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PREDICTION OF WEAKLY LOCALLY STATIONARY PROCESSES BY
AUTO-REGRESSION

FRANCOIS ROUEFF AND ANDRES SANCHEZ-PEREZ

AssTrACT. In this contribution we introduce weakly locally stationary time series through
the local approximation of the non-stationary covariance structure by a stationary one.
This allows us to define autoregression coefficients in a non-stationary context, which, in
the particular case of a locally stationary Time Varying Autoregressive (TVAR) process,
coincide with the generating coefficients. We provide and study an estimator of the time
varying autoregression coefficients in a general setting. The proposed estimator of these
coeflicients enjoys an optimal minimax convergence rate under limited smoothness condi-
tions. In a second step, using a bias reduction technique, we derive a minimax-rate estima-
tor for arbitrarily smooth time-evolving coefficients, which outperforms the previous one
for large data sets. In turn, for TVAR processes, the predictor derived from the estimator
exhibits an optimal minimax prediction rate.

1. INTRODUCTION

In many applications, one is interested in predicting the next values of an observed time
series. It is the case in various areas like finance (stock market, volatility on prices), social
sciences (population studies), epidemiology, meteorology and network systems (Internet
traffic). Autoregressive processes have been used successfully in a stationary context for
several decades. On the other hand, in a context where the number of observations can be
very large, the usual stationarity assumption has to be weakened to take into account some
smooth evolution of the environment.

Several prediction methods developed in signal processing are well known to adapt to
a changing environment. This is the case of the wide spread recursive least square algo-
rithms. The initial goal of these methods is to provide an online procedure for estimating a
regression vector with low numerical cost. Such methods usually rely on a forgetting factor
or a gradient step size y and they can be shown to be consistent in a stationary environment
when y decreases adequately to zero (see e.g. Duflo (1997)). Even when the environment is
changing, that is, when the regression parameter evolves along the time, a “small enough”
v often yields a good tracking of the evolving regression parameter. In order to have a
sound and comprehensive understanding of this phenomenon, an interesting approach is to
consider a local stationarity assumption, as successfully initiated in Dahlhaus (1996b) by
relying on a non-stationary spectral representation introduced in Priestley (1965); see also
Dahlhaus (2012) and the references therein for a recent overview. The basic idea is to pro-
vide an asymptotic analysis for the statistical inference of non-stationary time series such as
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time varying autoregressive (TVAR) processes using local stationary approximations. The
analysis of the Normalized Least Mean Squares (NLMS) algorithm for tracking a changing
autoregression parameter in this framework is tackled in Moulines et al. (2005). Such an
analysis is based on the usual tools of non-parametric statistics. The TVAR parameter 6 is
seen as the regular samples of a smooth R?-valued function. An in-fill asymptotic allows
one to derive the rates of convergence of the NLMS estimator for estimating this function
within particular smoothness classes of functions. As shown in Moulines et al. (2005),
it turns out that the NLMS algorithm provides an optimal minimax rate estimator of the
TVAR parameter with Holder smoothness index 8 € (0, 1]. However it is no longer optimal
for 8 > 1, that is, when the TVAR parameter is smoother than a continuously differentiable
function. An improvement of the NLMS is proposed in Moulines et al. (2005) to cope
with the case 8 € (0,2] but, to the best of our knowledge, there is no available method
neither for the § minimax-rate estimation nor for the minimax-rate prediction when 8 > 2,
that is when the TVAR parameter is smoother than a two-times continuously differentiable
function.

In the present work, our main contribution is twofold. First we extend the concept
of time-varying linear prediction coefficients to a general class of weakly locally station-
ary processes, which includes the class of locally stationary processes as introduced in
Dahlhaus (1996b). In the specific case of a TVAR process, these coeflicients correspond to
the time-varying autoregression parameters. Second, we show that the tapered Yule-Walker
estimator introduced in Dahlhaus and Giraitis (1998) for TVAR processes also applies to
this general class and is minimax-rate for Holder indices up to 8 = 1 for asymmetric tapers
and up to B = 2 for symmetric ones. Moreover, by applying a bias reduction technique,
we derive a new estimator which is minimax-rate for any arbitrarily large Holder index
B. By achieving this goal, we provide a theoretically justified construction of predictors
that can be chosen optimally, depending on how smoothly the time varying spectral den-
sity evolves along the time. On the other hand, in practical situations, one may not have
a clear view on the value of the smoothness index 8 and one should rely on data driven
methods that are therefore called adaptive. This problem was recently tackled in Giraud
et al. (2015) . More precisely, using aggregation techniques introduced in the context of
individual sequences prediction (see e.g. Cesa-Bianchi and Lugosi (2006)) and statistical
learning (see e.g. Barron (1987)), one can aggregate sufficiently many predictors in order
to build a minimax predictor which adapts to the unknown smoothness 3 of the time vary-
ing parameter of a TVAR process. However, a crucial requirement in Giraud et al. (2015)
is to rely on B-minimax-rate sequences of predictors for any 8 > 0. Our main contribution
here is to fill this gap, hence achieving to solve the problem of the adaptive minimax-rate
linear forecasting of locally stationary TVAR processes with coefficients of any (unknown,
arbitrarily large) Holder smoothness index.

The paper is organized as follows. In Section 2, we introduce a definition of weakly
locally stationary time series, the regression problem investigated in this work in relation
with the practical prediction problem, and the tapered Yule-Walker estimator under study.
General results on this estimator are presented in Section 3 and a minimax rate estimator
is derived. The particular case of TVAR processes is treated in Section 4. Numerical
experiments illustrating these results can be found in Section 5. Postponed proofs and
useful lemmas are provided in the appendices.
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2. GENERAL SETTING

In the following, non-random vectors and sequences are denoted using boldface sym-
bols, |[x|| denotes the Euclidean norm of x, ||x|| = (Zilxilz)l/z, and ||x||; its €; norm,
IIxll; = >;lxl. If f is a function, ||fllo = sup,|f(x)| corresponds to its sup norm. If A
is a matrix, ||A|| denotes its spectral norm, ||A|| = sup{||Ax]|, ||x]| < 1}. We moreover denote

'(N) = (x e R st |lxll; < oo} and £L(N) = {x e RY s.t. [|x]|; < oo} .

2.1. Main definitions. We consider a doubly indexed time series (X, )z ren:. Here ¢
refers to a discrete time index and 7 is an additional index indicating the sharpness of the
local approximation of the time series (X; 7).z by a stationary one. Coarsely speaking,
(X:.1)rez.Ten- 1s considered to be weakly locally stationary if, for T large, given a set St of
sample indices such that t/T = u over ¢t € S, the sample (X; 7)s, can be approximately
viewed as the sample of a weakly stationary time series depending on the rescaled location
u. Note that u is a continuous time parameter, sometimes referred to as the rescaled time
index. Following Dahlhaus (1996b), T is usually interpreted as the number of available
observations, in which case all the definitions are restrictedto 1 < ¢t < T and u € [0, 1].
However this is not essential in our mathematical derivations and it is more convenient to
set t € Z and u € R for presenting our setting.

We use the following class of functions. For @ € (0, 1] the a—Hodlder semi-norm of a
function f : R — C? is defined by

IIECs) — £COII

O<ls-s'|<1 |s =57

|f|<r,0 =

This semi-norm is used to build a norm for any 8 > 0 as it follows. Let k € N and @ € (0, 1]
be such that 8 = k + a. If f is k times differentiable on R, we define

ifs = [£©] , + max [[f)]| . .

@0 0<s<k

and [f|g = oo otherwise. For R > 0 and 8 > 0, the (8, R)— Holder ball of dimension d is
denoted by

Ad(B.R) = {f : R —> C, such that [fl; <R} .

We first introduce definitions for the time varying covariance and the local covariance
functions.

Definition 2.1 (Time varying covariance function). Let (X;7)cz ren+ be an array of random
variables with finite variances. The local time varying covariance function y* is defined for
allte€ Z, T e N"and € € Z as

Y (@ T,¢) =cov (Xt,T’ Xr—(,’,T) . 2.1)

Definition 2.2 (Local covariance function and local spectral density). A local spectral
density f is a R? — R, function, (27r)-periodic and locally integrable with respect to the
second variable. The local covariance function y associated with the local spectral density
f is defined on R X Z by

y(u,t) = f e f (u,)dA . (2.2)

In (2.2), the variable u should be seen as rescaled time index (in R), £ as a (non-rescaled)
time index and A as a frequency (in [-x, ]). Recall that, by the Herglotz theorem (see
Brockwell and Davis (2002, Theorem 4.3.1)), Equation (2.2) guaranties that for any u € R,
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(y (4, €))7 1s indeed the autocovariance function of a stationary time series. Now, we can
state the definition of weakly locally stationary processes that we use here.

Definition 2.3 (Weakly locally stationary processes). Let (X;7).zr>r, be an array of
random variables with finite variances and Ty,8,R > 0. We say that (X;7)wezr>7, 18
(B8, R)-weakly locally stationary with local spectral density f if, for all 1 € R, we have
f(G, ) € Ai(B,R), and the time varying covariance function y* of (X, 1)z r>1, and the
local covariance function y associated with f satisfy, forall t € Zand T > Ty,

¢t .
VLT, 0 —y (7, 5)‘ < RT-™n(1H) 2.3)

Let us give some examples fulfilling this definition.

Example 1. Locally stationary processes were introduced in a general fashion by Dahlhaus
(1996b) using the spectral representation

xf=fe“£ﬂ@amx (2.4)
where £(dA) is the spectral representation of a white noise and (A?’T),EZ!TeN* is a collection
of transfer functions such that there exist a constant K and a (unique) 27— periodic function
A:RXR — Cwith A(u,—A) = A(u, ) such that forall T > 1,

K

<= 2.5)

40, (/l)—A(%,/l)

sup
1€Z,AeER

Provided adequate smoothness assumptions on the time varying transfer function A, this
class of locally stationary processes satisfies Definition 2.3 (see Dahlhaus (1996a, Sec-
tion 1)) for some 8 > 1 and f(u, 1) = |A(u, /l)|2. The case 8 € (0, 1] can be obtained by
raising 7 to the power 8 in (2.5).

Example 2 (Time-varying Causal Bernoulli Shift (TVCBS)). Let ¢ : R x RN — R. Con-
sider, for all T > 1 and 7 € Z, a mapping ¢ : R" — R defining the random variables

Xor = @) (E-idis0) (2.6)

where (&;);ez are i.i.d. We assume that ]E[|§-‘0|2’] < oo for some r > 1 and that there exist
B, K > 0and (Wp)is0 € é’}r(N), such that, forall T > 1,7 € Z, u,u’ € R and x € RY,

ety @] < K(l + Zlﬁk |xk|] ; (2.7
k=0
Gor (x)—so(%,x)’ < KT mntA [1 +kz:;¢/k |xk|] , (2.8)

It is easy to see that (X, 7).z 57, Satisfies (2.3) with a constant R only depending on
K, B, Wi)renw and E[|§o|2”], and with local covariance function y(u, -) defined as the co-
variance function of the stationary causal Bernoulli shift process (X;(u)),cz defined by
Xi(u) = @(u, ((€-ir=0). To obtain that (X;7)ez7>7, 18 (8, R)-weakly locally stationary,
it thus only remains to check that (X,(u)),cz admits a spectral density f(u,-) and that the
resulting local spectral density satisfies f(:,1) € A;(B,R) for all 1 € R.

Example 3 (TVAR(p) model). Under suitable assumptions, the TVAR process is a par-
ticular case both of Example | (see Dahlhaus (1996b, Theorem 2.3)) and Example 2 (see
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Section 4). It is defined as the (unique) stable solution of the recursive equation

P
t t

X1 = ;@(T)Xz—j,r + 0'(7)5: ) (2.9)

where @ = [6; ... 6,]' : R — R” are the time varying autoregressive coeflicients and (¢/)rez

are i.i.d. centred and with variance 1. This example is detailed in Section 4.

2.2. Statement of the problem. Consider a weakly locally stationary (X; r):ez.r>7,, Which
we assume to have mean zero for convenience. Let d € N*. Foreacht = 1,...,T, define
the prediction vector of order d by

J 2
0, = argmin E||X;7 — Z Ok Xiek
' 6=[0; ... 041 €Rd =
= argminE[(X,r - 0'X,17)°] , (2.10)
GeRd
where A’ denotes the transpose of matrix A and X, 7 = [Xs7 ... Xs—@a-1 7]’
Let I'; ;. be the time varying covariances matrix F;"T =Wye-i,T,j-i);i,j=1,...,d)

where y*’ is the time varying covariance function as defined in (2.1). Provided that I is
non-singular, the solution of (2.10) is given by

5 st -1 %
00 =(Tir) 7ir - 2.11)
where Yir = @7, ... y@T, d)I". Analogously to (2.11), and with the aim of
approximating the local solution of the stationary Yule-Walker equations, we set

0, = T)'vu, (2.12)
where y, = [y(u,1) ... y(u,d)]’, T, is the covariances matrix [, = (y(u,i — j); i,j =
1,...,d) and v is the local covariance function as defined in (2.2). To ensure the above

matrices to be non-singular, we assume a lower bound on the local spectral density, yielding

the main assumption used on the model which depends on some positive constants 3, R and

/- and on a local spectral density f.

(M-1) The sequence (X, 1)<z 71, IS @ (B8, R)—weakly locally stationary process with

local spectral density f in the sense of Definition 2.3. Assume moreover that
the spectral density f satisfies f(u, 1) > f_ for all u, 1 € R.

The following lemma allows us to control the error of the approximation of the optimal lin-

ear prediction coeflicients ;. by the local ones 6,7 Its proof is postponed to appendix B. 1

for convenience.

Lemma 2.4. Letd € N*, > 0,R > 0 and f- > 0. Suppose that Assumption (M-1) holds.
Then, there exist two constants C1, Ty > 0 depending only on d, B, R and f- such that, for
allte Zand T > T,

657 = 6r|| < €1 T~ ™A (2.13)

An estimator 6 of @ is studied in Dahlhaus and Giraitis (1998) for the model of Exam-
ple 1. In the following we improve these results by deriving minimax rate properties of the
estimator of Dahlhaus and Giraitis (1998) and extensions of it in a more general setting.

In the following, the problem that we are interested is to derive a minimax rate estimator
0 ata given smoothness index 8 > 0, which means that, for such a §, the estimation
risk, say the quadratic risk E[||F0V,,T - HzT||2], can be bounded uniformly over all processes
satisfying (M-1) (among with additional assumptions), and that the corresponding rate of
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convergence as T — co cannot be improved by any other estimator. The case § < 2 is
solved in Moulines et al. (2005) for the subclass of TVAR models.

2.3. Minimax estimation for adaptive prediction. Let 5(\; .7 denote the best linear pre-
dictor of order d of X, r, which as a consequence of (2.10), reads

—_ ’
* _ *
Xd,z,T - (at,T) Xt*l,T >

We denote by )?:‘T the best predictor of X, r given its past, that is, the conditional expecta-
tion

Xip=E[X7|Xor. s<t-1]. (2.14)

As explained before, the goal of this paper is to derive estimators, say 5,,7 e RY, of 0,7,
which is a local approximation of 6} .. In this section, we assume that 6, 7 is a function of

the past X;r, s < t— 1. Then Z)ZTX,_LT is a legitimate predictor of X, 7 and we have the
following decomposition of the corresponding prediction quadratic risk

B|(Xur = FrXerr) | = B|(Xur = Xp )| + B| @ X - XY

The first term is the minimal prediction error that one would achieve with the conditional
expectation (which requires the true distribution of the whole process). Furthermore, in-
serting 5(\2,:,7 = (0;‘1)/ X;_1.r and using the Minkowskii and Cauchy-Schwartz inequalities,
the square root of the second term can be bounded as

— - 1/2 - - 1/2
(B|@Xar =XV |) = (B] (Rir - X))

’ (E [”X’—LTW])IM (E[ |4])1/4 ‘

The first term in the upper bound is due to the approximation of the best predictor by the
best linear predictor of order d and can only be improved by increasing d. Note that, in the
case of the TVAR(p) model with p < d, this error term vanishes. The quantity E[||X,_; 7||*]
is typically bounded by a constant independent of (¢, T') over the class of processes under
consideration. Hence, for a given d, the control of the prediction risk boils down to the
control of the estimation risk E[II@,T - HzT||4].

To do so, we can further decompose the loss as

*
0T,T - or,T

" 1k
at,T - 0t,T

|<

0,7 - Ht/rH + |67 - 67| - (2.15)

Note that the second term is a deterministic error basically accounting for the approxi-
mation precision of the non-stationary model by a stationary one, a bound of which is
provided in Lemma 2.4 stated above.

As aresult of the successive error developments above, our efforts in the following focus
on controlling the estimation risk E[IIE,T - 0,/T||4] uniformly over a class of weakly locally
stationary processes with given smoothness index 8 > 0.

2.4. Tapered Yule-Walker estimate. Following Dahlhaus and Giraitis (1998), a local
empirical covariance function is defined as follows. It relies on a real data taper function &
and a bandwidth M which may depend on T'.



PREDICTION OF WEAKLY LOCALLY STATIONARY PROCESSES 7

Definition 2.5 (Local empirical covariance function). Consider a function 4 : [0,1] = R
and M € 2N*, The empirical local covariance function yr 5, with taper 4 is defined in R X Z
as

M
— 1 t t
vrm U, t) = i Z h(Ml)h(M)X|_L¢Tj+zl—M/2,TX|_uTJ+t2—M/2,T ,

t,6=1

t—th=C
where Hy = YL, W2(k/M) ~ M fol h*(x)dx is the normalizing factor. If Hy = 0, we set
Yr.u (u, €) = 0, by convention.

For h = 1 in Definition 2.5 we obtain the classical covariance estimate for a centred
sample {X;, |uT |-M/2 < s < |uT |+{+ M/2}. For any d > 1, based on the local empirical
covariance function Y7y, the d-order local empirical Yule-Walker prediction coefficients
are then defined as

0,0 (M) = TitpPurm s (2.16)

where Y, rm = [yrm(@/T, 1) ... Yrmu(/T,d)Y, FLT,M is the matrix of empirical covari-
ances ’l:,,T,M = (yrm@/T,i = j); i,j = 1,...,d). The only way ’l:,,T,M can be singular
is when Y7 (¢/T,€) = 0 for all £ € Z (see Lemma A.5), in which case we just set
b\,j (M) := 0. Hence @,T (M) is always well defined and always satisfies the following
(see again Lemma A.5 for the bound)

Tormbr (M) =%rm, and |67 (M)|| <29 -1. (2.17)

Using this trick, we do not find it necessary to add additional assumptions on the model
to guarantee that I'; 7 s is non-singular a.s., as done for instance in Dahlhaus and Giraitis
(1998), where P(X;7 = 0) = 0 for all # € Z is assumed.

3. MAIN RESULTS IN THE GENERAL FRAMEWORK

3.1. Additional notation and assumptions. For convenience, we introduce the following
notation. Let p > 0, ¢g,r,s € N*, u be a probability distribution on R, u : R — R,
a,b:R" — R, ¢ € R? and a collection of random matrices {Uj; € R™*, M € N*}. We write
(1) Unm = O (u(M)) if there exists C,, > 0, depending continuously and at most on

(p, ¢’), such that for all M € N*
max  (B[|Uu|"])"” < Cpelumn 3.1)

1<i<r1<j<s
where Uy, j is the (7, j)-th entry of the matrix Uy,.

(i) Uy = Opey.c (M) if Uy = Opp m,, (u(M)) for all p € [1, o0), where m,, is a con-
stant only depending on the absolute moments of the distribution y, f |x|7 p(dx),
qg=>1

(iii) a(x) = O.(b(x)) if and only if there exists a constant C, depending continuously
and at most on the index ¢, such that for all x € R”

la(x)] < Cclb(x)| .

Concerning the function & we have the following assumption.
(H) The function 4 : [0, 1] — R is piecewise continuously differentiable, that is, for
O=uy<u; <...<uy=1,hisC" on (ui_j,u;],i =1,...,N. Moreover we as-
1
sume [ h? = 1, [lhlles = Sup,efo 1y A(w)] < co and [ [le = MaX<isy SUP e, , 4 I (W] <
Q.
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Provided a piecewise continuously differentiable funtion # (as in (H)) and a local spec-
tral density function f continuously differentiable on its first argument, we also consider
the following assumption, which depends on a constant C > 0 and on a probability distri-
bution i on R.

(C) Forall ¢ € Z and h satisfying (H), we have, forallt € Zand T > T,
Ve U, €) = E [yrm (, O] = Ore . ihlle i le.C (M_]/z) .

Assumption (C) amounts to say that the tapered empirical covariance estimator yr s from
a sample of length M satisfies a standard deviation rate M~/ in all L9-norms. Locally
stationary processes of Example | satisfy it under suitable assumptions (see Dahlhaus and
Giraitis (1998, Eq. (4.4) in Theorem 4.1)). We conclude this section with a result that can
be used for processes of Example 2.

Theorem 3.1. Let (X, 1)z r>1, be an array of random variables defined as in (2.6) where
(&)ez are iid. satisfying E[|&)?] < oo for all ¢ > 1 and ‘P?,T satisfies (2.7) for some

Wiken € fl(N), K > 0 and r > 1. Assume moreover that there exist ky € N, ({i)ren €
L (N) such that for allt € Z, T > Ty and all x,x’ € RY satisfying x; = x; for 1 < k < ko,

r—1
<K (Z Sl Xk — x,’<0+k|] (1 + Z Wi xe| + |x;(|)] . (3.2)

k=0 k>0

|07 () — @07 (x)

Suppose moreover that
Z ki < oo . (3.3)
k>0
Then there exists a constant C only depending on r, K, ko, (Wi )ren, ({x)ren and the distribu-
tion of & such that (C) holds.

The proof is postponed to Appendix C.1.

3.2. Bound of the estimation risk. Our | first result on the estimation risk is a uniform
approximation for the estimation error of 6, 7(M).

Theorem 3.2. Suppose that Assumption (M-1) holds with some 8 > 0, f~ > 0 and R > 0,
and let h : [0,1] — R satisfying (H). Let k € N and « € (0, 1] be uniquely defined by
the relation B = k + a. Suppose that Assumption (C) holds for some constant C > 0 and

distribution u. Then, for any d > 1, the estimator 6, (M) defined by (2.16) satisfies

k ¢ B
— M 1 M
Or (M) — 07 = ) -(—)+0 i —+(—)+ , 34
i (M) = 60,7 2. e\ 7 df illeor oo B.R ( TRt i (3.4)
where ay g € RY depends only on h, f and € and vy = OL'(y),d,f,,||h\|.,0,||h'\|w,ﬁ,R,c(M_1/2).
Moreover, if h(x) = (1 — x) for x € [0, 1], then a;, s, = 0.

The proof is postponed to Appendix B.3.

Remark 3.3. In (3.4), the choice of the taper may influence the rate of convergence through
the constant a;, f,;, which vanishes if the taper is symmetric, that is, if (x) = A(l — x)
for x € [0, 1]. Other constants depend on the choice of the taper but one cannot choose
tapers that ensure a further systematic improvement of the rate. The reason is given by
the definition of the constant ¢, appearing in the proof of Theorem B.2, which implies
cp2 > 0 for all tapers . Consequently, for any taper A, one have that a; s> # 0, except
perhaps for some particular local density functions f. Hence, as far as rates of convergence
are concerned, the only important property of the taper is that of being symmetric.
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Theorem 3.2 suggests to combine several ’@,T(M) to obtain a more accurate estima-
tion by canceling out the first k bias terms in (3.4). This technique was already used
for eliminate one term of bias in Moulines et al. (2005, Theorem 8). It is inspired by
the Romberg’s method in numerical analysis (see Baranger and Brezinski (1991)). Let

w = [wp ... wi] € R¥! be the solution of the equation
Aw =e; , 3.5)
where e; = [1 0 ... O] is the R¥!- vector having a 1 in the first position and zero

everywhere else and A is a (k + 1) X (k + 1) matrix with entries A; ; = 2/ for 0 < i, j < k.

Theorem 3.4. Under the same assumptions as Theorem 3.2, the estimator

k
0.r(M) = )" w8,7(2'M), (3.6)
=0

with w defined by (3.5), satisfies

_ 1 MNP _
0.0 (M) = 6yy1 = Oy 1 i Il B.R (M + (?) ) + Oy ol il R M) - (3.T)

The proof is postponed to Appendix B.4.

Remark 3.5. If h(x) = h(1 — x) for x € [0, 1] then the first order term of (3.4) is zero; in this
case we can remove the term j = k in (3.6) and define w = [wy ... wi_1]" € R* by (3.5)
with the second row and last column of A removed ande; = [1 0 ... 0] € RX.

It is straightforward to check that the optimal bandwidth for minimizing the order of the
right term of Equation (3.7) is M o« T?/*D yielding the next result.

Corollary 3.6. Let B,R,f- > 0and h : [0,1] > R. Let k € N and w € (0, 1] be uniquely
defined such that § = k + w and set M := 21 T2BICB+D | i the following. Suppose that
Assumptions (M-1), (H) and (C) hold. Let 6,7(M) be obtained as in Theorem 3.4. Then,
for any q > 0 there exist a constant Cy only depending on h,q,d, f—,R,u and 3, and a
To > 0 only depending on d,R, B, f- and C such that, for all T > Ty and all t € Z,

(=]

It is interesting to note that in the decomposition (2.15), the bound of the error term
16,7 (M) — 6,7|l in (3.8) always has a slower decaying rate that that of the bound of the
(deterministic) error term ||6;,7 — 0:T|| in Lemma 2.4,

— q\1/4a
B (M) - 0,1]| ]) < Co THIOB+ (3.8)

4. AppLIcATION TO TVAR PROCESSES

TVAR processes (see Example 3) are a handful model to illustrate our results. Under
suitable assumptions, they have the specific property that, when d = p, the linear predictor
coefficients in 6, € R? as defined by Equation (2.10) coincide with the time-varying
autoregressive coefficients given by 6(¢/T) of the TVAR(p) equation (2.9) and also with
the local solution 6,7 of the Yule-Walker equations defined by (2.12), see (4.4) below.

In the following, we introduce some smoothness assumptions on the time-varying pa-
rameters, similar to (and actually yielding) the one required on the local spectral density
in 2.3. Additional stability conditions are also required, based on the following definitions.
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For : R - RP, u — [Hl(u) Gp(u)]l we define the time varying autoregressive
polynomial by

p
O(z;u):=1- Zéj(u)zj .
=1

Let us define, for any p € N* and ¢ > 0,

S(p) (0)

p
0:[91 0,,] e R’ s.t. I—ZGjZJ¢O,VIZI<5_1 . @D
=1

5p(©) 1= {0: R > 5 (0)} (4.2)
={0:R>R’st.O(z;u) #0,¥zl <6, ueR}.
Define, for 3> 0,R > 0,6 € (0, 1), p € [0, 1] and o > 0, the class of parameters
C(B,R,0,p,04) = {(0, 0):R =R X[poy,0,]8.t 0 €A,(B8,R)Ns,(6),0 € A(B, R)} .

The first result to provide sufficient conditions on the TVAR coefficients for the existence
of a stable solution of the TVAR equations goes back to Kiinsch (1995). Here we use
Giraud et al. (2015, Proposition 1), which guarantees the following: given a centered i.i.d.
sequence (&;);ez With unit variance and given the constants ¢ € (0,1), p € [0,1], o1 > 0,
B > 0and R > 0, there exists a large enough T, only depending on 6, and R such that,
for all (8,0) € C(B,R, 9, p, o), there exists a unique process (X; 1)z, =1, satisfying (2.9)
forallt € Zand T > Ty and such that, for all T > Ty, X; 7, is bounded in probability as
t — —oo. We use this result as our definition of the TVAR process with time varying AR
coefficients 6y, . .., 6,, time varying standard deviation o, and innovations (&;),ez. For later
reference, we summarize this in the following assumption.

(M-2) Let (&)ez be an iid. sequence with zero mean and unit variance. Assume
that (8,0) € C(B, Ry, 5, p,0,) with § € (0,1),8 > 0,Ry > 0 and p € [0,1]. The
array (X,r)ezr>1, 1S @ TVAR process as previously defined with time varying
AR coefficients 6y,...,8,, time varying standard deviation ¢, and innovations

(é:t)teZ-

In this assumption the constant T is set to have the existence and uniqueness of the stable
solution of the TVAR equation for all 7 > T,. It may change hereafter from line to line
to guarantee additional properties of the solution but always in a way where it depends at
most on the constants 3, Ry, d, o and 0.

The following assumption can be used to control the moments of any order of the TVAR
process.

() Forall g > 0 the innovations (&),ez satisfy E [|£]|?] < .

Time varying autoregressive processes are well known to be locally stationary under cer-
tain conditions on their parameters and moments, see Dahlhaus (1996b, Theorem 2.3).
Adapting these results to our context, we have the following.

Theorem 4.1. Assumption (M-2) implies the two following assertions.

(i) There exist constants R and Ty only depending on p,o,0,8 and Ry such that
(Xir)iezT51, IS (B, R)-weakly locally stationary in the sense of Definition 2.3 with
local spectral density defined by

2 _
Fud) = ‘72—;”) lo(e )| (4.3)
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Moreover, we have, for all T > Ty and t € Z,
0@/T) = Oz*,r =61, 4.4)

where 6, and 6,7 are the optimal and local prediction coefficients respectively
defined by (2.10) and (2.12) in the case d = p.

(ii) If p € (0, 1], then Assumption (M-1) holds with the same 8 and some constants R,
To and f- > 0 only depending on p, 6, p, o +,8 and Ry.

(iii) IfP(é9 = x) =0forall x eR, then P(X;7 =0) =0forallte Zand T > T.

(iv) If (1) holds, then (X, 1)z =1, Satisfies Assumption (C) with C only depending on
Ry, B,9, o4 and with u defined as the distribution of &.

The proof is postponed to Appendix C.2. Theorem 4.1 basically shows that the results
of Section 3 apply to TVAR processes, as defined by (M-2) provided that p > 0 and (I) is
assumed on the innovations. We specifically state the following result which provides a
useful complement to Moulines et al. (2005, Corollary 9) where the same minimax rate is
exhibited for a different estimator but only for smoothness index 8 < 2.

Corollary 4.2. Let6 € (0,1),6 > 0,R > 0 and p € (0, 1]. Suppose that Assumptions (M-2)
and (1) hold. Let M = 2| T*#/®5+V | and 6,7 (M) be the estimator defined by (2.16) and (3.6)
with p, the order of the TVAR process equal to d, the order of the prediction vector. Then,
for any q € N there exists a constant C only depending on g, h, p, 9, p, 0,8, Ry and the
moments of the distribution of &y such that, for all T > Ty and t € Z, we have

q 1/q
(E[ ]) < TP (4.5)

Proof. By Theorem 4.1, we can apply Corollary 3.6. Recall that in the case of the TVAR
with order p equal to the prediction length, we have 6 (¢/T) = 6,7 = OZT. O

0.0 (M) - 6(7)

The estimator 5proposed in Corollary 4.2 achieves the S-minimax-rate for TVAR pro-
cesses according to the lower Moulines et al. (2005, Theorem 4). Hence, it is also -
minimax-rate in the class of weakly locally stationary processes satisfying Assumption (M-
1). Giraud et al. (2015, Section A.1) explains how to construct minimax-rate predictors
from minimax-rate estimators of 8. Applying their approach, Corollary 4.2 also provides a
crucial ingredient in building S-minimax-rate predictors for any S > 0.

5. NUMERICAL WORK

We test both methods on data simulated according to a TVAR process with p = 3. The
parameter function u — @(u) within 5,(0) for some ¢ € (0, 1) is chosen randomly as fol-
lows. First we pick randomly some smoothly time varying partial autocorrelation functions
up to the order p that are bounded between —1 and 1, ék,k (u) « fz_ll ajk j2 cos (ju), where

ajy are random numbers in [-1, 1]. Here ék,k (u) is defined up to a multiplicative constant;
dividing, for example, by F(F —1)(2F —1)/6 guarantees its values to remain within (-1, 1).
Then, for any required ¢, T, we use Algorithm | with input ék,k (¢/T) and assign the output
to 6(¢/T). Based on the classical Levinson-Durbin recurrence (see for example Brockwell
and Davis (2006, Proposition 5.2.1)), the d in Algorithm [ is in s, (1) as defined in (4.1),
and it follows that the output 8 € s(,)(6). The randomly obtained three components of our
6(¢) are displayed in Figure 5.1, for ¢ € [0, 1].

For each T € {2%, j=15,...,15} we generate 100 realizations of a TVAR process from
innovation sequences (&;),ez of i.i.d. centred Gaussian random variables with unit variance
by sampling the previous @ at a rate T~!, and taking o = 1.
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Then we compare Eand 6 for estimating 6(1/2) using & = 1 and different values of M.
Recall that 68(1/2) = 6. T Figure 5.2 shows the boxplots corresponding to this evaluation
for two different T's. In Figure 5.2 we observe that for T = 220 the estimation error of 0 is
minimized in M = 2!5 while that of 6 is minimized in M = 217. The estimator 0 beats 6
for the two biggest values of M. In the case T = 220,~the error of 6 reaches its minimum
in M = 22 and that of @ in M = 22°. The estimator  beats  for the four biggest values
of M. These experiences illustrate the theoretical result established in Theorem 3.2 and
Corollary 4.2 that after optimizing in M, 9 outperforms 6 for T large enough.

To corroborate these conclusions over a wider range of 7’s, we refer to Figure 5.3.
The plot on the left-hand side shows the oracle errors miny, ||5T/2 (M) — 6(1 /2)|| and
min, ||0T/2 (M) — 6(1/2)|| for all T € {2%/,5 < j < 15}. The slope corresponding to ] (in
blue) is steeper than the one corresponding to ) (in red), meaning that, in average, 6 outper-
forms € by an increasing order of magnitude as 7 increases. The boxplots on the right-hand
side of Figure 5.3 represent the ratios miny |07 2,7 (M) — 6(1/2)||/ miny ||07/2,7(M) — 6(1/2)||
computed for each T and realization of the TVAR process. Observe that for 24 <T <2
the estimator @ beats 6 in at least half of the cases. For T > 2%, it happens in at least
75% of the cases. We conclude that the estimator with reduced bias is of interest when the
length of the data set becomes very large.

Algorithm 1: Adapted Levinson-Durbin algorithm.

parameters the stability parameter ¢ > 0 and the time varying partial autocorrelation

functions ék‘k, k=1,...,p;
for k =2to p do

for j=1tok—1do
| 8 =001 — Oeabejurs

for j=1to pdo

L Ojp =60 p;
return 6 = [0, , ... 6,,]".
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APPENDIX A. USEFUL LEMMAS

We gather here some useful lemmas that are (simple extensions of) standard results
for Yule-Walker estimation of the linear prediction coefficients. Most of them are similar
to those used in Dahlhaus and Giraitis (1998). Short proofs are provided for the sake of
completeness. Different bounds can be found in Kley et al. (2016), in order to better control
the case d — oo.

Lemma A.1. Let d be a positive integer. Consider the d X d matrices T and T and vectors
¥.7. 0,0 € RY satisfying the relations
ro=vy, (A.1)

To=7. (A.2)
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Ficure 5.1. Plots of 6;(¢) (top), 6,(¢) (middle) and 65(¢) (bottom) on the
interval ¢ € [0, 1].

— Oloss — floss
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Figure 5.2. Box plots of the quadratic losses for estimating 6(1/2) using
OT s2,7(M) (red boxes) and Gr/z 7(M) (blue boxes) for various bandwidths
M, when T = 2% (left) and T = 2%° (right).

Then, for any k € N we have, if I is non-singular,

k k+1

r! +Z ‘|- ‘)/)+;<F 1(r—f))ge
(-1 @-6) . a3

Proof. From Equations (A.1) and (A.2) we get

6-0 = T'|(r-T)o+7-v] .

The result follows by applying a recursionon k =0, 1,.... O
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FiGure 5.3. Oracle losses (using the best choice for the bandwidth M)
for estimating 6(1/2) using 07, (M) (red points) and 07/, 7(M) (blue
points) for various values of T. The left-hand side plot displays the
losses over all the Monte Carlo simulations and the two resulting log-
log regression lines. The right-hand side plot displays boxplots of the
corresponding losses ratio.

Lemma A.2. Lety be the autocovariance function associated with a spectral density func-
tion f, y(s) = fozn e £(1) dA , for all s € Z, and denote by T, the corresponding covari-
ance matrix of size d X d,

y© ... yd-1
=] : : (A4)

yd-1) ... y(@©
Then the following assertions hold for any d € N*.

(i) If fozﬂ f > 0then T, is positive definite.
(ii) If f is valued in [f-, fi] with f- < f,, then all the eigenvalues of Ty belong to

[2nf_, 2xf.].
Proof. These well known facts (see e.g. Brockwclzl and Davis (2006, Proposition 4.5.3))
follow from the identity a'Tya = fﬂ Zd]aj elit fda, forala = [a; ...a4] €
|5
R, " i

The next lemmas allow us to control the norms of ’67,1 and 0,/7.

Lemma A.3. Let p be a positive integer and 6 > 0. The set s, () defined in (4.1) is a
closed subset of the ball {@ € R? s.t. ||0]] < (1 + 6)P — 1}.

Proof. Hurwitz’s theorem (see Conway (1973, Theorem 2.5) or Gamelin (2001, Section 3,
Chapter VIII)) implies that s, () is a closed subset of R”. It is also bounded (see Moulines
et al. (2005, Lemma 1)). Hereafter we provide a slightly different bound using Euclidean
norm instead of the supnorm.
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Take now 6 € s(,) (). Let zy, ..., z, denote the complex roots of the polynomial 6(z) :=
-3, 0;z’. They satisfy |z;| > 6~! for any j. The following holds

2
1 [~F P ., 1 " 2
2 _ _— _ aljd _ il
L+10 = - L 1 geje ar=5- | 6(e )‘ . (A.5)
On the other hand we have 0 (z) = ?:1 (1 - sz_-l), so that for |z] = 1, since |Zj|_] <4, we
get [0 (z)| < (1 + 6)”. Putting this into (A.5) the proof is completed. O

The next lemma is similar in flavor to the statistical result of Whittle (1963, Section 3).
It is also a classical property of orthogonal polynomials (see Grenander and Szegd (1984,
Section 2.4)). We provide an elementary proof.

Lemma A.4. Let y be an autocovariance function. Let d > 1 such that the covariance
matrix 'y defined by Equation (A.4) is positive-definite. Let 0 denote the solution of the
d-order Yule-Walker equation, @ = [6, ... 64] = l";lyd with yg = [y(1) ... y(d)]'. Then
we have 8 € s)(1) and ||0]] < 24 — 1.

Proof. We only need to prove 0 € s4)(1) since ||0]| < 24 _ 1 is then implied by Lemma A.3
with p=dandd = 1.

Forj=1,...,d,1ete;=[0 ... 1 ... 0] be the R4- vector having a 1 in the j-th posi-
tion and zero everywhere else. Consider also the companion matrix A = [0 e ... ed,l]/ .
Since the roots of 6(z) are the inverses of the eigenvalues of A, or A’, we only need to prove
that the eigenvalues of A’ are inside the closed unit disk. Observe that

0’1110 O’Fde1 . . 0Tded_1

e l,0 elger ... ... €T4eq

Fd _ AFdA/ — rd _ e’zl"de e’zl“del RN . e’zl"ded,l
e, Is0 e, Tee ... ... e, Teq

Because I'; is a Toeplitz matrix, its (i, j)-th entries, and those of AI';A” are equal for i, j > 2.
The definition of @ implies also the equality of the (i, j)-th entries of both matrices when
i=1,j>2andi > 2,j = 1. Hence I'y — AT ;A" is a d X d symmetric matrix with zero
entries except at the top-left where it takes value y(0) — 6"y,. This value is non-negative
since it is the variance of the prediction error or order d. Hence we conclude that for
y e C4 v (y — AT A" > 0. Consider now A, an eigenvalue of A’ and the corresponding
eigenvector v € C?\ {0}). We get

0<¥([y—AL AW =¥ Ty — AT, AW = W Tv(1 = |AP) .

We conclude that 4] < 1 since ¥'T ;v > 0. O

Lemma A.5. Letd > 1, (X;1)ez.751, bE an array process and h : [0,1] — R. For any
M € N*, define the local tapered empirical covariance function yr y as in Definition 2.5
and let, for anyt € Zand T > Ty, ft,T,M = (rm(t/T,i — j);i,j = 1,...,d) be the
corresponding d X d empirical covariance matrix. Then, either /l:,,T,M is non-singular, or
Yrm(@/T,€) = 0 for all € € Z. Moreover, in the case where it is non-singular, the Yule-
Walker estimate @,T(M) defined by (2.16) satisfies IIb\,,T(M)II <2¢4—1.
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Proof. First note that for all u € R, the sequence (yr,u (i, €))7 is the covariance function
associated with the spectral density
2

M
— 1 t -
Sm(u, ) = H ; h (M)XLMTJ-H—M/Z,Te o
We conclude by applying Lemmas A.2 (i) and A.4. O

ApPENDIX B. BOUNDS OF THE ESTIMATION RISK IN THE GENERAL SETTING

B.1. Proof of Lemma 2.4. Let us first bound the approximation error I'yz — Iy ;..

(7))
g i=i)=r(Fi-J

t—i ; S
+'y(T,]—z)—y t-i,T,j—1) .

t
'y(?,i—j)—y*(t—i,r,j—n <

(B.1)

The second line term of Inequality (B.1) is upper bounded by RT~™"1#) because of In-
equality (2.3). Using the local covariance expression (2.2), Cauchy-Schwartz inequality
and f(,2) € A1(B, R), the following holds for T > d > |i,

t—i t T t—i t
o T ) 1(]_1),] o _ =
‘7( 7/ ’) V(T’l ])' Ine (f( T ’/l) f(T”l))dﬂ‘
2ndR T~ min(A) (B.2)
Inequality (2.3) implies that |ly;, — y,rll < d"*RT~™""#) and inequalities (B.1), (B.2)
and again (2.3) imply that for T > d,
ITyr = Ti7ll < dQ2ndR + RYT~™"P)

The smallest eigenvalue of the matrix I';/7 is greater or equal to 27 f~ (see Lemma A.2 (ii)).
Observe that

IA

1r[1f”1nf alira= 1r11f‘11”1f { (l"t,T - F,/T)a +a Ft/Ta}

> 1nf”1nf a ( - F,/T) a+ inf inf a’F,/Ta > 2nf. — dPPCTmindA)
t |lal= t =
Then, for T > = (dRQ2nd + 1)/2n f- Ny m“‘(lﬁ) we have that F*T is invertible and
||(F*T) Il < (ﬂ'f )‘ Now, from equations (2.11) and (2 12) we obtain that
OZT -Oyr = (F;‘,T)7 [(rt/T - Ff,r) Oyr + '}’:T - '}’t/T] .

Applying matrix inequalities (specifically with the spectral norm) we get

1657 = 8 < 05| (e = Tl o+ I = v

Lemma A.4 ensures that ||6;,7| < 24 and the result follows with C; = (7 £)"(d@nrdR +
R)2? + R).

B.2. Bias Approximation. The following elementary lemma will be useful.

Lemma B.1. Let h : [0, 1] — R satisfying (H). Then, forall ¢ =0,1,2,... and M > j > 0,

we have
1 < s s—j\( s\ !
S GG = [ oo o ()
s=j+1

In particular, in the case j =€ =0, Hy = M + Oy )1, (1)-
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Proof. The proof is straightforward using, for M large enough, Riemann approximations
on the blocks defined by s/M € (u;—-; + j/M,u;], fori =1,...,N, and neglecting the terms
from the indices s such that s/M € (u;_1, u;—1 + j/M], the number of which is bounded. O

We can now derive the following approximation of the bias.

Theorem B.2. Suppose that Assumption (M-1) holds with some 8 > 0 and R > 0, and
let h : [0,1] — R satisfying (H). Let k € N and a € (0, 1] be uniquely defined such that
B =k+ a. Then, forall j € Zand M € 2N*, we have

2[5 () =27 3)+ Znau () 0 i+ ()
-, = -, chriel— ; ’ — — ,
Yr.m T J Y T J - h.f.jit T JllAlloos 17 loo B.R M T

where cy 5,0 € C only depends on h, the spectral density f, jand €. If h(x) = h(1 — x) for
all x € [0, 1], then ¢ 5,1 = 0.

Proof. Without loss of generality we let moreover assume M > j > 0, in which case

M .
_ t 1 s s—J M

sl = gy 2G5 (s-3m)
T Hy = M M 2

Since |h| is also piecewise continuously differentiable, Lemma B.1 gives that

1 u ) s
. ‘h(— h
|H ] S;I M

With Inequality (2.3), we obtain that

-J
i )' = Ojjill o (1) -

= r. — min
E [YT,M (7’ J)] =Ymj + Ojlhl iR (T <Lﬂ>) , (B.3)
1 & s\ (s—j\ [t+s—M/2
e e S0 (272
where yuy,; Hy vzj;l M M Y T J

Since f(-, 1) € Ai(B, R), a Taylor expansion yields

f(t—M/2+s’/l) _ Zk: O f /T, ) (—M/2+s)(+fk(%’ —M/2+s’/l) ’

T =R T T
with
sup_ |fi(t/T,(=M/2 + 5)]T, )| = Og g((M/TY’) . (B.4)
Then
' i1 j t—M/2+s 3
Y= HMf /TZJIJI ) (M)f( )d’l_

T { M
B2 S i

j+1

T M 9 —
+f it L Zh(i)h(s f)fk(i, M/2+s,/l)d/l. (B.5)
L5 Hy 2\ T T

2z

s=
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Lemma B.1 yields that forall £ = 1,.. .k,
1y h(i)h(s-f)(_-M/M):
Hy S M M T

M\ M 1 <~ sy (s=y(_ 1 s) M\ 1\ M\
(7) Hy M 2 h(ﬁ)h(—M )(‘fﬁ) =eue(7) +0f~"h"w'h’"wf(M)(?) :

1 4
with ¢, = f 1 () |u— 3 du. Observe that ¢, = 1 by assumption in (H), and, if

0
h(x) = h(1 — x) for all x € [0, 1], then moreover ¢, ; = 0. From this it follows that

T (T, D) et Ly s\ (5= j\[-M/2+s) M\’
[ AT S ) 2 = (4 o
- ' s=j+1

where, in particular, ¢y s j0 = v(t/T, j) and ¢ 5,1 = 0if A(x) = k(1 - x). Finally, by (B.4),
and since |h| is also piecewise continuously differentiable, the reminder term in (B.5) sat-
isfies

T LN (S, (57, (M2 s MV
ija_ -~ - _ ' , M .
Lre Hy 2 h(M)h( M )f"( T ’/l)d/1 Ol IIM,ﬁ,R((T))

s=j+1

We thus finally obtain that

k ¢ B
t M 1 M
i = —, j|+ E il—=| + O ’ — + = .
Ym.j y(T ]) < Ch»fwj,f( T ) d.|lhlleo I lleo B.R (M ( T ) )

This approximation and the bound (B.3) allow us to conclude the proof. O

B.3. Proof of Theorem 3.2. Gathering together Assumption (C) and Theorem B.2 yields,
forany j=—d,...,d,

a3} S a2

=1
t
vu(.4). B

where MM(I/T, ]) = 0L’(p),d,llhllm,l\h’lloo,C(M_1/2) and Chfjl = 0 if h(x) = h(l - )C) for all
x €[0,1].

For the sake of 51mphclty, we drop 7, T in the notation and set y = ¥, Yu = ¥r1.M>
I' =Tyr and FM = F, r.m- Using the expression (B.6), we obtain

r-T —Zc (M)[+0 : +(M)B+U (B.7)
M = £ h.f.t T d|1Alleo |1 lloo B.R M T M :
k ¢ B
— M 1 M
VM =Y = Z Chfe (?) + Od il Il B.R (M + (7) ) +tuy, (B.8)

t=1

R%4 and the vectors Chfe € R4 only depend on d, A, f and ¢.

(M%), Again Cj, sy = 0and cpz =0

where the matrices Cj, s €
Furthermore U\ and uy, both are Oy 4 ... 1w
if h(x) = h(1 — x) for all x € [0, 1].

Note now that Lemma A.2 with the assumption f_ > O further says that I';;7 is also
non-singular with I“t‘/lT = Oy (1) and, with (2.17), we can thus apply Lemma A.1, showing

Ileo:
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that (A.3) holds with @ = 6,7, 0 = 6,7 (M), ¥ = yyr. 7 = ¥m = Vezan» T := Tyy7 and
I' =Ty := T, 7.m. Next the bounds provided by Lemmas A .4 and (2.17) further imply ||6]|
and ||| to be less that 2¢. This, with the approximations (B.7) and (B.8), yields (3.4).

B.4. Proof of Theorem 3.4. For each j = 0,...,k replace M by M/2/ in (3.4), multiply
the resulting expression by w; and sum over j. Matrix A (definition below Equation (3.5))
is a non singular Vandermonde matrix and w is well defined.

AppPENDIX C. PosTPONED PROOFS FOR TVCBS AND TVAR PROCESSES

C.1. Proof of Theorem 3.1. Letus denote, for any L” random variable Z, ||Z||, = (E [|Z|”])1/”
its LP-norm. The proof relies on the Burkhdlder inequality for non-stationary dependent
sequences. Namely, an immediate consequence of Dedecker et al. (2007, Proposition 5.4)
and the Holder and Minkowskii inequalities is that if p > 2 and (Z;),ez is a L? process
adapted to the filtration (7;),ez, then, forall s € Zand n > 1

s+n 2

>z -Eiz)

t=s+1

<2pn (sup 1z - E[z,]np) (sup DB (ZlFi) — ElZeill,
» teZ teZ =0

Applying this inequality with s = |{| + 1, n = M —|{| to

t t— ¢

— _ gt
Zi=h (M)h (T)XLMTJHM/Z,TXLMTJHfIM/Z’T’ Fi = 7:|_uTJ+z—M/2 >

where 7—;’5 = 0(&, s < 1) denotes the natural filtration of (&;),cz, we obtain that, for any
M > |,

2P =)'

[V . 0) = E[yras O], < i 1A%, sup X7 oy
SE

oo 172

X [SUP Z ”E [Xt+k,TXt—|l|+k,T | ff] - E[Xt+k,TXt—\€|+k,T]|| ] .
€Z 120 I3

Under Assumption (H), Hy /M € (1/2,3/2) for M large enough (see Lemma B.1) and it is

thus now sufficient to show that, for any p > 2,

sup [|Xs rll2p = Ok (1) (C.D)
SEZ

o

sup Z ”E [Xt+k,TXr—\€|+k,T | ?f] - E[Xt+k,TXt—\€|+k,T]||p = OKr kot w0 (1) (C2)
€Z 320

The bound (C.1) is a direct consequence of (2.6) and (2.7) and the assumption on (&;)scz.
To prove (C.2), let us define, forallr € Z, T > Ty and x € RY,

DY (x) = @1 () @ 7 (Xj1)50) -

It then follows that X, r X, .7 = (DET((&_ 7)j20) and is then straightforward to show that

the assumptions on ¢° yields that there exists some constant K’ only depending on K and
() jent and (£;) jew such that, for all # € Z, T > Ty and all x,x” € R satisfying x; = x’; for
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1 <j<ko+Itl,

0 2r
|07 (0] <K’ (1 + > |le] ;
70

2r-1
<K' [Z gl = x20+,-|) [1 + ]+ Ix;-l)] ,

=0 720

|07 (x) — DY 7(x)

where /; = ¢; and {; = £; for 0 < j < |€], and ¥ ; = max(¥j_ig, ;) and {; = £ + ¢; for
J = ||. By Jensen’s inequality, we have that, for all £ > 0,

”E [Xt+k,TXt—\€|+k,T | 7‘?(] - E[Xt+k,TXr—\€|+k,T]||p < “@?J,kj((fmk—j)jzo) - q)?.;.k!]'((é:lcrkfj)jzo)”p ,

where (§})sez is i.i.d. with same distribution as (£)sez and such that &,,_; = £ e for all

j=0,1,...,k—1and (§;__i)_/20 and (¢;-) ;>0 are independent. With the above bounds on

®° and using the Minkowskii and Holder inequalities, we thus get that, for all # € Z and
k>0,

HE [Xz+k,TXt—|[\+k,T | 7‘7’5] - E[Xz+k,TXt—|(f|+k,T]”p < 2K (1 + [l Iollarp)™

and, if k > ko + ||, the same quantity is bounded from above by

2K [|gollay (1 + 2||¢||1||§o||zp<zr_1))2”‘{ > Z,-] :

J=k=ko

Summing these bounds over all £ > 0, we obtain

Z “E [Xt+k,TXt7|€|+k,T | 7'-,’5] - E[Xt+k,TXt—|€|+k,T]Hp
=0

< 2K’ (1 + 2I|lﬁ||1||§0||4rp)2r {ko +1+ Z Z ZJ]

k>ko+|| j=k—ko

= 2K (1+ 201 olary) [ko e+ G- |€|>Z,-) :

7>l

By (3.3), the term between parentheses is a finite constant only depending on ko, || and {.
We thus have shown (C.2), which concludes the proof.

C.2. Proof of Theorem 4.1. We first need to recall some basic facts on the representation
of a TVAR process as a TVCBS. Let us set ¢; = [1 0...0]" € R” and introduce the
companion p X p matrices defined for all u € R by

01w O(u) ... ... O,
1 0 ... ... 0
Aw=| 0 1 0 ... 0
o ... 0 1 0

By Giraud et al. (2015, Proposition 1 and its proof), the TVAR process (X; 1)z 757, 1S @
special case of TVCBS introduced in Example 2. Namely, it satisfies a representation (2.6)
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with a linear form

00

W) = > ar(Dot = PIT) x;,  with a,r(j) = ¢}
j=0

e,

[T4(5)

and moreover, there exist some constants K > 0 and 6, € (0, 1) only depending on p, 6,8
and Ry such that, forall T > Ty, t € Z and j € N*,

45

lair(j)l < K67,

implying that ¢” above satisfies (2.7) and (3.2) with r = 1, K = 1 and Y= = I_(0'+6{.

We can now proceed with the proof of Theorem 4.1, starting with (i). To show that it
is weakly locally stationary with the local spectral density of the AR(p) with local stan-
dard deviation o-(u) and autoregresive coefficients 8;(u), ..., 6,(u), it only remains to show
that (2.8) holds with » = 1 and

<K¢l. (C.3)

Hence in particular

P, x) = () )" elAl (e x; .
j=0

This is a simple consequence of (C.3) and the fact that o € A;(min(1,8),Ry) and 6 €
A,(min(1, 8), Ry) by assumption. Then (4.4) follows from the representation (2.6) : using
that it is causal and (2.9), we get in the case d = p that 0(¢/T) = OzT. On the other hand,
the mere definition of the local spectral density in (4.3) (being that of an AR(p) process at
fixed u), the case d = p yields that 6, = 6(x). Finally, an additional consequence of the
definition of f is that the spectral density f(:, 1) belongs to A;(B, R) for any 1 € R with
R only depending on p, d, B, o, and Ry, provided that we can show that '0 (e’i’l; u)| can be
bounded from below by a positive constant only depending on § and p. By Lemma A.3
and continuity of (1,6) - 1 — Z?zl 6;e7/4, and since 6! > 1 we have that

P
1- Z Oje_iﬂ
Jj=1

Of course these two constants only depend on ¢ and p and the inf one can serve as a lower

P

1- Z Hje_ij’l

J=1

0< inf

1 < sup
0<s(,)(0),A€R

0es5(,)(0),A€R

<. (C.4)

bound of |0 (e’”; u)‘, concluding the proof of (i).
Next, we prove (ii) and (iii), which respectively require the two add-on properties

(@) f(u,A)> f_forallu,A R,

(b) if &) has a diffuse distribution, then P(X;7 = 0) =0forallt € Zand T > Ty.
The fact (a) follows from (4.3), o(#) > po . and the upper bounds in (C.4), which shows
that we can find such an f~ > 0 only depending on p, ¢, p and o Fact (b) is a consequence
of the TVCBS representation above and the assumptions on (&;) which implies that for all
t,T and j € N, we can write X, 7 = a,7())é;-; + Z;r(j) with Z, 7(j) independent of &_;.
Hence, if &) has a diffuse distribution, it only remains to prove that for all 7 > T, and
all ¢t € Z, there exists j € N such that a,7(j) # 0. Using again the TVCBS representation
above, this is equivalent to show that forall T > Ty and allt € Z, y* (¢, T, 0) = var(X,7) > 0.
Now observe that by (a) and since (X, 1)z, 757, 1S (B8, R)-weakly locally stationary, we have

¥ (t,T,0) > y(¢/T,0) — RT~ ™A > o7 p _ gp-—mind) 5 |
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where the last inequality holds by taking T large enough (only depending on f- and R and
thus on p, 6, p, o+ and Ry.).

We conclude with the proof of (iv). We use 'ghe above TVCBS representation which
were mentioned to satisfy (3.2) with {; = I_(0'+6{ for some 6; < 1. Hence (3.3) holds as
well and we can apply Theorem 3.1, which shows that the TVAR process satisfies (C).
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