimental and numerical investigations, while the
bubble agitation turns out to be weakly dependent on α. Concerning mass transfer, the
Sherwood number is found to be very close to that of a single bubble rising at same
Reynolds number, provided this latter is based on the average vertical bubble velocity,
which accounts for the effect of the gas volume fraction on the bubble rise velocity. This
conclusion is valid for situations where the diffusion coefficient of the gas in the liquid
is very low (high Péclet number) and the dissolved gas is well mixed at the scale of the
bubble. It is understood by considering that the transfer occurs at the front part of the
bubbles through a diffusion layer which is very thin compared to all flow length scales
and where the flow remains similar to that of a single rising bubble.

Key words: Bubbly flow, Agitation, Mass transfer.

1. Introduction

Bubbly flows are usually employed in industry when the rate of mass transfer between
a gas and a liquid is limited by the diffusion of the solute in the liquid. They combine
the advantages of a large interfacial area by unit of volume and of an intense liquid
agitation, which enhances the mixing of solute and accelerate chemical reactions. In
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many applications, the gas volume fraction α is larger than 20% and locally reaches
much larger values. Bubbles can thus not be considered as isolated and collective effects
have to be accounted for.

A first major collective effect is the decrease of the average bubble rise velocity 〈Vz〉
when increasing the gas volume fraction. The prediction of the increase of the bubble
drag is an important issue for industrial applications. In the literature, several exper-
imental works have investigated this phenomenon. Among them, the experiments of
Wallis (1961), who investigated a homogenous bubble swarm of air bubbles in a soapy
water solution, suggest that the rise velocity scales as 〈Vz〉 ∝ (1 − α) up to a gas vol-
ume fraction of 30%. This scaling law was established by considering the global con-
servation of the mass of gas, where the gas flow rate was measured directly and the
gas volume fraction was deduced from the variation of the hydrostatic pressure. Using
the same procedure and making an analogy with a fluidized bed, Bridge et al. (1964)
found a rather similar scaling, 〈Vz〉 ∝ (1 − α)1.39, for the case of a countercurrent liq-
uid flow, with air sparged into water, glycerine/water or water/isoamyl-alcohol mixtures,
for α 6 20%. Wijngaarden & Kapteijn (1990) determined the mean relative velocity of
air bubbles in water by means of a technique based on electric conductance measure-
ments and found that it scaled as (1 − 1.78α) up to a gas volume fraction of 14%. In
the presence of a liquid flow Garnier et al. (2002) observed that 〈Vz〉 scaled as α1/3 for
α 6 40% by means of a dual-tip optical probe. For different various two-phase flow
configurations, Ishii & Chawla (1979) and Rusche & Issa (2000) found more complex ex-
pressions. In order to estimate relative velocity in bubbly, droplet or particulate flows,
Ishii & Chawla (1979) proposed a model based on an effective viscosity of the two-phase
mixture. Rusche & Issa (2000) introduced a drag correction as a combination of a power
law and an exponential function with coefficients that depend on the nature of the consid-
ered dispersed flow. Direct numerical simulations of a swarm of bubble rising in a periodic
domain have also been performed. For moderate Reynolds number (Re = O(10− 100)),
using a front tracking method and avoiding bubble coalescences, the decrease of 〈Vz〉
with α has been confirmed for both spherical (Bunner & Tryggvason 2002a,b) and ellip-
soidal bubbles (Bunner & Tryggvason 2003). Deformed bubbles at large Reynolds num-
ber (Re = O(100 − 1000)) for α 6 45% have been simulated by Roghair et al. (2011)
who used 20 Eulerian mesh points on the surface of each bubble. They observed that
the decrease of the bubble velocity was affected by the bubble Eötvös number as well as
by the value of the gas volume fraction. Despite the great number of experimental and
numerical attempts, no general model for the rise velocity of bubbles exists yet, owing to
the complexity of bubbly flows. Experimental investigations at large gas volume fractions
(α > 15%) with accurate determination of both the bubble geometry and velocity are
thus still desirable.

A second collective effect of great significance is the modification of the interfacial rate
of mass transfer when the gas volume fraction is increased. Despite the significant gas
volume fractions that are present in most industrial applications, many studies make use
of mass transfer models developed for isolated bubbles. These models are usually based on
Higbie’s penetration theory (Higbie 1935), but consider various definitions for the contact
time: (i) ratio of bubble diameter to bubble rise velocity, (ii) ratio of bubble surface to
rate of surface formation (Nedeltchev et al. 2006), or (iii) based on the eddy velocity
for developped turbulent flows (Lamont & Scott 1970; Kawase et al. 1987; Linek et al.

2004). With a contact time defined as the ratio of bubble diameter to bubble rise velocity
(i), the Higbie’s penetration theory, is also known as the Boussinesq solution (Boussinesq
1905). Numerical simulations (Takemura & Yabe 1998; Figueroa & Legendre 2010) have
shown that this analytical solution appears to be very accurate to describe interfacial
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mass transfer for a single clean spherical bubble rising in a still liquid, at large bubble
Reynolds and Péclet numbers. Moreover, the experiments by Alves et al. (2006) showed
that this solution was still valid for the interfacial mass transfer of a single bubble fixed
in a turbulent downward liquid flow, up to a certain dissipation rate of the turbulence.
The Boussinesq solution has also been used as a closure law in Eulerian-Eulerian two-
fluid simulations of industrial ozonation towers (Cockx et al. 1999) and aeration tanks
for urban wastewater treatment (Fayolle et al. 2007) at low to moderate volume fractions
(α 6 10%). Higbie’s penetration theory with a contact time based on the rate of surface
formation (ii) has been found to provide a good estimate of the mass transfer rate in a
pressurized bubble column for either water or organic liquids (Nedeltchev et al. 2007). In
the same time, Higbie’s penetration theory with a contact time defined with eddy velocity
(iii) has been preferred by Buffo et al. (2012) and Petitti et al. (2013) to simulate gas-
liquid mass transfer in stirred tank reactors.

As indicated above, Boussinesq solution is a priori limited to large bubble Reynolds
and Péclet numbers and isolated spherical bubbles. Some corrections based on results
for a single bubble have been introduced to account for the effect of finite Reynolds
number (Darmana et al. 2005; Shimada et al. 2007; Ayed et al. 2007) and that of bubble
deformation (Nedeltchev et al. 2007) in simulations of bubble columns. Such corrections
are discussed in Takemura & Yabe (1998) and Figueroa & Legendre (2010). Reviews for
mass transfer can be found in Clift et al. (1978) and in Michaelides (2006) for bubbles, but
also for drops and particles. Most of these studies have focused on mass or heat transfer
from a single inclusion. Their applicability in dense dispersed flow is an important issue.

In the last decades, a few works have focused on collective effect upon mass transfer
in a bubble swarm (Koynov & Khinast 2005; Kishore et al. 2008; Colombet et al. 2011;
Roghair 2012). Most of them are numerical works. Two-dimensional numerical simu-
lations of mass transfer for different arrangements of bubbles have been performed by
Koynov & Khinast (2005) for small Reynolds numbers. For the case of 3 bubbles initially
aligned horizontally, the authors observed a decrease of the Sherwood number. For this
particular case, they noticed that, taking into account the reduced Reynolds number, the
Sherwood number stays close to that of a single bubble. They also found a decrease of
the Sherwood number for the case of bubbles which were initially aligned in the vertical
direction. According to Koynov & Khinast (2005), this is due to the fact that bubbles
are rising in the wake of each others so that both the gradient of concentration and the
interfacial mass flux are reduced. One of their conclusions is that ”Mass transfer in a
bubble swarm depends both on the motion of the swarm as a whole and on the motion
of the individual bubbles and, in general, does not follow trends observed in the single
bubble cases.” For both Newtonian and non-Newtonian fluids, Kishore et al. (2008) used
a ”cell model” of two concentric spheres to study numerically the collective effect of
mass transfer for a clean spherical bubble. In that simplified approach, the increase of
gas volume fraction is modeled by a decrease of the bounding sphere. The results seem to
suggest an increase of the Sherwood number with the increase of the gas volume fraction.
The effect of increasing the gas volume fraction on the gas-liquid mass transfer coef-

ficient has been experimentally investigated by Colombet et al. (2011) for air bubble in
water. Thanks to a high speed camera with a fixed focal lens, a Particle Traking Ve-
locimetry (PTV) method was able to measure bubble volumes, shapes and velocities for
gas volume fractions from 0.45 to 16.5%. In this range, the mass transfer coefficient is
found very close to that of a single bubble provided the Reynolds number is based on the
mean equivalent diameter and the average rising velocity of a bubble in the swarm, which
suggests a weak influence of the collective effect on the mass transfer at hight Péclet num-
ber. In a recent study using direct numerical simulation, Roghair (2012) found a marginal
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increase of the mass transfer coefficient kL with the increase of the gas volume fraction
for 4 mm air bubbles rising in water at Re 6 1070, Sc = 1 and 4 6 α 6 40%.

The objective of the present study is to investigate collective effect on the bubble
dynamics and mass transfer in very dense homogeneous bubbly flows with controlled
hydrodynamic conditions. For this purpose, accurate measurements of interfacial area,
bubble diameter, deformation and rising velocity are first performed for 12.1 6 α 6

33.9%. Then, oxygen mass transfer experiments are conducted for 0.7 6 α 6 29.6%. The
paper is organized as follows. Sections 2 describes the experimental methods. Section 3
presents the dynamics of the bubbles while section 4 shows the results concerning mass
transfer. Section 5 is devoted to the analysis and the discussion of the results. Section 6
summarizes the main conclusions.

2. Experimental setup and instrumentation

2.1. General description

The experimental setup is described in figure 1a. It has been previously used by Riboux et al.

(2010) and Colombet et al. (2011). Bubbles are injected through stainless steel capillar-
ies [1] in a square glass column of 15 × 15 cm cross-section and 100 cm high. The gas
line is equipped with three different rotameters [2] and one manometer [3] to deal with a
large range of gas flow rates and volume fractions. A three-way valve enables to switch
from nitrogen to air [4]. The use of 841 capillaries of 15 cm long and dc = 0.2 mm inner
diameter ensures an homogeneous injection of bubbles of almost equal sizes.
Experiments are performed at ambient temperature and pressure (T = 20 ◦C and P =

Patm). The liquid used for all experiments is tap water filtered to remove particles larger
than 15 µm [5]. As a consequence, in the regime considered, gas-liquid interfaces can be
considered to be clean (Ellingsen & Risso 2001). This point has been carefully validated
by measuring the terminal velocity for single bubbles. The main physical properties of
the system are summarized in table 1.

2.2. Measurements of gas volume fraction and bubble velocity

The gas volume fraction α and the average vertical bubble velocity 〈Vz〉 are measured
by means of a dual-tip optical fiber probe (RBI Instrumentation) which is introduced at
the center of the column [7]. A threshold just higher than the noise level is first applied
on the raw signal to define the binarized signal. An example of raw and binarized signals
obtained for each fiber is presented in Fig. 3. Then, the volume fraction is determined
from

α =

∑

∆tyi
taqc

, (2.1)

where tacq is the acquisition duration, ∆tyi the residence time of bubble i on the probe
first fiber (see Fig. 3) and Σ∆tyi the total time during which the gas phase is detected. The
signal acquisition is performed with a sampling frequency of 10 kHz. A good statistical
convergence and an overall accuracy better than 2% is obtained for a recording time
larger than 800 s.

The vertical velocity Vzi of bubble i is obtained by

Vzi =
ds

∆t12i
, (2.2)

where ∆t12i is the time elapsed between the detection of the bubble interface by the
first and the second fiber (as reported in Fig. 3.) and ds is the distance between the



Dynamics and mass transfer of rising bubbles in an homogenous swarm 5

two fiber tips. The main difficulty of this technique is to match two successive rising
fronts corresponding to the piercing of the same bubble. Spurious unrealistic low or large
velocity measurements are detected in some cases, especially when two bubbles interact
close to the probe. According to the sensitivity study of Riboux (2007), values smaller
than Vmin = 0.03 ms−1 or larger than Vmax = 0.7 ms−1 have been removed.

2.3. Measurement of bubble geometrical characteristics

The most reliable technique to determine the bubble shape is probably to process images
obtained by means of a high-speed camera. A classic way to image the bubbles is to use
a fixed focal lens with a thin depth of field, as done by Colombet et al. (2011). However,
the larger the gas volume fraction, the more numerous are blurred out-of-focus bubbles
in the field of view. The use of a fixed focal lens is thus limited to moderate gas volume
fractions (α 6 15%).

The study of collective effects in a dense bubble swarm therefore requires the develop-
ment and the use of another optical technique. In the present work, we use a telecentric
lens, which has the particularity to have a depth of field larger than the column width
(15 cm) and a constant magnification factor all along the direction of view. The main
advantage is to image bubbles with sharp contours, even in a very dense bubbly flow. The
main drawback is that the increase of the field of view results in a significant reduction
of the spatial resolution. In addition, it has been possible to follow individual bubbles
only on a short distance. For those two reasons, the measurement of the bubble velocity
is less accurate and image processing has been specifically used to measure the bubble
geometrical characteristics.

The imaging set-up consists of a high speed CMOS camera (Photron APX, Fig. 1b)
equipped with a telecentric lens (TC-4M-172 Opto Engineering) to visualize a window
of 94 × 94 mm located at the center of the column at a distance of 150 mm above the
injectors tips. The spacial resolution is 5.8 pixel mm−1. The camera is operated at 500
images per second with an exposure time varying from 1/20000 to 1/500 s depending on
the lighting intensity. Lighting is supplied by an halogen spot of 1000 W.
The recorded images are processed by using Matlabr. The bubble edges are detected

by applying a threshold to the raw images in gray levels. The interior of the bubbles is then
filled and small aberrant objects detected in the picture are removed. A test of convexity
is done to identify cases for which the detected object corresponds to two superimposed
bubbles. It consists in comparing the surface area Sobj of the detected object to the area
Sconv of the smallest convex polygon that can contain the object. Only the objects with
Sobj/Sconv > 0.95 are retained, the others being discard. Examples of detected contours
are drawn on typical raw images in figure 2 for different gas volume fractions.
The geometrical properties of the bubbles are determined by assuming that the bubbles

are oblate spheroids with a minor semi-axis a and a major semi-axis b, which are measured
from the two-dimensional measured contours. The bubble aspect ratio is defined as χ =
b/a. The bubble volume is estimated from Vb = 4πb2a/3 and its equivalent diameter from

d = (8b2a)1/3. (2.3)

The bubble area Sb is estimated by (Beyer 1987)

Sb = π
d2

4

(

2χ2/3 +
χ−4/3

√

1− χ−2
ln

(

1 +
√

1− χ−2

1−
√

1− χ−2

))

. (2.4)

In addition, an indirect determination of the bubble equivalent diameter can be ob-
tained from the dual-tip optical probe by assuming that all the bubbles have the same
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size. As recalled in Colombet (2012), for a mono-dispersed population of bubbles that
impact the probe with null angle of attack, d can be expressed as a function of the average
chord length 〈y〉,

d =
3

2
〈y〉χ2/3 , (2.5)

where 〈y〉 is obtained from optical probe measurements as

〈y〉 =
∑n

1
(Vzi∆tyi)

n
, (2.6)

and χ from image processing. (Note that the size distribution of the bubbles will be
discussed in section 3.1 from the results of image processing.)

2.4. Measurement of interfacial area

For a bubble column of total volume Vtot, the volumetric interfacial area, aI =
∑

Sb/Vtot,
is related to the gas volume fraction, α =

∑

Vb/Vtot, by the relation

aI = α

∑

Sb
∑

Vb
. (2.7)

As indicated above, for each bubble detected, a and b are obtained from the images used
to determine the bubble volume Vb and surface Sb. The volume fraction α is given by
the optical probe. Then, the interfacial area aI is determined by using Eq. (2.7).

2.5. Measurement of mass transfer

The concentration C(z, t) of oxygen dissolved in water at time t and elevation z is mea-
sured by means of fast response probes: Clark type micro-sensor (Unisense Ox50). The
technique is based on the measurement of the intensity of the electric current between
an anode and an oxygen reducing cathode, which is proportional to the oxygen concen-
tration. Calibration of oxygen probes is performed for each experiment. Since the probe
response is linear on the whole range of concentration considered, a calibration is per-
formed in situ by using the signal measured at the beginning (anoxic water) and the end
(saturated water) of each experiment. The relative uncertainty on oxygen concentration
measurements is ± 2%. In the present configuration, as shown in figure 1 [6], two oxygen
probes have been placed at two different elevations z, which are reported in table 2.
As shown in Colombet et al. (2011), due to the moderate height of the bubble column

(6 70 cm), the oxygen saturation concentration in the water is almost not affected by the
variation of hydrostatic pressure (6.4%) or by the depletion of the oxygen concentration
within the bubbles during the mass transfer (6%). Moreover, the dilution of oxygen in the
bubbles induced by liquid-to-gas transfer of nitrogen at the beginning of the experiments
can also be neglected (1.3%). Consequently, the oxygen mass saturation concentration
C∗ can be considered as constant along the z axis and equals to its value at the upper
surface where the pressure is equal to that of the atmosphere (P = Patm), so that

C∗ = xG0

O2
ρH2O

MO2

MH2O

(P − P sat)

He
≈ 9.08 mgL−1 , (2.8)

with xG0

O2
the molar fraction of oxygen in the gas phase (dry air), ρH2O = ρL the density

of water (kgm−3), M the molar masses (kgmol−1), P sat the vapour pressure of water in
the bubbles (Pa), He the Henry constant for oxygen in water (Pa). Equation 2.8 results
from the Henry’s law for oxygen in water and the Raoult’s law for water in air with
activity and fugacity coefficients equal to unity for both equilibria, assuming that the
liquid is essentially composed of water.
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The classical ”gassing-out” method is used to determine the time scale of the transfer of
oxygen from the bubbles to the water. This method consists in first bubbling nitrogen gas
in the column in order to remove the oxygen that is initially naturally present in water.
Next, without changing the inlet gas flow-rate in order to not disturb the dynamics of the
bubble swarm, air is suddenly injected instead of nitrogen. The concentration of dissolved
oxygen C then increases until it reaches the saturation concentration C∗.
The moderate size of the column and the bubble-induced turbulence both contribute

to an efficient liquid mixing so that the liquid phase can be assumed to be perfectly
mixed for each horizontal slice of the bubble column. Moreover, owing to the large gas
volume fractions and interfacial areas considered in this work, the vertical mass flux of
dissolved oxygen generated by the axial mixing can be neglected compared to the oxygen
flux coming from the bubbles. In such conditions, the variation of the concentration of
dissolved oxygen along the bubble column is given by

∂C(z, t)

∂t
=

kL aI
(1− α)

(C∗ − C(z, t)) , (2.9)

where kL is the liquid-side mass transfer coefficient and aI the interfacial area. In the
present configuration, the only reason for which C depends on z comes from the delay
corresponding for the time taken by the bubble to reach a given elevation z. In the
following the time origin is shifted by z/〈Vz〉 so that the concentration no more depends
on z and the signals provided by the two oxygen probes are synchronized.

The analysis of the measured concentrations requires to account for the response time
τp of the probes (Letzel et al. 1999; Martin et al. 2007). For this purpose, the oxygen
probe is assumed to behave as first order system,

∂Cp

∂t
= (1/τp)(C − Cp), (2.10)

where C is the real concentration and Cp is the value provided by the probe. The response
time of each probe has been measured and found close to τp = 0.8 s. Solving eqs. (2.10)
and (2.9) for a sudden increase of the mass saturation concentration saturation from 0
to C∗ at t = 0, it yields

Cp

C∗
= 1− 1

(τ − τp)
(τe−t/τ − τpe

−t/τp) , (2.11)

where the time scale τ is related to the mass transfer coefficent kL by

τ =
(1− α)

kLaI
. (2.12)

2.6. Homogeneity of the bubble swarm

Our purpose is to study a stable bubble column in which there is no gradient of volume
fraction and no large-scale liquid motions induced by buoyancy. The use of an array of
capillary tubes guarantees that the bubbles are uniformly injected at the bottom of the
column. However, increasing the gas volume fraction may lead to the development of an
instability and to the transition to a churn flow. The onset of the instability depends on
both the liquid heigh H in the column and the gas volume fraction. For H = 70 cm,
the flow is stable up to approximately α = 10%. For larger values of α, the liquid height
has been reduced in order to keep a stable flow. The chosen values of H are reported
in table 2. With this choice, the free surface at the top of the column remains still and
the gas volume fraction turns out to be uniform all over the column. Figure 4 compares
the superficial gas velocity JG = α × 〈Vz〉 obtained from 〈Vz〉 and α measured by the
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optical probe and the superficial gas velocity JG = QG/S obtained from a gas flow rate
QG measured from the flowmeters. The good agreement obtained between these two
estimations for all gas volume fractions investigated (0.45 6 α 6 33.9%) confirms the
homogeneity of the gas distribution over the column.

Another departure to the flow homogeneity may come from the fact that the bubbles
need a certain distance to reach their terminal velocity and that mass transfer needs
a certain time to attain a steady state. Considering a clean spherical bubble starting
from rest, the relaxation time scale of the bubble velocity can be estimated by τV ≈
d2/(72νL) ≈ 0.06 s, which corresponds to a distance 3τV Vz ≈ 5.4 cm. Concerning the
mass transfer, Figueroa & Legendre (2010) found a transient time τC ≈ 10(d3χ/8)1/3/Vz

for Re = 300, Sc = 10 and χ = 1.2. In our case, this leads to τC ≈ 0.04 s and τCVz ≈
1.3 cm. It is therefore reasonable to consider that the flow and the mass transfer are fully
developed at the location of the first oxygen probes, which is at least 5.8 cm above the
capillaries.

3. Characterisation of the bubbles dynamics

In this section, the bubble dynamics is characterized in terms of bubble size, veloc-
ity, deformation, interfacial area and relevant dimensionless numbers. The results ob-
tained by means of a telecentric lens are systematically presented together with those of
Colombet et al. (2011), who used a fixed focal lens in the same experimental set-up for
0.45 6 α 6 16.5%. In figures 5, 6, 7 and 9b, the errorbars indicate the uncertainty related
to the image resolution on the measurement of bubble size and to the measurement of α.
In figures 9a, 10 and 11, errorbars indicate the uncertainty related to the measurement
of 〈d〉 by considering an uncertainty of ±0.02 m s−1 on the determination of the average
bubble velocity 〈Vz〉.

3.1. Equivalent diameter and interfacial area

Figure 5 shows the evolution of the average bubble equivalent diameter 〈d〉 measured
from image processing (Eq. 2.3) as a function of α (◦, •). The standard deviation of
the equivalent diameter measured by image processing is found to range between 11%
and 21% of the average value. The bubbles are therefore almost monodisperse and eq.
(2.5) can also be used to estimate the bubble diameter from optical probe signals. The
values determined by this method are also plotted in figure 5 (×). Despite the strong
assumptions made, including that the probe is considered to be ideal (Kiambi et al.
2001; Vejrazka et al. 2010) and that all the bubbles impact the probe with a null angle
of attack, the differences between the two experimental techniques is less than 14%.
The bubble diameter is observed to increase with α because of the process of bubble

formation and detachment from the capillaries. At a very low gas volume fraction, the
bubble formation can be considered as quasi-static and the bubble size is controlled by
the equilibrium between buoyancy and capillary forces at the tip of the capillaries. The

diameter is then given by the Tate law, dT = [6σdc/(∆ρg)]
1/3

= 2.07 mm, as confirmed
by the measurement of the detachment of a single bubble by Riboux et al. (2010). When
increasing the inlet gas velocity uc, the balance of the forces acting on a bubble involves
drag and added-mass forces (Gaddis & Vogelpohl 1986; Duhar & Colin 2006). For all the
range of gas volume fraction considered here, the Weber number based on the capillary
inner diameter, Wec = ρLu

2

cdc/σ, stays much lower than 2 so that the jet regime is never
reached and the bubble generation corresponds either to the static regime of formation
or the dynamic one (Mersmann 1977). Knowing the gas-flow rate through each capillary,
the bubble diameter can be estimated by using the model of Gaddis & Vogelpohl (1986).
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The predictions of this model, which are reported in figure 5, shows the same trend
as the experimental results but with an underestimation of approximately 20%. This
discrepancy can be due to a collective effect of the bubbles on the formation process and
to bubble coalescences that may take place just above the capillary tip as observed by
Manasseh et al. (2008).

A log-log representation (see insert in figure 5) reveals that the evolution of 〈d〉 is well
described by the succession of two power-laws:

〈d〉 − d0
d0

≈ 15α for α 6 2.3% (3.1)

〈d〉 − d0
d0

≈ 2.3α0.5 for α > 2.3% (3.2)

where d0 =2.1 mm is the value for a single bubble detaching in the static regime from
one capillary (α = 0).

Figure 6 shows the evolution of the interfacial area as a function of the gas volume
fraction. It is found to regularly increase with α according to the following empirical
power-law power-laws

aI
aI0

≈ 0.402α0.85 for α 6 2.3% (3.3)

aI
aI0

≈ 0.336α0.8 for α > 2.3% (3.4)

where aI0 = Sb0/Vb0 = 3011m−1 is the surface-to-volume ratio of a single bubble
detaching in the static regime.

3.2. Bubbles velocity

3.2.1. Average velocity

During the last decade, many works have investigated the velocity of bubbles rising in
a swarm (Rusche & Issa 2000; Garnier et al. 2002; Zenit et al. 2001; Riboux et al. 2010).
All these studies report a significant decrease of the average bubble vertical velocity as
the gas volume fraction increases.

Figure 7 shows the average vertical bubble velocity 〈Vz〉 as a function of α. The present
results obtained with a dual optical probe (•) are compared to those of Riboux et al.

(2010) (∗) and Colombet et al. (2011) (◦) that were obtained with the same technique,
and to those of Colombet et al. (2011) (�) that were determined by image processing with
a fixed focal lens. The velocity obtained from image processing is slightly lower, probably
because the detected bubbles are not far enough from the column wall. However, all the
results obtained with an optical probe collapse onto a master curve of equation

〈Vz〉 = Vz0 [0.28 + 0.72 exp(−15α)]
0.5

, (3.5)

where Vz0 = 0.32 ms−1 is the rise velocity of an isolated bubble formed on a single
capillary in the quasi-static bubbling regime, measured by Riboux et al. (2010). It is
remarkable that a single simple correlation is able to describe the evolution of the average
bubble velocity on a such large range of gas volume fraction (0.45 6 α 6 29.6%) along
which 〈Vz〉 is reduced by almost a factor of two (from 0.32 ms−1 to 0.17 ms−1).

It is important to stress that all empirical relations relating the properties of the gas
phase to the gas volume fraction that have been introduced above (eq. 3.1, 3.2, 3.3, 3.4,
3.5, 4.1, 4.3, 4.5) may depend on the particular system of gas injection used here and are
therefore not universal. However, they will be of great interest to analyse and discuss the
results of the present work in the following of this paper.
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3.2.2. Velocity fluctuations

Figure 8 shows the variances of the bubble velocity fluctuations. Let us first discuss the
variance of the velocity signal provided by the dual optical probe from this work (◦) for α
up to 30% and from Riboux et al. (2010) (∗) for α up to 12%. As noted by Riboux et al.

(2010), if the dual optical probe is an accurate technique to measure the average vertical
bubble velocity, it does not provide a reliable value of the variance of the bubble vertical
velocity. The reason comes from the fact that the considered bubbles are oblate spheroid
which move with oscillating velocity and orientation. The fluctuations that are recorded
by the dual probe are thus a complex combination of the fluctuations of the vertical
velocity, orientation and shape. For that reason, the measured variance is observed to
depend on the exact probe geometry. The values obtained by Riboux et al. (2010) with
a distance between the two fiber tips of 0.5 mm is indeed significantly larger than that
obtained in the present work with a fiber tip separation of 1 mm. However, the variance
provided by the dual optical probe can be used to characterize the evolution with the gas
volume fraction of the overall energy of agitation of the bubbles in the vertical direction.
It was already noticed that the bubble vertical agitation keep a constant value up to
gas volume fraction around 10% by Mart́ınez-Mercado et al. (2007) and Riboux et al.

(2010), which suggested that the energy of bubble agitation remains controlled by wake
instabilities. The present results seem to show that this result holds up to α = 30%.
In order to have a more complete description of the bubble agitation, we have also

determined the velocity variance of the horizontal and the vertical bubble velocity fluc-
tuations by particle tracking velocimetry based on images taken with a fixed focal lens.
As stated before, this imaging technique already used by Colombet et al. (2011) is lim-
ited to moderate volume fractions. The corresponding results are also plotted in figure 8
for α up to 16%. Both the horizontal and the vertical variances are found to be almost
constant, 〈v′z

2〉 ≈ 0.003m2 s−2 and 〈v′x
2〉 ≈ 0.0075m2 s−2, for α up to 10%. As shown

by Ellingsen & Risso (2001), the horizontal component of the fluctuant velocity of an
isolated bubble evolves as v′x = ωAxcos(ωt). For the present bubble size, Riboux (2007)
measured an angular frequency of ω =29 rad s−1 and a path amplitude Ax varying from
3.5 to 4.9 mm, which gives a variance 〈v′x

2〉 = (Axω)
2/2 from 0.005 to 0.01 m2s−2, in

agreement with the values found here at moderate volume fraction. When α is increased
beyond 10%, the vertical variance remains constant, while the horizontal one decreases
down to match the vertical value around α=12%. Such a decrease of the horizontal fluc-
tuation of the dispersed phase has already been reported in solid/liquid fluidized bed by
Aguilar Corona (2008) and Aguilar Corona et al. (2011). It may result from hindrance
effects on bubble paths when increasing α.

3.3. Bubble Reynolds, Eötvös and Weber numbers

In order to fully characterize the present flow regime, it is useful to consider the values
taken by the relevant dimensionless numbers in the range of volume fractions investigated.
These values can be either computed from the raw values of the measured dimensional
quantities or from the empirical fits proposed in the previous sections. In the follow-
ing figures, plots systematically represent raw data whereas lines corresponds to values
obtained from fitted data.

Figure 9a shows the Reynolds number, Re = 〈Vz〉〈d〉/νL. It first increases from 670
to 780 as α increases from 0 to 2.5% and then keeps a constant value as α is further
increased. The constance of the Reynolds number for α > 2.5% results from the fact
that the increase in the bubble diameter (fig. 5) is compensated by the decrease of the
rise velocity (fig. 7). A similar result was observed for a volume fraction up to 10% by
Mart́ınez-Mercado et al. (2007), who also used a bank of capillaries to inject the bubbles.
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This is an interesting property of this type of experimental setup, which allows to vary
the volume fraction while keeping constant the Reynolds number.

Figure 9b shows the Eötvös number: Eo = ∆ρg〈d〉2/σ. As expected from the evolution
of 〈d〉, it regularly increases from 0.5 to 3.2 as α varies from 0 to 30%.
Figure 10a presents the mean bubble aspect ratio, 〈χ〉, which is found to slightly de-

crease from 1.7 to 1.4. In the present regime, the bubble deformation is known to be con-
trolled by both the Weber number (Moore 1965) and the Morton number (Legendre et al.

2012). Here, since we are considering a single system of fluids with constant physical prop-
erties, the Morton number is constant: Mo = gν4Lρ

2

L∆ρ/σ3 = 2.5× 10−11. The measured
Weber number, We = ρL〈Vz〉2〈d〉/σ, is plotted in figure 10b. It is found to decrease
from about 3.25 down to 1.8. Since the Reynolds number is almost constant, the Weber
number turns out to be proportional to 〈Vz〉. The decrease of the average aspect ratio,
by approximately 30%, is of the same order as that of We, and both 〈χ〉 and We keep
an almost constant value for α > 15%. These results are in good agreement, within 14%,
with the relation proposed by Legendre et al. (2012) for a single bubble at low Morton
number:

χ =
1

1− 9

64
We

. (3.6)

3.4. Collective effect on bubble drag coefficient

We consider now the evolution of the bubble drag coefficient Cd with the gas volume
fraction in order to analyze the collective effect of the bubbles on their rise velocity. Cd

is determined from the balance between drag and buoyancy forces as

Cd =
4

3

∆ρ

ρL

g〈d〉
〈Vz〉2

, (3.7)

where g is the acceleration of gravity, the average equivalent diameter 〈d〉 is measured
from image processing and the average rise velocity 〈Vz〉 from the dual-tip optical probe.
The experimental results are shown in figure 11 (◦, •) as a function of the gas volume
fraction. Cd is observed to increase from 0.26 for α =0.45% and 〈d〉 ≈ 2.5 mm to 2.4 at
α =34% and 〈d〉 ≈ 5 mm.

In order to disentangle the effect of the bubble size to that of the gas volume fraction, it
is interesting to compare the present results with those obtained for single rising bubbles
of the same diameter. The drag coefficient Cd0

of a deformed single bubble at terminal
velocity is commonly estimated by (Tomiyama et al. 1998)

Cd0
=

8

3

Eo

c1 + c2 Eo
, (3.8)

with c1 = 4 and c2 = 1 according to Mendelson (1967), c1 = 4.28 and c2 = 1.02 according
to Comolet (1979), and c1 = 19/3 and c2 = 2/3 for Re > 600 with air/water systems
according to Dijkhuizen et al. (2010).
The corresponding values are represented by empty squares and triangles in figure 11.

Starting from similar values at low gas volume fractions, Cd and Cd0
quickly diverge as α

increases. In the present experiments, the increase of Cd turns out to mainly results from
hydrodynamic bubble interactions. The collective effect of bubbles is really important and
leads to a drag coefficient 2.4 times larger than that of an isolated bubble at α = 34%.

In the literature devoted to bubbly flows, numerous relations have been proposed to
describe the evolution of the drag coefficient with the gas volume fraction. Considering
air bubbles injected through a porous sparger in a column of 9.5-cm diameter filled with
a soapy water solution, Wallis (1961) estimated the average bubble rise velocity from the
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measurements of the gas volume fraction and the gas flow rate in the range 3 < α < 30 %.
His results lead to proposed the following correlation, for 3 < α < 30 %

Cd = Cd0
(1− α)−2, (3.9)

which was later used for one-dimensional gas-liquid modelling (Wallis 1969, p. 52). We
have computed Cd using relation (3.9) with Cd0

from Mendelson (1967). The correspond-
ing values are represented by a plain line in figure 11. They are in fairly good agreement
with the present measurements.

Applying a mixture viscosity model to their experimental results, Ishii & Chawla
(1979) (see Ishii & Zuber 1979) found the following correction to account for the effect
of the gas volume fraction on the bubble drag coefficient:

Cd =
Cd0

(1− α)

(

1 + 17.67 [f(α)]6/7

18.67 f(α)

)2

with f(α) = (1− α)1.5 . (3.10)

This relation is also reported in figure 11 (dashed-dotted line) by using the expression
proposed by Mendelson (1967) for Cd0

. It predicts an evolution of Cd that is close to
that of Wallis (1961) so that it is difficult to conclude which one is in the best agreement
with the present results.

Garnier et al. (2002) experimentally investigated an homogeneous air/water bubbly
flow in the presence of a co-current liquid flow for volume fractions up to 30% and
Reynolds numbers from 300 to 500. They results led to

Cd = Cd0

(

1− α1/3
)−2

. (3.11)

Using again the expression proposed by Mendelson (1967) for Cd0
, this relation (dotted

line in fig.11) is found to considerably over predict the effect of the gas volume fraction
upon the drag coefficient compared to the present results.

Roghair et al. (2011) performed numerical simulations of a bubble swarm in a periodic
cubic domain for 1 6 Eo 6 5, 4 × 10−12 6 Mo 6 2 × 10−9 and α 6 45%. From their
results, they proposed the following relation

Cd = Cd0

(

1 +
18

Eo
α

)

, (3.12)

where Cd0
is given by the relation proposed by Dijkhuizen et al. (2010). This relation

suggests that the collective effect of the bubbles on the drag coefficient may depend
on other parameters than the gas volume fraction, such as the Eötvös number. The
corresponding values of Cd are represented by a dashed line in figure 11. They are about
30% higher than the present experimental data, just at the limit of the measurement
uncertainty.

4. Mass transfer

In this section, the measured mass transfer coefficients and Sherwood numbers are first
presented as a function of the gas volume fraction. Then, they are compared to available
correlations for a single bubble rising in a liquid at rest. Finally, they are compared to
transfer rates expected in a highly turbulent flow. In figures 13, 14 and 15, errorbars
indicate the uncertainty related to the measurement of the interfacial area aI , the gas
volume fraction α, the bubble equivalent diameter 〈d〉 by considering an uncertainty of
±10% τ on the determination of the mass transfer time scale τ .
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4.1. Experimental results

The time evolutions of the oxygen concentration are presented in figure 12 for α = 1.46 %
(a), α = 15.1 % (b) and α = 26.9 % (c). In this figure, the time origin has not been
shifted by z/〈Vz〉 so that the signal of the upper probe is delayed compared to the first
one. The least squares method is used to fit each set of experimental data by eq. (2.11) in
order to obtain the transfer time scale τ . The corresponding fitting curves, represented
by lines in figure 12, describe accurately the experimental results, confirming that the
assumptions made about the probe response and the fact that the flow is well mixed are
fulfilled.

A total of 76 experimental runs have been conducted in the range of 0.7 6 α 6 29.6%.
The corresponding values of τ are reported in figure 13 together with the 29 values
measured by of Colombet et al. (2011) in the range from 0.45 6 α 6 16.5%. The time
necessary to reach the saturation is significantly affected by the void fraction since it
decreases of more than one order of magnitude between α = 1% and α = 30%. Such
a strong decreases is expected from the strong increase of the interfacial area with α
(fig. 6). As it is clearly visible in the log-log plot proposed in the insert of figure 12, the
experimental values of τ nicely follow a simple power law,

τ ≈ τ0 α
−0.8 with τ0 = 2.22 s . (4.1)

In order to analyze the collective effect of the bubbles on the mass transfer, we have
to consider the mass transfer coefficient by unit of area, kL. The experimental value of
kL is obtained from the measured values of τ , α and aI by

kL =
(1− α)

τ aI
. (4.2)

Combining relations (3.4) for aI and (4.1) for τ , the following simple empirical relation
is found for the mass transfer coefficient, for α > 2.3%

kL ≈ kL0
(1− α) with kL0

= 4.45× 10−4 ms−1 . (4.3)

Figure 14a shows the evolution of the experimental values of kL as a function of the
gas volume fraction. The decrease is considerably lower compared to that of τ , which
indicates that most of the evolution of the total rate of transfer results from the trivial
effect of the augmentation of the interfacial area and justifies the efforts made to obtain
an accurate determination of aI .
To go further in the analysis of the physical mechanism underlying the mass transfer,

we have to make dimensionless the rate of mass transfer by introducing the Sherwood
number

Sh =
kL 〈d〉
DL

, (4.4)

where DL is the diffusion coefficient of dissolved oxygen in water. Figure 14b shows the
evolution of the experimental Sherwood number as a function of α, which using empirical
fits Eq. 3.1-3.2, 4.3 and 4.4 can be described by the following empirical relation, for
α > 2.3%

Sh ≈ Sh0(1− α)(1 + 2.3α0.5) with Sh0 = 445 . (4.5)

The increase of 〈d〉 almost compensates the decrease of kL so that Sh turns out to
increase moderately with the gas volume fraction, its values remaining between 600 and
750 in the whole range of α investigated.
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The present results therefore suggest that the collective effect of the bubbles has a
relatively weak influence on the interfacial mass transfer considering the huge effect
observed on the transfer time scale τ . However, it is difficult to conclude from the sole
evolution of the Sherwood number since variations of bubble size, velocity and shape
are associated to variation of gas volume fractions. In next section, we will compare the
present results to those corresponding to a single bubble in the same flow regime and
with the same geometrical properties.

4.2. Comparison with a single bubble rising in a liquid at rest

In most studies of mass transfer in bubble columns, the rate of transfer is estimated by
using the Higbie’s penetration theory (Higbie 1935),

kL =
2√
π

√

DL

tc
, (4.6)

where tc is taken equal to 〈d〉 / 〈Vz〉. In fact this is equivalent to the analytical solution
obtained by (Boussinesq 1905) by considering that the flow around the bubble can be
approximated by the potential flow and a very thin concentration layer on the bubble

Sh =
2√
π
Pe1/2 , (4.7)

where Pe = 〈d〉 〈Vz〉 /DL is the Péclet number. This solution is thus valid in the limit of
large Re and Pe.

Various improvements have been proposed to account for the effect of bubble deforma-
tion or finite Reynolds number upon the mass transfer from a single bubble. Considering
the flow approximation of Moore (1963), Winnikow (1967) derived the following expres-
sion that includes the effect of the Reynolds number:

Sh =
2√
π

[

1− 2.89√
Re

]1/2

Pe1/2. (4.8)

Measuring the mass transfer of almost spherical millimeter-sized bubbles from volume
variations, Takemura & Yabe (1998) proposed the following relation,

Sh =
2√
π

[

1− 2

3

1

(1 + 0.09Re2/3)3/4

]1/2

(2.5 + Pe1/2) (4.9)

which was found to be in good agreement with both experiments and numerical simula-
tions at moderate Re numbers and large Pe.
Recently, considering numerical results from various previous works, Colombet et al.

(2013) proposed the following relation that is valid for a spherical bubble whatever the
value of Re and Pe,

Sh = 1 +

[

1 +

(

4

3π

)2/3

(2Pemax)
2/3

]3/4

, (4.10)

where Pemax is the Péclet number based on the maximal velocity Umax of the liquid at
the interface instead of the bubble velocity Vz, which is obtained from the correlation
proposed by Legendre (2007),

Umax

Vz
=

1

2

16 + 3.315Re1/2 + 3Re

16 + 3.315Re1/2 +Re
. (4.11)

When Pe tends to zero, relation (4.10) tends to the diffusive solution in the absence of
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flow (Sh = 2) while it tends towards the Boussinesq solution when Re and Pe become
very large.

The effect of the bubble deformation has been studied by Lochiel & Calderbank (1964),
who considered the potential flow around a spheroidal bubble. They proposed to correct
the Bousinesq expression by the introduction of a function f of the aspect ratio χ,

Sh(χ) =
2√
π
Pe1/2f(χ) . (4.12)

The validity of this solution has been recently discussed by Figueroa & Legendre (2010),
who proposed the following expression

f(χ) = 0.524 + 0.88χ− 0.49χ2 + 0.086χ3 , (4.13)

which is based on the results of direct numerical simulations, and proved to be valid for
500 < (χ/8)1/3Re < 1000, νL/DL > 100 and 1 6 χ 6 3.

The values of kL predicted by all these expressions derived for an isolated bubble are
reported in figure 14a while the corresponding values of Sh are reported in figure 14b.
Because the Reynolds number remains almost constant and the bubble shape does not
evolves so much in the present experiments, the predictions of all these correlations are
close to each others. Moreover, these predictions are all in agreement with the experi-
ments, considering the measurement uncertainty.

We can therefore conclude that the mass transfer in an homogeneous bubble swarm at
high Péclet number is almost independent of the gas volume fraction. It has been proved
to remain similar to that of a single bubble rising in a fluid at rest up to a volume fraction
of 30%. This conclusion is in agreement with the trends of the numerical simulations of
Roghair (2012).

4.3. Comparison with the interfacial transfer in highly turbulent flows

The bubbles generate strong velocity fluctuations in the liquid phase. It is thus inter-
esting to compare the rate of transfer measured here to that induced at a plane inter-
face by a turbulence of similar intensity. It has been shown that turbulent eddies can
enhance the mass transfer by causing the renewal of the liquid close to the interface
(Magnaudet & Calmet 2006). Considering that the timescale tc of renewal of the liquid

at the interface is proportional to (νL/〈ǫL〉)1/2, where ǫL is the rate of dissipation of the
turbulence, equation (4.6) gives

Sh = c1

(

d 〈ǫL〉1/4

ν
3/4
L

)

Sc1/2 , (4.14)

where Sc = νL/DL is the Schmidt number. Several values have been proposed for the
prefactor c1: 0.4 (Lamont & Scott 1970), 0.523 (Linek et al. 2004) or 2/

√
π (Kawase et al.

1987).
In an homogeneous bubbly flow, Riboux et al. (2010) showed that the rate of dissipa-

tion of the energy is given by

〈ǫL〉 ≈
∆ρ

ρL
α 〈Vz〉 g . (4.15)

According to (4.15), 〈ǫL〉 ranges from 0.02 to 0.5 m2s−3 for the range of gas volume
fraction considered here. The Sherwood numbers given by relation (4.14) are plotted in
figure 15. They are clearly not in agreement with the present measurements. Combining
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eqs. (4.15) and (4.14), it yields

Sh = c1
(

Eo3/Mo
)1/8

α1/4Re1/4Sc1/2 . (4.16)

The evolution of Sherwood number with the gas volume fraction predicted by this relation
(α1/4) is not compatible with the experimental result. Moreover, the predicted evolution

with the Reynolds number (Re1/4) is contradictory to the scaling of expected considering

the evolution for an isolated bubble (Re1/2).

This analysis confirms that the mass transfer in the bubble column is controlled by the
mass transfer around a single bubble in fluid at rest. The fact that the liquid agitation may
play a negligible role in the mass transfer at a bubble interface has already been noticed by
Alves et al. (2006), who investigated the case of a single bubble in a turbulent flow with
a dissipation rate of one order of magnitude smaller than in the present configuration.

5. Discussion

Hydrodynamic interactions between bubbles have a strong effect on the average bubble
rise velocity, which is found to decreases strongly when increasing the gas volume fraction.
The analysis of the interactions between two rising bubbles in a liquid at rest reveals op-
posite effects depending on the relative position of the bubbles. For two bubbles rising in
line, the drag force on the trailing bubble is diminished (Yuan & Prosperetti 1994; Harper
1997; Ruzicka 2000; Hallez & Legendre 2011), so that vertical interactions between bub-
bles should increase the average bubbles velocity in a bubble swarm. On the other hand,
the drag coefficient of two bubbles rising side by side is increased (Legendre et al. 2003;
Hallez & Legendre 2011), so that transversal interactions between bubbles should de-
crease the average bubble velocity. In a two-dimensional high-Reynolds-number swarm
of bubbles confined between two vertical plates (Bouche et al. 2012), vertical interactions
are predominant and both the average and the variance of the vertical bubble velocity
is observed to increase with the gas volume fraction. The main difference between this
configuration and the present one is that turbulence cannot develop because of the wall
friction. In a three-dimensional unconfined bubble swarm, hydrodynamic interactions be-
tween bubble wakes cause a strong attenuation of individual wakes (Risso et al. 2008).
The combination of the wake attenuation with the existence of an intense agitation of
both the bubbles and the liquid phase reduces considerably the vertical entrainment by
bubbles and explains why the hindering effect is predominant when the gas volume frac-
tion increases. More surprising is the weak influence of hydrodynamic interactions on the
variance of the vertical bubble agitation, which is observed to remain close to that of an
isolated bubble. Even if bubble path oscillations become erratic, the fluctuant energy of
their motion seems still controlled by wake instabilities.

The major finding of the present work is the absence of any significant collective
effect of the bubbles on the mass transfer up to volume fraction of 30%. This result
is not valid for any dispersed two-phase flow. Collective effect on the mass transfer
are known to exist for a long time (Ranz & Marshall 1952). In the 60’s and the 70’s,
many experimental works on mass (or heat) transfer in fixed or fluidized bed measured
an increase of the Sherwood (or Nusselt) number with the particle volume fraction αS

(Ranz & Marshall 1952; Rowe & Claxton 1965; Littman & Silva 1970; Turner & Otten
1973; Gunn & Souza 1974; Miyauchi et al. 1976; Gunn 1978). More recently, numerical
simulations have confirmed this trend: Massol (2004) for 0 6 Re 6 300, 0.72 6 ν/D 6 2,
and αS 6 60%, and Deen et al. (2012) for 36 6 Re 6 144, ν/D = 0.8 and αS = 30%,
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who found results in agreement with Gunn (1978). The point is therefore to understand
the absence of collective effect in homogenous bubbly flows.

First, let us discuss the mechanism of mass transfer for a single rising bubble. For
large Reynolds and Péclet numbers, Figueroa & Legendre (2010) showed that the mass
transfer mainly takes place across a thin diffusive layer located at the front part of the
bubble, where the flow is potential. The thickness δD of the concentration boundary layer
can be estimated from (Boussinesq 1905)

δD
d

≈
√
π

2
Pe−1/2 . (5.1)

In the present experiments, the Péclet number is around 3.5×105 and δD is of the order of
10−3 d (≈ 5µm). In order that the solution for a single bubble can apply, two conditions
must be fulfilled. First, the average flow in the close surrounding of each bubble have
to be similar to that of a isolated bubble. Second, liquid velocity fluctuations must not
penetrate within the concentration boundary layer. Experimental investigations of the
flow around a bubble immersed within an homogeneous bubble swarm (Risso & Ellingsen
2002; Roig & Larue de Tounemine 2007; Risso et al. 2008) have shown that the first con-
dition is satisfied; in particular, at high bubble Reynolds number, the flow in front of
the bubble is well described by the potential solution for a single bubble. The second
condition requires that both the distance δx between the interfaces of neighbour bubbles
and the size of the smallest turbulent eddies ηK are large compare to the thickness δD
of the concentration boundary layer.

If bubbles were arranged on a periodic face-centred cubic network, the minimum dis-
tance between two bubble interfaces is given by

δx
d

=

(

1√
2

(

2π

3α

)1/3

− 1

)

, (5.2)

which gives δx ≈ 0.35 d ≈ 1.6 mm for α = 30%.
As suggested by Riboux et al. (2010), the Kolmogorov microscale of the bubble-induced

turbulence, which corresponds to the size of the smallest turbulent eddies, can be roughly
estimated by

ηK =

(

ν3L
〈ǫL〉

)1/4

, (5.3)

where the average dissipation rate 〈ǫL〉 is determined from (4.15) and gives ηK ≈ 10−2 d ≈
50µm for α = 30%. Both δx and ηK are therefore much larger than δD and the second
condition is satisfied.

With a Péclet number of 1070, the results of Roghair (2012) did not show any collective
effect. However, in the cases considered by Massol (2004) (Pe = 600) and Deen et al.

(2012) (Pe = 115), the mass transfer was observed to depend on the volume fraction of
the dispersed phase. This confirms that a large enough Péclet number is necessary so
that the mass transfer is not influenced by hydrodynamic interactions.

6. Concluding remarks

Thanks to an original method of imaging using a telecentric lens and a dual optical
probe, the properties of the gas phase have been measured in an homogenous swarm of
bubble up to a volume fraction of 30%. In particular, the bubble deformation is found in
good agreement with the correlation proposed by Legendre et al. (2012) for a single bub-
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ble. Also, the average bubble velocity is observed to strongly decreases with α and found
in agreement with the correlations of Wallis (1961) and Ishii & Chawla (1979). Even if
some open questions remain concerning the physical mechanism responsible for the in-
crease of the drag coefficient, available correlations are reliable to predict the deformation
and the average bubble rise velocity in an homogenous bubble swarm at large Reynolds
number. The bubble fluctuating velocity has also been characterized. Surprisingly, no
significant influence of the gas volume fraction on the variance measured by means of
the dual optical probe was observed. Hydrodynamic interactions between bubbles make
the bubble path oscillations to become irregular, but they do not seem to modify the
overall amount of fluctuating energy, which remains controlled by the instability of the
wake behind each bubble.

The total mass transfer of oxygen from the bubbles to the liquid has been measured
by means of the gassing-out method. Thanks to the determination of the total interfacial
area by imaging, the mass transfer rate by unit of area and the Sherwood number have
been obtained. Remarkably, the Sherwood number is found very close to that of a single
bubble rising at same velocity. The reason lies in the fact that the mass flux occurs in
a very thin layer located in front of the bubble. Owing to the large value of the Péclet
number (> 105), the distance between the interfaces of the bubbles and the smallest
turbulent eddies are much larger than the thickness of the concentration boundary layer.
Consequently, the flow within this layer is not affected by the presence of the other
bubbles. Moreover, the mixing generated by the bubble-induced agitation of the liquid
ensures that the dissolved oxygen is homogeneous everywhere out of this layer. For the
mass transfer the conditions are therefore equivalent to those of a single bubble rising
in a fluid at rest and at uniform concentration. Correlations for the Sherwood number
established for single rising bubbles are therefore relevant to predict the mass transfer
in an homogenous bubble column up to a volume fraction of 30%, provided the bubble
Reynolds and Péclet numbers are large enough. This conclusion is consistent with the
results obtained experimentally for a similar system by Colombet et al. (2011) for gas
volume fractions lower than 17% and with the numerical simulations of Roghair (2012)
for a Péclet number around one thousand. Results obtained at lower Péclet number in
fluidized beds however showed an increase of the Sherwood number compared to that
of a single particle. There is probably a lower limit below which mass transfer in a
dispersed two-phase flow depends on the volume fraction. The determination of this
limit, which probably depends on parameters such as the nature of the dispersed phase
or the Reynolds number, requires further investigations.
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industrielles. PhD thesis, Toulouse University.

Colombet, D., Legendre, D., Cockx, A. & Guiraud, P. 2013 Mass or heat transfer inside
a spherical gas bubble at low to moderate reynolds number. Int. J. Heat Mass Transfer
67, 1096–1105.

Colombet, D., Legendre, D., Cockx, A., Guiraud, P., Risso, F., Daniel, C. & Galinat,
S. 2011 Experimental study of mass transfer in a dense bubble swarm. Chem. Eng. Sci.
66, 3432–3440.

Comolet, R. 1979 Sur le mouvement d’une bulle de gaz dans un liquide. Houille Blanche 1,
31–42.

Darmana, D., Deen, N. G. & Kuipers, J. A. M. 2005 Detailed modeling of hydrodynamics,
mass transfer and chemical reactions in a bubble column using a discrete bubble model.
Chem. Eng. Sci. 60, 3383 – 3404.

Deen, N. G., Kriebitzsch, S. H. L., van der Hoef, M. A. & Kuipers, J. A. M. 2012 Direct
numerical simulation of flow and heat transfer in dense fluid-particle systems. Chem. Eng.
Sci. 81, 329–344.

Dijkhuizen, W., Roghair, I., Van Sint Annaland, M. & Kuipers, J. A. M. 2010 Dns of
gas bubbles behaviour using an improved 3d front tracking model-drag force on isolated
bubbles and comparison with experiments. Chem. Eng. Sci. 65 (4), 1415–1426.

Duhar, G. & Colin, C. 2006 Dynamics of bubble growth and detachment in a viscous shear
flow. Phys. Fluids 18 (077101).

Ellingsen, K. & Risso, F. 2001 On the rise of an ellipsoidal bubble in water: oscillatory paths
and liquid-induced velocity. J. Fluid Mech. 440, 235–268.

Fayolle, Y., Cockx, A., Gillot, S., Roustan, M. & Heduit, A. 2007 Oxygen transfer
prediction in aeration tanks using cfd. Chem. Eng. Sci. 62, 7163–7171.



20 D. Colombet, D. Legendre, F. Risso, A. Cockx and P. Guiraud

Figueroa, B. & Legendre, D. 2010 Mass or heat transfer from spheroidal gas bubbles rising
through a stationary liquid. Chem. Eng. Sci. 65, 6296 – 6309.

Gaddis, E. S. & Vogelpohl, A. 1986 Bubble formation in quiescent liquids under constant
flow conditions. Chem. Eng. Sci. 41, 97–105.
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ρL 998.2 kgm−3

µL 1.0038 10−3 Pa s
ρG 1.2 kgm−3

µG 18 10−6 Pa s
σ 73 10−3 N m−1

DL 2.1 10−9 m2 s−1

He 4.05 109 Pa
P sat 2337 Pa
MH2O 18.015 10−3 kgmol−1

MO2
32 10−3 kgmol−1

xG0

O2
20.9% –

Table 1. System properties at T = 20 ◦C and P = 101 325 Pa.

α H lower probe upper probe
(%) (cm) (cm) (cm)

α < 11 76 14.0 69.5
11 6 α < 21 64.2 14.0 55.0
21 6 α < 31 35.2 5.8 34.8
31 6 α < 32 29.5 – –

α > 32 19.4 – –

Table 2. Liquid height H at α = 0 and elevation of the oxygen probes above capillaries tips.
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Figure 1. (a) Experimental installation and (b) imaging set-up.
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Figure 2. (Colour online) Typical images of the bubble swarm with detected bubble contour
marked by a red line:(a) α = 12.2%, (b) α = 23.9%, (c) α = 30.6%, (d) α = 33.9%.
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Figure 3. Signals from the optical probes. Symbols: raw signal from first (+) and second (×)
probe. Line: binarized signals ( ).
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Figure 4. Superficial gas velocity from gas volume fraction and bubble average rising velocity
measured by the dual-tip optical probe JG = α × 〈Vz〉 versus superficial gas velocity from
measured gas flow rate JG = QG/S.
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Figure 5. Average bubble equivalent diameter as a function of the gas volume fraction. • image
processing with a telecentric lens; ◦ image processing with a fixed focal lens by Colombet et al.
(2011); × dual-tip optical probe measurements from average bubble chords (Eq. 2.5); − −
equation 3.1; — equation 3.2; −.− dynamic bubble formation model of Gaddis & Vogelpohl
(1986). Insert: log-log representation of (〈d〉 − d0)/d0 versus α.
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Figure 6. Interfacial area (Eq. 2.7) versus gas volume fraction: • this work; ◦ from
Colombet et al. (2011); −− equation 3.3; — equation 3.4.
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Figure 7. Average bubble velocity against the gas volume fraction. Dual-tip optical probe
measurements from this work (•), Colombet et al. (2011) (◦), Riboux et al. (2010) (∗). Particule
Tracking Velocimetry by image processing from Colombet et al. (2011) (�). — equation (3.5).
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Figure 8. Variances of bubble velocity against gas volume fraction. Variance obtained from the
dual optical probe in this work (◦) and by Riboux et al. (2010) (∗). Variances of the vertical
velocity (�) and the horizontal velocity (�) measured in this work from particle tracking
on images taken with a fixed focal lens.
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Figure 9. (a) Bubble Reynolds number (Re = 〈Vz〉〈d〉/νL) and (b) Eötvös number
(Eo = ∆ρ g 〈d〉2/σ) versus gas volume fraction: ◦ method using a fixed focal lens; • method
using a telecentric lens; N result for a single bubble from Riboux et al. (2010); — Reynolds
number determined form fitted data (eqs. 3.1, 3.2 and 3.5); −− Eötvös number determined
form fitted data (eqs. 3.1 and 3.2).
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Figure 10. (a) Bubble average aspect ratio and (b) Weber number (We = ρL〈Vz〉2〈d〉/σ)
versus gas volume fraction: ◦ method using a fixed focal lens; • method using a telecentric lens;
N result for a single bubble from Riboux et al. (2010); — aspect ratio estimated from Eq. 3.6
(Legendre et al. 2012); −− Weber number determined form fitted data (eqs. 3.1, 3.2 and 3.5).
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Figure 11. Experimental drag coefficient (Eq. 3.7) against gas volume fraction: • method using
a fixed focal lens; • method using a telecentric lens. Drag coefficient for a single bubble of same
equivalent diameter rising at its terminal velocity (Eq. 3.8): � Mendelson (1967); ▽ Comolet
(1979); △ Dijkhuizen et al. (2010). Drag coefficient accounting for the collective effect
of the bubbles: — Wallis (1961) (Eq. 3.9); −.− Ishii & Chawla (1979) (Eq. 3.10); ...
Garnier et al. (2002) (Eq. 3.11); −− Roghair et al. (2011) (Eq. 3.12).
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Figure 12. Typical measured time evolutions of the concentration of dissolved oxygen. (a)
α = 1.46%, (b) α = 15.1% and (c) α = 26.9%: • lower probe and ◦ upper probe. −− and —
equation (2.11) (Color online).
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Figure 13. Time scale of the mass transfer versus the gas volume fraction: � lower probe and
△ upper probe; ◦ Colombet et al. (2011) (using a single oxygen probe); — experimental
fit (eq. 4.1). Insert: log-log representation.
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Figure 14. Mass transfer coefficient (a) and Sherwood number (b) versus gas volume fraction.
Experiments: � this work (average values) and ◦ Colombet et al. (2011), empirical fits (eq.
4.3 and 4.5). Predictions for an isolated bubble: N single bubble (eqs. 4.12-4.13 with the
parameters measured for an isolated bubble detached from a single capillary); –.– eq.
(4.7) (Boussinesq 1905); ... eq. (4.8) (Winnikow 1967); −− eq. (4.9) (Takemura & Yabe
1998); — eq. (4.10) (Colombet et al. 2013); eqs. (4.12-4.13) (Figueroa & Legendre
2010).
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Figure 15. Comparison of the measured Sherwood number with mass transfer models for
turbulent flows. Present experiments: same legend than in Fig. 14; Eqs. (4.14) and (4.15)
with — c1 = 2/

√
π (Kawase et al. 1987), −− c1 = 0.523 (Linek et al. 2004), −.− c1 = 0.4

(Lamont & Scott 1970).
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