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Abstract

In this contribution we introduce locally stationary time series through the local

approximation of the non-stationary covariance structure by a stationary one. This

allows us to define autoregression coefficients in a non-stationary context, which,

in the particular case of a locally stationary Time Varying Autoregressive (TVAR)

process, coincide with the generating coefficients. We provide and study an es-

timator of the time varying autoregression coefficients in a general setting. The

proposed estimator of these coefficients enjoys an optimal minimax convergence

rate under limited smoothness conditions. In a second step, using a bias reduction

technique, we derive a minimax-rate estimator for arbitrarily smooth time-evolving

coefficients, which outperforms the previous one for large data sets. For TVAR, the

predictor naturally obtained from the estimator also exhibits an optimal minimax

convergence rate.

1 Introduction

In many applications, one is interested in predicting the next values of an observed time

series. It is the case in various areas like finance (stock market, volatility on prices),

social sciences (population studies), epidemiology, meteorology and network systems

(Internet traffic). Autoregressive processes have been used successfully in a stationary

context for several decades. On the other hand, in a context where the number of

observations can be very large, the usual stationarity assumption has to be weakened

to take into account some smooth evolution of the environment.

Many prediction methods developed in signal processing are well known to adapt

to a changing environment. This is the case of the wide spread recursive least square

algorithms. The initial goal of these methods is to provide an online algorithm for

estimating a regression vector with low numerical cost. Such methods usually rely
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on a forgetting factor or a gradient step size γ and they can be shown to be consis-

tent in a stationary environment when γ decreases adequately to zero (see e.g. [14]).

However when the environment is changing, that is, when the regression parameter

evolves along the time, a “small enough” γ often yields a good tracking of the evolving

regression parameter. In order to have a sound and comprehensive understanding of

this phenomenon, an interesting approach is to consider a local stationarity assump-

tion, as successfully initiated in [11] by relying on a non-stationary spectral represen-

tation introduced in [23]; see also [12] and the references therein for a recent overview.

The basic idea is to provide an asymptotic analysis for the statistical inference of non-

stationary time series such as time varying autoregressive (TVAR) processes by relying

on local stationary approximations. The analysis of the NLMS algorithm for tracking

a moving autoregression parameter in this framework is tackled in [22]. Such an anal-

ysis is based on the usual tools of non-parametric statistics. The TVAR parameter θ is

seen as the regular samples of a smooth Rd-valued function. An in-fill asymptotic al-

lows one to derive minimax rates of convergence for estimating this function on a fixed

interval [0, 1] within particular smoothness classes of functions. As shown in [22], it

turns out that the NLMS algorithm provides an optimal minimax rate for estimating the

TVAR parameters with Hölder smoothness index β ∈ (0, 1] but is no longer optimal for

β > 1, that is when the TVAR parameters are smoother than a continuously differen-

tiable function. An improvement of the NLMS is proposed in [22] to cope with the case

β ∈ (0, 2] but, to the best of our knowledge, there is no available method neither for

the θ minimax-rate estimation nor for the minimax-rate prediction when β > 2, that is

when the TVAR parameters are smoother than a two-times continuously differentiable

function.

In the present work, our main contribution is twofold. First we introduce the con-

cept of time-varying linear prediction coefficients to a general class of locally station-

ary processes. This general class extends the class of locally stationary processes as

introduced in [11] in a way that we believe is more natural and appropriate to the sig-

nal processing community. In the specific case of a TVAR process, these coefficients

correspond to the time-varying autoregression parameters. Second, we show that the

Yule-Walker estimator introduced in [13] for TVAR processes also applies to this gen-

eral class and is minimax-rate for Hölder index β = 2. Moreover, by applying a bias

reduction technique, we derive a new estimator which is minimax-rate for any Hölder

index β ≥ 2.

The paper is organized as follows. In Section 2, we introduce the locally stationary

time series and define the regression problem investigated in this work. The Yule-

Walker estimator is detailed in Section 4. In Section 3, we explain why and how min-

imax estimation is crucial for deriving practical predictors. Main results are presented

in Section 5 relying on Hölder smoothness assumptions on the local spectral density

of the locally stationary time series. The particular case of TVAR processes is treated

in Section 6. Numerical experiments complete our study in Section 7, confirming the

benefits of our approach when the length of the data set becomes very large.

Four appendices complete this paper. Appendix A contains useful results on locally

stationary time series needed for showing the main theorems of Section 5. The proof

of the main theorems of Section 5 are provided in Appendix B. Some useful technical

results can be found in Appendix C. As a support of Appendix A, we refer to the basic
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tool-kit on weakly stationary processes presented in Appendix D.

2 General setting

In the following, vectors are denoted using boldface symbols, ||x|| denotes the Euclidean

norm of x, ||x|| = (
∑

i |xi|
2)1/2, and ||x||1 its ℓ1 norm, ||x||1 =

∑
i |xi|. If f is a function,

‖ f ‖∞ = supx | f (x)| corresponds to its sup norm.

2.1 Main definitions

We consider a doubly indexed time series (Xt,T )t∈Z,T∈N∗ , which we assume to be centred

for convenience. Here t refers to a discrete time index and T is an additional index

indicating the sharpness of the local approximation of the time series (Xt,T )t∈Z by a

stationary one. Coarsely speaking, (Xt,T )t∈Z,T∈N∗ is considered to be locally stationary

if, for T large, given a set S T of sample indices such that t/T ≈ u over t ∈ S T , the

sample (Xt,T )t∈S T
can be approximately viewed as the sample of a stationary time series

which depends on the rescaled location u. Note that u is a continuous time parameter,

sometimes referred to as the rescaled time index. Following [11], it is classical to

set T as the number of available observations, in which case all the definitions are

restricted to 1 ≤ t ≤ T and u ∈ [0, 1]. However this is not essential in the mathematical

derivations and it is more convenient to set t ∈ Z and u ∈ R for presenting our setting.

We first introduce definitions for the time varying covariance and the local covari-

ance functions.

Definition 1 (Time varying covariance function). Let (Xt,T )t∈Z,T∈N∗ be an array of ran-

dom variables with finite variances. The local time varying covariance function γ∗ is

defined for all t ∈ Z, T ∈ N∗ and ℓ ∈ Z as

γ∗ (t, T, ℓ) = cov
(
Xt,T , Xt−ℓ,T

)
. (2.1)

Definition 2 (Local covariance function). A local spectral density f is aR2 → R+ func-

tion, (2π)-periodic and locally integrable with respect to the second variable. The local

covariance function γ associated with the time varying spectral density f is defined on

R × Z by

γ (u, ℓ) =

π∫

−π

exp (iℓλ) f (u, λ) dλ . (2.2)

In (2.2), the variable u should be seen as rescaled time index (in R), ℓ as a (non-

rescaled) time index and λ as a frequency (in [−π, π]). Recall that, by the Herglotz theo-

rem (see [4, Theorem 4.3.1]), Equation (2.2) guaranties that for any u ∈ R, (γ (u, ℓ))ℓ∈Z
is indeed the autocovariance function of a stationary time series. Now, we can state the

definition of locally stationary processes that we use here.

Definition 3 (Locally stationary processes). Let (Xt,T )t∈Z,T∈N∗ be an array of random

variables with finite variances. We say that (Xt,T )t∈Z,T∈N∗ is locally stationary with local
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spectral density f if the time varying covariance function γ∗ of (Xt,T )t∈Z,T∈N∗ and the

local covariance function γ associated with f satisfy

∣∣∣∣∣γ
∗ (t, T, ℓ) − γ

(
t

T
, ℓ

)∣∣∣∣∣ ≤
C

T
, (2.3)

where C is a constant.

Let us give some examples fulfilling this definition.

Example 1. Locally stationary processes were first introduced by [11] using the spec-

tral representation

Xt,T =

π∫

−π

exp (itω) A0
t,T (ω) ξ (dω) , (2.4)

where ξ(dω) is the spectral representation of a white noise and (A0
t,T

)t∈Z,T∈N∗ is a collec-

tion of transfer functions such that there exist a constant K and a (unique) 2π− periodic

function A : R × R→ C with A(u,−ω) = A(u, ω) such that for all T ≥ 1,

sup
t,ω

∣∣∣∣∣A
0
t,T (ω) − A

(
t

T
, ω

)∣∣∣∣∣ ≤
K

T
. (2.5)

This class of locally stationary processes satisfies Definition 3 (see [10, Section 1])

with f (u, λ) = |A(u, λ)|2.

Example 2 (TVAR(p) model). Under suitable assumptions, the TVAR process is a

particular case of Example 1 (see [11, Theorem 2.3]). It is defined by the recursive

equation

Xt,T =

p∑

j=1

θ j

(
t

T

)
Xt− j,T + σ

(
t

T

)
ξt ,

where θ = [θ1 . . . θp]′ : R → Rp are the time varying autoregressive coefficients and

(ξt)t∈Z are i.i.d. centred and with variance 1.

Example 3 (Non-stationary Causal Bernoulli Shift). Let p > 0 and ϕ : Rp+2 → R.

Consider

Xt,T = ϕ

(
t

T
, ξt, . . . , ξt−p

)
,

where (ξt)t∈Z are i.i.d. such that E[|ξ0|
q] < ∞ for all q ≥ 1, E[ϕ(u, ξ0, . . . , ξp)] = 0 for

all u ∈ R and there exist K,C, r > 0 such that, for all u, u′ ∈ R, x ∈ Rp+1

|ϕ (u, x)| ≤ C

1 +
p∑

i=0

|xi|
r

 ,

∣∣∣ϕ (u, x) − ϕ
(
u′, x

)∣∣∣ ≤ K
∣∣∣u − u′

∣∣∣
1 +

p∑

i=0

|xi|
r

 .

In contrast to Examples 1 and 2, Example 3 do not rely on a linear representation

of the process.
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2.2 Statement of the problem

Let d ∈ N∗. For each t = 1, . . . , T , define the prediction vector of order d by

θ∗t,T = arg min
θ=[θ1 ... θd]′∈Rd

E



Xt,T −

d∑

k=1

θk Xt−k,T



2 = arg min
θ∈Rd

E

[(
Xt,T − θ

′Xt−1,T

)2
]
, (2.6)

where A′ denotes the transpose of matrix A and Xs,T =
[
Xs,T . . . Xs−(d−1),T

]′
. Provided

that Γ∗
t,T

is invertible, the solution is given by

θ∗t,T =
(
Γ
∗
t,T

)−1
γ∗t,T , (2.7)

where γ∗
t,T = [γ∗(t, T, 1) . . . γ∗(t, T, 1)]′, Γ∗

t,T is the time varying covariances matrix

Γ
∗
t,T = (γ∗(t − i, T, j − i); i, j = 1, . . . , d) and γ∗ is the time varying covariance function

as defined in (2.1). Analogously to (2.7), and with the aim of approximating the local

solution of the stationary Yule-Walker equations, we set

θu = Γ
−1
u γu , (2.8)

where γu = [γ(u, 1) . . . γ(u, d)]′, Γu is the covariances matrix Γu = (γ(u, i − j); i, j =

1, . . . , d) and γ is the local covariance function as defined in (2.2).

Assuming particular regularity conditions on θ, an estimator θ̂ of it is studied in

[13] for the model of Example 1. In the following we improve these results by deriving

minimax rate properties of the estimator of [13] and extensions of it. We will use the

following smoothness class of functions. For α ∈ (0, 1] the α−Hölder semi-norm of a

function f : R→ Cd is defined by

|f |α,0 = sup
0<|s−s′|<1

||f(s) − f(s′)||

|s − s′|α
.

This semi-norm is used to build a norm for any β > 0 as it follows. Let k ∈ N and

α ∈ (0, 1] be such that β = k + α. If f is k times differentiable on R, we define

|f |β =
∣∣∣f(k)

∣∣∣
α,0
+ max

0≤s≤k

∣∣∣
∣∣∣f(s)

∣∣∣
∣∣∣
∞
,

and |f |β = ∞ otherwise. For R > 0 and β > 0, the (β,R)− Hölder ball of dimension d is

denoted by

Λd(β,R) =
{
f : R→ Cd, such that |f |β ≤ R

}
.

We can now derive the main assumption used on the model which depends on some

positive constants β,R and f−.

(M-1) The sequence (Xt,T )t∈Z,T∈N∗ is a locally stationary process in the sense of

Definition 3 such that P(Xt,T = 0) = 0 for any t. The spectral density f (·, λ)

belongs to Λ1(β,R) for any λ ∈ R, and satisfies f (u, λ) ≥ f− for all u, λ ∈

R. The constant C in (2.3) depends continuously and at most on ‖ f ‖∞ and

supu,λ∈R |∂ f (u, λ)/∂u|.
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Note in particular that for β > 1, (M-1) implies that f is continuously differentiable in

its first component.

The problem that we are interested in is to derive a minimax rate estimator θ̃ for

any β ≥ 2, which means, that for such a β, the estimation risk, say the quadratic risk

E[||̃θt,T − θ
∗
t,T ||

2] can be bounded uniformly over all processes satisfying (M-1) (among

with some additional assumptions), and that the corresponding rate of convergence as

T → ∞ cannot be improved by any other estimator. The case β ≤ 2 is solved in [22]

for a particular subclass.

3 Minimax estimation for adaptive prediction

Let X̂∗
d,t,T

denote the best linear predictor of order d of Xt,T , which as a consequence

of (2.6), reads

X̂∗d,t,T =
(
θ∗t,T

)′
Xt−1,T ,

We denote by X̂∗
t,T the best predictor of Xt,T given its past, which corresponds to the

conditional expectation

X̂∗t,T = E
[
Xt,T

∣∣∣Xs,T , s ≤ t − 1
]
. (3.1)

As explained before, the goal of this paper is to derive estimators, say θ̃t,T ∈ R
d, of θt/T ,

which is a local approximation of θ∗
t,T

. In this section, we assume that θ̃t,T is a function

of the past Xs,T , s ≤ t − 1. Then θ̃′
t,T Xt−1,T is a legitimate predictor of Xt,T and we have

the following decomposition of the corresponding prediction quadratic risk

E

[(
Xt,T − θ̃

′
t,T Xt−1,T

)2
]
= E

[(
Xt,T − X̂∗t,T

)2
]
+ E

[(̃
θ′t,T Xt−1,T − X̂∗t,T

)2
]
.

The first term is the minimal prediction error that one would achieve with the condi-

tional expectation (which requires the true distribution of the whole process). Further-

more, inserting X̂∗
d,t,T
=

(
θ∗

t,T

)′
Xt−1,T and using the Minkowskii and Cauchy-Schwartz

inequality, the square root of the second term can be bounded as

(
E

[(̃
θ′t,T Xt−1,T − X̂∗t,T

)2
])1/2

≤

(
E

[(
X̂∗d,t,T − X̂∗t,T

)2
])1/2

+

(
E

[∥∥∥Xt−1,T

∥∥∥4
])1/4 (

E

[∥∥∥∥θ̃t,T − θ
∗
t,T

∥∥∥∥
4
])1/4

.

The first term in the upper bound is due to the approximation of the best predictor by

the best linear predictor of order d and can only be improved by increasing d. Note that,

in the case of the TVAR(p) model with p ≤ d, this error term vanishes. The quantity

(E[||Xt−1,T ||
2])1/2 is typically bounded by a universal constant independent of (t, T ) over

the class of processes under consideration. Hence, for a given d, the control of the

prediction risk boils down to the control of the quadratic estimation risk E[||̃θt,T−θ
∗
t,T
||2].
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To do so, we can further decompose the quadratic loss as

∥∥∥∥θ̃t,T − θ
∗
t,T

∥∥∥∥ ≤
∥∥∥∥θ̃t,T − θt/T

∥∥∥∥ +
∥∥∥θt/T − θ

∗
t,T

∥∥∥ ,

and note that the second term is a deterministic error basically accounting for the ap-

proximation precision of the non-stationary model by a stationary one, which, under

appropriate assumptions, will be shown to be of order T−1. As a result of these suc-

cessive decompositions, our effort in the following focus on controlling the estimation

risk E[||̃θt,T − θt/T ||
2] uniformly over a class of locally stationary processes with given

smoothness index β ≥ 2.

By achieving this goal, we will provide a theoretical justification of the intuitive

fact that, in a non-stationary context, any predictor should be adapted to how smoothly

the time varying parameter evolves along the time. On the other hand, in practical

situations, one may not have a strong a priori on the smoothness index β and one

should rely on data driven methods that are therefore called adaptive. This problem

was recently tackled in [16] . More precisely, using aggregation techniques introduced

in the context of individual sequences prediction (see [25, 20, 8, 1]) and statistical

learning ([3, 6, 7, 18, 27, 28, 19]), one can aggregate sufficiently many predictors in

order to build a minimax predictor which adapts to the unknown smoothness β of the

time varying parameter. However, a crucial requirement in [16] is to dispose of β-

minimax-rate sequences of predictors for any β > 0. Hence, following [16] and [22],

where minimax estimators are derived only for β ≤ 2, our results will pave the way for

adaptive minimax-rate forecasting at any (unknown) smoothness rate.

4 Tapered Yule-Walker estimate

Following [13], a local empirical covariance function is defined as follows. It relies on

a real data taper function h and a bandwidth M which may depend on T .

Definition 4 (Empirical local covariance function). Consider a function h : [0, 1]→ R

and M ∈ 2N∗. The empirical local covariance function γ̂M with taper h is defined in

R × Z as

γ̂M (u, ℓ) =
1

HM

M∑

t1,t2=1
t1−t2=ℓ

h

(
t1

M

)
h

(
t2

M

)
X⌊uT ⌋+t1−M/2,T X⌊uT ⌋+t2−M/2,T ,

where HM =
∑M

k=1 h2(k/M) ∼ M
∫ 1

0
h2(x)dx is the normalizing factor. We assume that

HM > 0.

For h ≡ 1 in Definition 4 we obtain the classical covariance estimate for a centred

sample {Xs, ⌊uT ⌋ − M/2 ≤ s ≤ ⌊uT ⌋ + ℓ + M/2}. Taking into account the interval

[t − M/2 + 1, t + M/2], and with the help of the data taper function h, the following

empirical Yule-Walker equations are then derived

θ̂t,T (M) = Γ̂
−1
t,T,Mγ̂t,T,M , (4.1)
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where γ̂t,T,M = [̂γM(t/T, 1) . . . γ̂M(t/T, d)]′, Γ̂t,T,M is the matrix of empirical covari-

ances Γ̂t,T,M = (̂γM(t/T, i − j); i, j = 1, . . . , k) and γ̂M is the empirical covariance func-

tion as in Definition 4.

5 Main results in the general framework

5.1 Additional assumptions

For convenience, we introduce the following notation. Let p > 0, q, r, s ∈ N∗, u : R→

R, a, b : Rr → R, c ∈ Rq and a collection of random matrices {UM ∈ R
r×s,M ∈ N∗}.

We write

(i) UM = OLp ,c(u(M)) if there exists Cp,c > 0, depending continuously and at most

on (p, c′), such that for all M ∈ N∗

max
1≤i≤r,1≤ j≤s

(
E

[∣∣∣UM,i, j

∣∣∣p
])1/p

≤ Cp,c |u (M)| , (5.1)

where UM,i, j is the (i, j)-th entry of the matrix UM .

(ii) UM = OL• ,c(u(M)) if UM = OLp ,c(u(M)) for all p > 0.

(iii) a(x) = Oc(b(x)) if and only if there exists a constant Cc depending continuously

and at most on the index c, such that for all x ∈ Rr

|a (x)| ≤ Cc |b (x)| .

Concerning the function h we have the following assumption.

(H) The function h : [0, 1] → R is piecewise continuously differentiable, that is,

for 0 = u0 < u1 < . . . < uN = 1, h is C1 on (ui−1, ui], i = 1, . . . ,N. Moreover we

denote ‖h‖∞ = supu∈[0,1] |h(u)| and ‖h′‖∞ = max1≤i≤N supu∈(ui−1,ui]
|h′(u)|.

Provided a piecewise continuously differentiable funtion h (as in (H)) and a local

spectral density function f continuously differentiable on its first component, we also

consider the following assumption.

(C) For all q > 0, Mq := supt,T E

[∣∣∣Xt,T

∣∣∣q
]
< ∞ and for all ℓ ∈ Z the empirical

covariance function satisfy

γM (u, ℓ) − E
[
γM (u, ℓ)

]
= OL• ,ℓ, f−,‖h‖∞,‖h′‖∞ ,‖ f ‖∞ ,‖∂ f /∂u‖∞

(
M−1/2

)
.

At first glance Assumption (C) may seem restrictive but it is not. Locally station-

ary processes of Example 1 satisfy it (see [13, Theorem 4.1]) and also m-dependent

sequences as those in Example 3.
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5.2 Bound of the estimation risk

Our first result provides an equality satisfied by the estimation error of θ̂t,T (M).

Theorem 5.1. Let β ≥ 2,R, f− > 0 and h : [0, 1] → R. Let k ∈ N and α ∈ (0, 1]

be uniquely defined such that β = k + α and consider M ∈ 2N∗. Suppose that As-

sumptions (M-1), (H) and (C) hold. Let θ̂t,T (M) be obtained from Equation (4.1). The

following relation is satisfied

θ̂t,T (M) − θt/T =

k∑

ℓ=1

ah, f ,ℓ

(
M

T

)ℓ
+ Od, f−,‖h‖∞,‖h′‖∞ ,β,R

(
1

M
+

(
M

T

)β)
+ vM , (5.2)

where ah, f ,ℓ depends only on h, the spectral density f and ℓ and vM =

OL• ,d, f−,‖h‖∞,‖h′‖∞,β,R(M−1/2). Moreover, ah, f ,1 = 0 if h(x) = h(1 − x) for x ∈ [0, 1].

The proof can be found in Appendix B.1. Theorem 5.1 suggests to combine several

θ̂t,T (M) to obtain a more accurate estimation by cancelling out the first k bias terms

in (5.2). The technique was already used for eliminate one term of bias in [22, Theo-

rem 8] for example. It is inspired by the Romberg’s method in numerical analysis (see

[2]). Let α = [α0 . . . αk]′ ∈ Rk+1, be the solution of the equation

Aα = e1 , (5.3)

where e1 = [1 0 . . . 0]′ is the Rk+1- vector having a 1 in the first position and zero

everywhere else and A is a (k+1)×(k+1) matrix with entries Ai, j = 2−i j for 0 ≤ i, j ≤ k.

Theorem 5.2. Let β ≥ 2,R, f− > 0 and h : [0, 1] → R. Let k ∈ N and α ∈ (0, 1]

be uniquely defined such that β = k + α and consider M ∈ 2k+1
N
∗. Suppose that

Assumptions (M-1), (H) and (C) hold. Let θ̂t,T (M) be obtained from Equation (4.1).

Then, θ̃t,T (M) =
∑k
ℓ=0 αℓθ̂t,T (M/2ℓ) with α defined by (5.3) satisfies

θ̃t,T (M) − θt/T = Od, f−,‖h‖∞ ,‖h′‖∞ ,β,R

(
1

M
+

(
M

T

)β)
+ vM , (5.4)

where vM = OL• ,d, f−,‖h‖∞,‖h′‖∞ ,β,R(M−1/2).

The proof is postponed to Appendix B.2. It is straightforward to check that the

optimal bandwidth for minimizing the order of the right term of Equation (5.4) is M ∝

T 2β/(2β+1). The next result is a direct consequence of Lemma 3, Theorem 5.2 and this

observation.

Corollary 1. Let β ≥ 2,R, f− > 0 and h : [0, 1] → R. Let k ∈ N and α ∈ (0, 1] be

uniquely defined such that β = k + α and consider M = 2k+1⌊T 2β/(2β+1)⌋. Suppose that

Assumptions (M-1), (H) and (C) hold. Let θ̃t,T (M) be obtained as in Theorem 5.2. Then,

for any q > 0 there exist a constant C only depending on h, q, d, f−,R and continuously

on β and a T0 > 0 only depending on d,R and f− such that, if T ≥ T0 we have, for all

t ∈ Z,

E

[∣∣∣∣
∣∣∣∣̃θt,T (M) − θ∗t,T

∣∣∣∣
∣∣∣∣
q
]
≤

C

T qβ/(2β+1)
. (5.5)
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6 Application to TVAR processes

Time varying autoregressive processes (see Example 2) are a handful model to illustrate

our results.

The index β sets the regularity of the functions we are interested in (the TVAR

parameter θ). The following concepts are related to standard stability conditions on

them.

For θ : R→ Rp, we define the time varying autoregressive polynomial by θ(z; u) =

1 −
∑p

j=1
θ j(u)z j.

Let us denote, for any δ > 0, sp(δ) = {θ : R → Rp, θ(z; u) , 0,∀|z| < δ−1, u ∈

[0, 1]}.

Define, for β > 0, R > 0, δ ∈ (0, 1), ρ ∈ [0, 1] and σ+ > 0, the class of parameters

C (β,R, δ, ρ, σ+) =
{
(θ, σ) : R→ Rp × [ρσ+, σ+] : θ ∈ Λp(β,R) ∩ sp(δ)

}
.

Given an i.i.d. sequence (ξt)t∈Z and constants δ ∈ (0, 1), ρ ∈ [0, 1], σ+ > 0, β > 0 and

R > 0, we consider the following assumption.

(M-2) The sequence (Xt,T )t∈Z,T∈N∗ is a TVAR process with time varying standard

deviation σ, time varying AR coefficients θ1, . . . , θp and innovations (ξt)t∈Z,

and (θ, σ) ∈ C (β,R, δ, ρ, σ+).

A TVAR process admits a linear representation with respect to the innovations (see [16,

Proposition 1]). It is convenient to introduce the assumption below.

(I) For all q > 0 the innovations (ξt)t∈Z satisfy mq := E
[
|ξ|q

]
< ∞.

Time varying autoregressive processes are locally stationary under certain conditions

on their parameters and moments. The next result is consequence of [11, Theorem 2.3].

Theorem 6.1. Let δ ∈ (0, 1), β > 0,R > 0 and ρ ∈ [0, 1]. Suppose that Assump-

tions (M-2) and (I) hold. Then, the process is locally stationary in the sense of Defini-

tion 3 with

f (u, λ) =
σ2 (u)

2π

1 −
p∑

j=1

θ j (u) exp (−i jλ)


−2

. (6.1)

Moreover, θ∗
t,T
∈ Rd as defined by Equation (2.8) coincides with θ(t/T ) when p = d.

To apply the results of Section 5 to the TVAR fulfilling Assumption (M-2) and (I),

we should take care of the regularity of the spectral density and also of its bounds.

The analysis of Appendix C points in that direction. From that, we conclude that the

conditions of Corollary 1 are fulfilled.

Corollary 2. Let δ ∈ (0, 1), β ≥ 2,R > 0 and ρ ∈ [0, 1]. Let k ∈ Z and α ∈ (0, 1]

be uniquely defined such that β = k + α and consider M = 2k+1⌊T 2β/(2β+1)⌋. Suppose

that Assumptions (M-2) and (I) hold and that P(Xt,T = 0) = 0 for any t. Assume

moreover that σ ∈ Λ1(β,R). Let θ̃t,T (M) be a p dimensional vector obtained as in

Theorem 5.2 (i.e. p = d). Then, for any q ∈ N there exists a constant C only depending

10



on q, h, p, δ, ρ, σ+,R and continuously on β, and T0 > 0 depending only on p, δ, ρ, σ+,R

and β such that, for T ≥ T0 we have

E

[∣∣∣∣∣
∣∣∣∣∣̃θt,T (M) − θ

(
t

T

)∣∣∣∣∣
∣∣∣∣∣
q
]
≤

C

T qβ/(2β+1)
. (6.2)

The estimator θ̃ proposed in Corollary 2 is β-minimax-rate for TVAR processes

according to [22, Theorem 4]. Hence, it is also β-minimax-rate in the class of locally

stationary processes satisfying Assumption (M-1). [16, Section A.1] explains how to

construct minimax-rate predictors from minimax-rate estimators of θ. Applying their

approach, Corollary 2 also provides a crucial ingredient in building β-minimax-rate

predictors for any β ≥ 2.

7 Numerical work

We test both methods on data simulated according to a TVAR process with p =

3. The smooth parameter function t 7→ θ(t) within sp(δ) for some δ ∈ (0, 1)

is chosen as follows. First we pick randomly some smoothly time varying par-

tial autocorrelation functions up to the order p that are bounded between −1 and 1,

θk,k (u) = δk
∑F−1

j=1 a j,k j2 cos ( ju) /[F (F − 1) (2F − 1) /6], where a j,k are random num-

bers in [−1, 1], the same ones for all u. Then we use Algorithm 1 and set θ =

−[θ1,p . . . θp,p]. From the classical Levinson-Durbin recurrence (i.e. Algorithm 1 with

δ = 1) we obtain a function in sp(1) (see for example [21]), it is straightforward to

check that the θ produced by Algorithm 1 with δ ∈ (0, 1) is in sp(δ). The three compo-

nents of our θ(t) are displayed in Figure 1. The generated θ is, in theory, C∞. We can

Algorithm 1: Adapted Levinson-Durbin algorithm.

parameters the stability parameter δ > 0 and the time varying partial

autocorrelation functions θk,k, k = 1, . . . , p;

for k = 2 to p do

for j = 2 to p − 1 do

θ j,k = θ j,k−1 + δ
2 j−2kθk,kθk− j,k−1;

then ensure that for any β > 0, it is in Λp(β,R) for some R > 0. For convenience we

build θ̃ with k = 1.

For each T ∈ {22 j, j = 5, . . . , 15} we generate 100 realizations of a TVAR process

from innovation sequences (ξt)t∈Z of i.i.d. centred Gaussian random variables with unit

variance by sampling θ at a rate T−1. Then we compare θ̂ and θ̃ for estimating θ(1/2)

using h ≡ 1 and different values of M. Recall that θ(1/2) = θ∗
T/2,T

. Figure 2 shows the

boxplots corresponding to this evaluation for two different T s.

In Figure 2 we observe that for T = 220 the error of θ̂ is minimized in M = 215

while that of θ̃ reaches its minimum in M = 217. The estimator θ̃ beats θ̂ for the

two biggest values of M. In the case T = 230, the error of θ̂ reaches its mini-

mum in M = 223
= T 4/5/2 and that of θ̃ in M = 226

= 22 T 4/5. The estimator

11
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Figure 1: Plots of θ1(t) (top), θ2(t) (middle) and θ3(t) (bottom) on the interval t ∈ [0, 1].
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Figure 2: Box plots of the quadratic losses for estimating θ(1/2) using θ̂T/2,T (M) (red

boxes) and θ̃T/2,T (M) (blue boxes) for various bandwidths M, when T = 220 (left) and

T = 230 (right).

θ̃ beats θ̂ for the four biggest values of M. These experiences illustrate the theo-

retical result established in [13, Theorem 2.2] (where an optimal rate for θ̂ estima-

tion is obtained with M ∝ T 4/5) and Corollary 2 (exhibiting the optimal rate for θ̃

estimation in M ∝ T 4/5, if β = 2). Figure 3 (left graph) displays the oracle er-

rors minM ‖̂θT/2,T (M) − θ(1/2)‖ and minM ‖̃θT/2,T (M) − θ(1/2)‖ for all T ∈ {22 j, j =

5, . . . , 15}. The slope corresponding to θ̃ (in blue) is steeper than the one correspond-

ing to θ̂ (in red), meaning that, in average, θ̃ outperforms θ̂ by an increasing order

of magnitude as T increases. This corroborates what is expected from our theoretical

12



2
10 212 214 216 218 220 222 224 226 228 230

T

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

o
ra

c
le

 l
o
s
s

b
θ loss

b
θ loss slope

e
θ loss

e
θ loss slope

210 212 214 216 218 220 222 224 226 228 230

T

10
-2

10
-1

10
0

10
1

10
2

o
�
�
�
��

�o
�
�
�
�

�
�
�
�
o

Figure 3: Oracle losses (using the best choice for the bandwidth M) for estimating

θ(1/2) using θ̂T/2,T (M) (red points) and θ̃T/2,T (M) (blue points) for various values of

T . The left plot displays the losses over all the Monte Carlo simulations and the two

resulting log-log regression lines. The right plot displays boxplots of the corresponding

losses ratio.

analysis (see Corollary 2). The boxplots of Figure 3 (right graph) represent the ratios

minM ‖̃θT/2,T (M) − θ(1/2)‖/minM ‖̂θT/2,T (M) − θ(1/2)‖ computed for each T and real-

ization of the TVAR process. Observe that for 214 ≤ T ≤ 218 the estimator θ̃ beats θ̂ in

at least half of the cases. For T ≥ 220, it happens in at least 75% of the cases.

A Useful results on locally stationary time series

This section provides the background necessary to support the proof of our main results

about locally stationary processes. The next two lemmas allow to control the norms of

θ̂t,T and θt/T .

Lemma 1. Let (Xt,T )t∈Z,T∈N∗ be a locally stationary process in the sense of Definition

3 such that P(Xt,T = 0) = 0 for any t ≤ T. The Yule-Walker estimate θ̂t,T (M) defined by

Equation (4.1) satisfies ||̂θt,T (M)|| ≤ 2d almost surely.

Proof. This proof is an adaptation of that of [13, Lemma 4.2].

We start by showing that Γ̂t,T,M, with entries defined as in (4.1), is non-

singular almost surely. Suppose on the contrary that P(det(̂Γt,T,M) = 0) > 0. This

means that there is an x ∈ (Rd)∗ such that Γ̂t,T,M x = 0 and therefore

x
′
Γ̂t,T,M x =

∫ π
−π

f̂M(t/T, λ)|
∑d

j=1 x j exp(i jλ)|2dλ = 0. The expression inside the mod-

ulus vanishes at most for d − 1 values of λ, otherwise x = 0 because the obtained

Vandermonde determinant is non-zero. Then f̂M(t/T, λ) = 0 for almost all λ ∈ [−π, π].

Since {exp(−iλs), s = 0, . . . ,M − 1} is a subset of an orthogonal basis of L2([0, 1]) we

get that h(s/M)Xt−M/2+s+1,T = 0 for s = 0, . . . ,M−1, but then P(Xt,T = 0) > 0 for some

1 ≤ t ≤ T .

Observe that for any s, γ̂M(s, ·) defined by (4.1) is an autocovariance function. Set-

ting s = t/T , the corresponding covariance matrix Γ̂t,T,M is positive-definite almost
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surely. As consequence of Lemma 9 (Appendix D) we have that z1, . . . , zd, the roots of

the polynomial θ̂t,T (z) = 1 −
∑d

j=1 θ̂ j,t,T z j satisfy |z j| > 1 for any j. Then,

∣∣∣∣
∣∣∣∣̂θt,T (M)

∣∣∣∣
∣∣∣∣
2

+ 1 =
1

2π

π∫

−π

∣∣∣∣∣∣∣∣
1 −

d∑

j=1

θ̂ j,t,T exp (i jλ)

∣∣∣∣∣∣∣∣

2

dλ =
1

2π

π∫

−π

∣∣∣∣̂θt,T

(
exp (iλ)

)∣∣∣∣
2

dλ .(A.1)

Note that
∏d

j=1(−zi) = 1. Therefore

θ̂t,T (z) =

d∏

j=1

(
z − z j

)
=

d∏

j=1

(
1 − zz−1

j

)
. (A.2)

If |z| = 1, Equation (A.2) implies that |̂θt,T (z)| ≤ 2d. Putting this into (A.1) the proof

is completed. �

Lemma 2. Let (Xt,T )t∈Z,T∈N∗ be a locally stationary process in the sense of Definition

3. Assume that f (u, λ) > 0 for all u, λ ∈ R. The vector θu defined by Equation (2.8)

satisfies ||θu|| ≤ 2d.

Proof. The proof follows the same scheme of that of Lemma 1 up to simplifications.

Here the contradiction f (u, λ) = 0 for almost all λ ∈ [−π, π] raises immediately from

the assumptions. Observe that, instead of an almost sure result, this is a deterministic

one. �

Lemma 2 is necessary to prove the following.

Lemma 3. Let (Xt,T )t∈Z,T∈N∗ be a locally stationary process in the sense of Definition 3

where the spectral density f satisfies f (u, λ) ≥ f− for all u, λ ∈ R. Then, there exist two

constants C1, T0 > 0 depending only on d,C (see Inequality (2.3)) and f− such that, for

T ≥ T0 we have

∣∣∣
∣∣∣θ∗t,T − θt/T

∣∣∣
∣∣∣ ≤ C1

T
, (A.3)

Proof. From equations (2.7) and (2.8) we obtain that

θ∗t,T − θt/T =

(
Γ
∗
t,T

)−1 [(
Γt/T − Γ

∗
t,T

)
θt/T + γ

∗
t,T − γt/T

]
.

Applying matrix inequalities (specifically with the spectral norm) we get

‖θ∗t,T − θt/T ‖ ≤

∣∣∣∣
∣∣∣∣
(
Γ
∗
t,T

)−1
∣∣∣∣
∣∣∣∣
(∣∣∣
∣∣∣Γt/T − Γ

∗
t,T

∣∣∣
∣∣∣
∣∣∣
∣∣∣θt/T

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣γ∗t,T − γt/T

∣∣∣
∣∣∣
)
.

Inequality (2.3) implies that ||Γt/T − Γ
∗
t,T || ≤ d3/2C/T and that ||γ∗

t,T − γt/T || ≤ d1/2C/T .

The smallest eigenvalue of the matrix Γt/T is positive, at least 2π f− (see [5, Proposi-

tion 4.5.3]). Observe that

inf
t

inf
||a||=1

a
′
Γ
∗
t,T a = inf

t
inf
||a||=1

{
a
′
(
Γ
∗
t,T − Γt/T

)
a + a

′
Γt/T a

}

≥ inf
t

inf
||a||=1

a
′
(
Γ
∗
t,T − Γt/T

)
a + inf

t
inf
||a||=1

a
′
Γt/T a ≥ 2π f− −

d3/2C

T
.
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Then, for T ≥ T0 = Cd3/2(π f−)−1 we have ||(Γ∗
t,T )−1|| ≤ (π f−)−1. Lemma 2 ensures that

||θt/T || ≤ 2d and the result follows with C1 = Cd1/2(π f−)
−1(d2d

+ 1). �

Theorem A.1. Let d ∈ N∗, β ≥ 2,R > 0, f− = 0 and h : [0, 1] → R. Let k ∈ N and

α ∈ (0, 1] be uniquely defined such that β = k + α and consider M ∈ 2N∗ with M > d.

Suppose that Assumptions (M-1) and (H) hold. Then, for all −d ≤ j ≤ d we have

E

[
γ̂M

(
t

T
, j

)]
= γ

(
t

T
, j

)
+

k∑

ℓ=1

ch, f , j,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′ ||∞,β,R

(
1

M
+

(
M

T

)β)
,

where ch, f , j,ℓ only depends on h, the spectral density f , j and ℓ. If h(x) = h(1 − x) for

all x ∈ [0, 1], then ch, f , j,1 = 0.

Our proof of Theorem A.1 can be found in Appendix A.1. It uses the following

lemma.

Lemma 4. Let β > 0 and R > 0. Consider f : R → R, a function in Λ1(β,R) and

a ∈ R. Let k ∈ N and α ∈ (0, 1] be uniquely defined such that β = k + α. The function

f admits the representation

f (x) =

k∑

ℓ=0

f (ℓ) (a)

ℓ!
(x − a)ℓ + fk (x) , (A.4)

where fk(x) = Oβ,R((x − a)β).

Proof. The expression (A.4) corresponds to the Taylor expansion of the function f .

Without loss of generality, let x > a. We just need to proof that the remainder term is

bounded by (x − a)β up to a constant. Using the definition of the norm | · |β we have

f
(k)

k
(x) ≤ R(x − a)α. The result follows by integrating k times the previous inequality.

�

A.1 Proof of Theorem A.1

Without loss of generality let j ≥ 0. We start by expressing γ̂M in function of γ∗

E

[
γ̂M

(
t

T
, j

)]
=

1

HM

M∑

t1,t2=1
t1−t2=ℓ

h

(
t1

M

)
h

(
t2

M

)
E

[
Xt+t1−M/2,T Xt+t2−M/2,T

]
,

=
1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

)
γ∗

(
t + s −

M

2
, T, j

)
.

Since Inequality (2.3) guaranties that

∣∣∣∣∣∣γ
∗

(
t + s −

M

2
, T, j

)
− γ

(
t + s − M/2

T
, j

)∣∣∣∣∣∣ = OR

(
1

T

)
, (A.5)
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we evaluate

γM, j =
1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

)
γ

(
t + s − M/2

T
, T, j

)
,

and then use the expression of γM, j for computing E[̂γM(t/T, j)].

We apply Lemma 4 on the first component of f . The corresponding ℓ-th derivative

is denoted by ∂ℓ
1
.

f

(
t − M/2 + s

T
, λ

)
=

k∑

ℓ=0

∂ℓ
1

f (t/T, λ)

ℓ!

(
−M/2 + s

T

)ℓ
+ fk

(
t − M/2 + s

T
, λ

)
,

with fk((t − M/2 + s)/T, λ) = Oβ,R((M/T )β). Then

γM, j =
1

HM

π∫

−π

exp (i jλ)

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

)
f

(
t − M/2 + s

T
, λ

)
dλ =

k∑

ℓ=0

π∫

−π

∂ℓ
1

f (t/T, λ)

ℓ!
exp (i jλ)

1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

) (
−M/2 + s

T

)ℓ
dλ

+

π∫

−π

exp (i jλ)
1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

)
fk

(
t − M/2 + s

T
, λ

)
dλ . (A.6)

Note that for all ℓ = 1, . . . , k

1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

) (
−M/2 + s

T

)ℓ
=

(
M

T

)ℓ M

HM

1

M

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

) (
−

1

2
+

s

M

)ℓ
. (A.7)

Since h is piecewise C1, maybe except for N values of s in j + 1, . . . ,M we have

h

(
s − j

M

)
= h

(
s

M

)
+ O||h′ ||∞

(
d

M

)
,

and we express the right-hand side of (A.7) as two right Riemann sums
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1

M

M∑

s= j+1

h2
(

s

M

) (
−

1

2
+

s

M

)ℓ
=

1∫

0

h2 (u)

(
u −

1

2

)ℓ
du +

||h||∞ (||h′||∞ + ℓ ||h||∞)

2ℓM
o1,M,ℓ

+
d ||h||2∞

M
o2,M,ℓ ,

1

M

M∑

s= j+1

h

(
s

M

) (
−

1

2
+

s

M

)ℓ
=

1∫

0

h (u)

(
u −

1

2

)ℓ
du +

||h′||∞ + 2ℓ ||h||∞

2ℓ+1M
o3,M,ℓ

+
d ||h||∞

M
o4,M,ℓ ,

with |oi,M,ℓ| ≤ 1 for i = 1, . . . , 4. Analogously

M

HM

=



1∫

0

h2 (u) du



−1 (
1 +
||h||∞ ||h

′||∞

2ℓM
oM,ℓ

)
, (A.8)

with |oM,ℓ| ≤ 1. Hence

1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

) (
−M/2 + s

T

)ℓ
= ch,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′||∞

(
1

M

) (
M

T

)ℓ
. (A.9)

Observe that ch,0 = 1 and ch,1 = 0 if h(x) = h(1 − x) for all x ∈ [0, 1]. Using (A.9)

and the upper bound on fk, we express the terms of the second and third lines of (A.6)

as follows

π∫

−π

∂ℓ
1

f (t/T, λ)

ℓ!
exp (i jλ)

1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

) (
−M/2 + s

T

)ℓ
dλ = ch, f , j,ℓ

(
M

T

)ℓ

+Od,||h||∞,||h′ ||∞,β,R

(
1

M

)
,

π∫

−π

φ (λ)
1

HM

M∑

s= j+1

h

(
s

M

)
h

(
s − j

M

)
fk

(
t − M/2 + s

T
, λ

)
dλ = Od,||h||∞,||h′ ||∞,β,R

((
M

T

)β)
,

where, in particular ch, f , j,0 = γ(t/T, j). This implies that

γM, j = γ

(
t

T
, j

)
+

k∑

ℓ=1

ch, f , j,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′ ||∞,β,R

(
1

M
+

(
M

T

)β)
.

Note that the relation (A.5) together with (A.9) evaluated in ℓ = 0 allow to conclude

the proof.
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B Proof of bounds of the estimation risk

B.1 Proof of Theorem 5.1

We start by enunciating and proving the following.

Lemma 5. Let d be a positive integer. Consider the d × d real non singular matrices Γ

and Γ̂ and the vectors γ, γ̂, θ, θ̂ ∈ Rd satisfying the relations

Γθ = γ , (B.1)

Γ̂ θ̂ = γ̂ . (B.2)

Then, for any k ∈ N we have

θ̂ − θ =

Γ
−1
+

k∑

ℓ=1

(
Γ
−1

(
Γ − Γ̂

))ℓ

(̂
γ − γ

)

+

k+1∑

ℓ=1

(
Γ
−1

(
Γ − Γ̂

))ℓ
θ +

(
Γ
−1

(
Γ − Γ̂

))k+1 (̂
θ − θ

)
. (B.3)

Proof. From Equations (B.1) and (B.2) we get

θ̂ − θ = Γ
−1

[(
Γ − Γ̂

)
θ̂ + γ̂ − γ

]
.

The result follows by applying recursion. �

Gathering together Assumption (C) and Theorem A.1 yields

γ̂M

(
t

T
, j

)
= γ

(
t

T
, j

)
+

k∑

ℓ=1

ch, f , j,ℓ

(
M

T

)ℓ

+ Od,||h||∞,||h′||∞,β,R

(
1

M
+

(
M

T

)β)
+ uM

(
t

T
, j

)
, (B.4)

where uM(t/T, j) = OL• ,||h||∞,||h′||∞,R, j(M−1/2) and ch, f , j,1 = 0 if h(x) = h(1 − x) for all

x ∈ [0, 1].

For the sake of simplicity, we drop t, T in the notation and set γ = γt/T , γ̂M = γ̂t,T,M,

Γ ≡ Γt/T and Γ̂M ≡ Γ̂t,T,M. Using the expression (B.4), we choose j = 0, . . . , d and

obtain

Γ − Γ̂M =

k∑

ℓ=1

Ch, f ,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′ ||∞,β,R

(
1

M
+

(
M

T

)β)
+ UM , (B.5)

γ̂M − γ =

k∑

ℓ=1

ch, f ,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′||∞,β,R

(
1

M
+

(
M

T

)β)
+ uM , (B.6)

where the matrices Ch, f ,ℓ ∈ R
d×d and the vectors ch, f ,ℓ ∈ R

d only depend on h, f and ℓ.

Furthermore UM = OL• ,d,||h||∞,||h′||∞,β,R(M−1/2) and uM = OL• ,d,||h||∞,||h′||∞,β,R(M−1/2). Again

Ch, f ,1 = 0 and ch, f ,1 = 0 if h(x) = h(1 − x) for all x ∈ [0, 1].
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Note that the product of q > 0 expressions for the form

k∑

ℓ=1

Ch,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′ ||∞,β,R

(
1

M
+

(
M

T

)β)
+ VM ,

with VM = OL• ,d,||h||∞,||h′||∞,β,R(M−1/2), has the form

k∑

ℓ=q

Dh,ℓ

(
M

T

)ℓ
+ Od,||h||∞,||h′||∞,β,R

(
1

M
+

(
M

T

)β)
+WM ,

with WM = OL• ,d,||h||∞,||h′||∞,β,R(M−1/2) and Dh,ℓ = 0 for ℓ ∈ [q, 2q) if all the Ch,1 of the

factors vanish. This remark, together with (B.3) of Lemma 5, (B.5), (B.6), and the

bounds provided by Lemma 1, Lemma 2 and Lemma 8 imply what is claimed in (5.2).

B.2 Proof of Theorem 5.2

For each ℓ = 0, . . . , k plug M/2ℓ instead of M into Equation (5.2), multiply the resulting

expression by αℓ and sum. Matrix A (definition below Equation (5.3)) is a non singular

Vandermonde matrix and α is well defined. If h(x) = h(1 − x) for x ∈ [0, 1] we can

remove the second row of matrix A because the first order term of (5.2) is zero.

C Useful results on time varying autoregressive pro-

cesses

Let δ be a positive real number. Consider the set

s(p) (δ) =

θ ∈ R
p : θ (z) = 1 −

p∑

k=1

θkzk
, 0, for |z| < δ−1

 . (C.1)

As an immediate consequence of Hurwitz’s theorem (see [9, Theorem 2.5] or [15,

Section 3, Chapter VIII]) we obtain the following lemma.

Lemma 6. For any δ > 0 the set s(p) (δ) defined by Equation (C.1) is closed and

minθ∈s(p)(δ) ||θ||∞ > 0 only depends on p and δ.

Since θ ∈ sp(δ) and σ ∈ Λ1(β,R), thank to Lemma 6 we have that for any λ ∈ R

the spectral density f (·, λ) belongs to a Λ1(β,R′) with R′ depending only on R, δ and

continuously on β. A direct consequence of Lemma 6 is given below.

Lemma 7. Let δ ∈ (0, 1), β > 0,R > 0 and ρ ∈ [0, 1]. Suppose that Assumptions (M-2)

and (I) hold. There exist two constants f−, f+, depending only on p, δ, ρ and σ+ such

that 0 < f− ≤ f (u, λ) ≤ f+ for all u, λ ∈ R.
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D Useful results on weakly stationary processes

In the context of real weakly stationary processes (see [4] and [24]), the autocovariance

matrix of (Xt)t∈Z, that we call Γd, is Toeplitz and symmetric. Observe that

Γd =



γ (0) γ (1) γ (2) . . . γ (d − 1)

γ (1) γ (0) γ (1) . . . γ (d − 2)
...

...
...

. . .
...

γ (d − 1) γ (d − 2) γ (d − 3) . . . γ (0)


. (D.1)

Proposition 1. A complex-valued function defined on Z is the autocovariance function

of a weakly stationary process (Xt)t∈Z taking values in C if and only if the following

two properties hold.

(i) Hermitian symmetry: for all s ∈ Z,

γ (−s) = γ (s) .

(ii) Nonnegativity: for all d ∈ N∗ and a1, . . . , ad ∈ C,

d∑

i=1

d∑

j=1

aiγ
(
ti − t j

)
a j ≥ 0 .

A crucial concept in the study of weakly stationary processes is the spectral mea-

sure, defined from the autocovariance function γ (see [4, Theorem 4.3.1]). We denote

by B([−π, π)) the Borel σ-algebra associated with [−π, π).

Theorem D.1 (Herglotz). A sequence γ is nonnegative definite and hermitian in the

sense of Proposition 1 if and only if there exists a finite nonnegative measure ν on

([−π, π),B([−π, π))) such that, for all s ∈ Z :

γ (s) =

π∫

−π

exp (ikλ) ν (dλ) . (D.2)

Furthermore, the measure ν is unique.

The next result links the spectral density function (when it exists) and the spectrum

of the covariance matrix Γd.

Lemma 8. Assume that the autocovariance function γ has a spectral density function

f ∈ [ f−, f+] with f− ≤ f+. For any d ∈ N∗, the spectrum of the covariance matrix

(Equation (D.1)) is contained in [2π f−, 2π f+].

Proof. Consider a = [a1 . . . ad]′ ∈ Rd. If we express γ using the representation (D.2)

we obtain
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a
′
Γd a =

π∫

−π

∣∣∣∣∣∣∣∣

d∑

j=1

a j exp (i jλ)

∣∣∣∣∣∣∣∣

2

f (λ) dλ .

Therefore 2π f+
∑d

j=1 a2
j
≥ a

′
Γd a ≥ 2π f−

∑d
j=1 a2

j
. Choosing a as any eigenvector of

Γd the result follows. �

The lemma below is similar in flavor to the statistical result of [26, Section 3]. It is

also a classical property of orthogonal polynomials (see [17, Section 2.4]). We provide

an elementary proof.

Lemma 9. Let γ be a real autocovariance function (in the sense of Proposition 1) such

that for any d ∈ N∗, the covariance matrix Γd defined by Equation (D.1) is positive-

definite. Denote the vector γd = [γ(1) . . . γ(d)]′ and let θ̂ = [̂θ1 . . . θ̂d]′ = Γ−1
d
γd.

Then, all the roots of the polynomial θ̂(z) = 1 −
∑d

j=1 θ̂ jz
j are in the set {z ∈ C : |z| > 1}.

Proof. For j = 1, . . . , d, let e j = [0 . . . 1 . . . 0]′ be the Rd- vector having a 1 in the

j-th position and zero everywhere else. Consider also the matrix

A =



θ̂1 θ̂2 . . . . . . θ̂d
1 0 . . . . . . 0

0 1 0
. . . 0

... 0
. . .

. . .
...

0 . . . 0 1 0



=



θ̂′

e
′
1
...

e
′
d−1


.

Since the roots of θ̂(z) are the inverses of the eigenvalues of A, we need to proof that

these eigenvalues are inside the open unit disk. Observe that

Γd − AΓdA′ = Γd −



θ̂′Γdθ̂ θ̂′Γde1 . . . . . . θ̂′Γded−1

e
′
1
Γdθ̂ e

′
1
Γde1 . . . . . . e

′
1
Γded−1

e
′
2
Γdθ̂ e

′
2
Γde1 . . . . . . e

′
2
Γded−1

...
...

. . .
. . .

...

e
′
d−1
Γdθ̂ e

′
d−1
Γde1 . . . . . . e

′
d−1
Γded−1



.

Because Γd is a Toeplitz matrix, its (i, j)-th entries, and those of AΓdA′ are equal

for i, j ≥ 2. The definition of θ̂ implies also the equality of the (i, j)-th en-

tries of both matrices when i = 1, j ≥ 2 and i ≥ 2, j = 1. Since θ̂ is

the solution of Γdθ̂ = γd, we have that θ̂ j = −Γd+1,d, j/ det(Γd) where Γd,i, j is

the cofactor of the (i, j)-th entry of Γd. Finally, in the position (1, 1) we have

γ(0) − θ̂′γd =
∑d

j=0 γ( j)Γd+1,d, j/ det(Γd) = det(Γd+1)/ det(Γd) > 0. Consider now λ, an

eigenvalue of A and the corresponding eigenvector v , 0. We verify that v =

[λd−1 . . . λ 1]′vd. From the previous analysis we get v̄
′(Γd − AΓdA′)v = |λ|2d−2(1 −

|λ|2) det(Γd+1)/ det(Γd)|vd|
2 ≥ 0 and the inequality is strict if λ , 0. As claimed

|λ| < 1. �
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[17] Ulf Grenander and Gábor Szegő. Toeplitz forms and their applications. Chelsea

Publishing Co., New York, second edition, 1984.

[18] Anatoli Juditsky and Arkadii Nemirovski. Functional aggregation for nonpara-

metric regression. Ann. Statist., 28(3):681–712, 2000.

[19] Gilbert Leung and Andrew R. Barron. Information theory and mixing least-

squares regressions. IEEE Trans. Inform. Theory, 52(8):3396–3410, 2006.

[20] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.

Inform. and Comput., 108(2):212–261, 1994.

[21] John Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,

63(4):561–580, april 1975.

[22] Eric Moulines, Pierre Priouret, and François Roueff. On recursive estimation for

time varying autoregressive processes. Ann. Statist., 33(6):2610–2654, 2005.

[23] M. B. Priestley. Evolutionary spectra and non-stationary processes.(With discus-

sion). J. Roy. Statist. Soc. Ser. B, 27:204–237, 1965.

[24] Robert H. Shumway and David S. Stoffer. Time series analysis and its applica-

tions. Springer Texts in Statistics. Springer, New York, third edition, 2011. With

R examples.

[25] Volodimir G Vovk. Aggregating strategies. In Proc. Third Workshop on Compu-

tational Learning Theory, pages 371–383, San Mateo, CA, 1990. Morgan Kauf-

mann.

[26] P. Whittle. On the fitting of multivariate autoregressions, and the approximate

canonical factorization of a spectral density matrix. Biometrika, 50:129–134,

1963.

[27] Yuhong Yang. Combining different procedures for adaptive regression. J. Multi-

variate Anal., 74(1):135–161, 2000.

23



[28] Yuhong Yang. Combining forecasting procedures: some theoretical results.

Econometric Theory, 20(1):176–222, 2004.

24


	Introduction
	General setting
	Main definitions
	Statement of the problem

	Minimax estimation for adaptive prediction
	Tapered Yule-Walker estimate
	Main results in the general framework
	Additional assumptions
	Bound of the estimation risk

	Application to TVAR processes
	Numerical work
	Useful results on locally stationary time series
	Proof of Theorem A.1

	Proof of bounds of the estimation risk
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Useful results on time varying autoregressive processes
	Useful results on weakly stationary processes

