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ABSTRACT 14 

Agroforestry systems, i.e., agroecosystems combining trees with farming practices, are of 15 

particular interest as they combine the potential to increase biomass and soil carbon (C) 16 

storage whilst maintaining an agricultural production. However, most present knowledge on 17 

the impact of agroforestry systems on soil organic carbon (SOC) storage comes from tropical 18 

systems. This study was conducted in southern France, in an 18-year-old agroforestry plot, 19 

where hybrid walnuts (Juglans regia × nigra L.) are intercropped with durum wheat (Triticum 20 

turgidum L. subsp. durum), and in an adjacent agricultural control plot, where durum wheat is 21 

the sole crop. We quantified SOC stocks to 2.0 m depth and their spatial variability in relation 22 

to the distance to the trees and to the tree rows. The distribution of additional SOC storage in 23 

different soil particle-size fractions was also characterised.  SOC accumulation rates between 24 
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the agroforestry and the agricultural plots were 248 ± 31 kg C ha-1 yr-1 for an equivalent soil 25 

mass (ESM) of 4000 Mg ha-1 (to 26-29 cm depth) and 350 ± 41 kg C ha-1 yr-1 for an ESM of 26 

15700 Mg ha-1 (to 93-98 cm depth). SOC stocks were higher in the tree rows where 27 

herbaceous vegetation grew and where the soil was not tilled, but no effect of the distance to 28 

the trees (0 to 10 m) on SOC stocks was observed. Most of additional SOC storage was found 29 

in coarse organic fractions (50-200 and 200-2000 µm), which may be rather labile fractions. 30 

All together our study demonstrated the potential of alley cropping agroforestry systems 31 

under Mediterranean conditions to store SOC, and questioned the stability of this storage.  32 

 33 

Keywords: Tree-based intercropping system, Soil mapping, Soil organic carbon storage, Soil 34 

organic carbon saturation, Deep soil organic carbon stocks, Visible and near infrared 35 

spectroscopy, Particle-size fractionation 36 

 37 

1. Introduction 38 

Agroforestry systems are defined as agroecosystems associating trees with farming practices 39 

(Somarriba, 1992; Torquebiau, 2000). Several types of agroforestry systems can be 40 

distinguished depending on the different associations of trees, crops and animals (Torquebiau, 41 

2000). In temperate regions, an important part of recently established agroforestry systems are 42 

alley cropping systems, where parallel tree rows are planted in crop lands, and designed to 43 

allow mechanization of annual crops. Agroforestry systems are of particular interest as they 44 

combine the potential to provide a variety of non-marketed ecosystem services, defined as the 45 

benefits people obtain from ecosystems (Millennium Ecosystem Assessment, 2005; Power, 46 

2010) whilst maintaining a high agricultural production (Clough et al., 2011). For instance, 47 

agroforestry systems can contribute to water quality improvement (Bergeron et al., 2011; 48 
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Tully et al., 2012), biodiversity enhancement (Schroth et al., 2004; Varah et al., 2013), and 49 

erosion control (Young, 1997). But agroforestry systems are also increasingly recognized as a 50 

useful tool to help mitigate global warming (Pandey, 2002; Stavi and Lal, 2013; Verchot et 51 

al., 2007). Trees associated to annual crops store the carbon (C) assimilated through 52 

photosynthesis into their aboveground and belowground biomass. The residence time of C in 53 

the harvested biomass will depend on the fate of woody products, and can reach many 54 

decades especially for timber wood (Bauhus et al., 2010; Profft et al., 2009). Agroforestry 55 

trees also produce organic matter (OM) inputs to the soil (Jordan, 2004; Peichl et al., 2006), 56 

and could thus enhance soil organic carbon (SOC) stocks. Leaf litter and pruning residues are 57 

left on the soil, whereas OM originating from root mortality and root exudates can be 58 

incorporated much deeper into the soil as agroforestry trees may have a very deep rooting to 59 

minimize the competition with the annual crop (Cardinael et al., 2015; Mulia and Dupraz, 60 

2006). Moreover, several studies showed that root-derived C was preferentially stabilized in 61 

soil compared to above ground derived C (Balesdent and Balabane, 1996; Rasse et al., 2005), 62 

mainly due to physical protection of root hairs within soil aggregates (Gale et al., 2000), to 63 

chemical recalcitrance of root components (Bird and Torn, 2006), or to adsorption of root 64 

exudates or decomposition products on clay particles (Chenu and Plante, 2006; Oades, 1995). 65 

Compared to an agricultural field, additional inputs of C from tree roots could therefore be 66 

stored deep into the soil, but could also enhance decomposition of SOM, i.e., due to the 67 

priming effect (Fontaine et al., 2007).  68 

Although it is generally assumed that agroforestry system have the potential to increase SOC 69 

stocks (Lorenz and Lal, 2014), quantitative estimates are scarce, especially for temperate 70 

(Nair et al., 2010; Peichl et al., 2006; Pellerin et al., 2013; Upson and Burgess, 2013) or 71 

Mediterranean (Howlett et al., 2011) agroforestry systems  combining crops and tree rows. 72 
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Most studies concern tropical regions where agroforestry is a more widespread agricultural 73 

practice (Albrecht and Kandji, 2003; Somarriba et al., 2013).  74 

Moreover, as pointed out by Nair (2012), very few studies assessed the impact of agroforestry 75 

trees deep in the soil (Haile et al., 2010; Howlett et al., 2011; Upson and Burgess, 2013). Most 76 

of them considered SOC at depths of less than 0.5 m (Bambrick et al., 2010; Oelbermann and 77 

Voroney, 2007; Oelbermann et al., 2004; Peichl et al., 2006; Sharrow and Ismail, 2004). This 78 

lack of knowledge concerning deep soil is mainly due to difficulties to attain profound soil 79 

depths, and to the cost of analyzing soil samples from several soil layers. Recently, new 80 

methods such as visible and near infrared reflectance (VNIR) spectroscopy have been 81 

developed (Brown et al., 2006; Stevens et al., 2013). They allow time- and cost-effective 82 

determination of SOC concentration, in the laboratory but also in the field  (Gras et al., 2014). 83 

Additionally to the lack of data for deep soil, reference plots were not always available, 84 

preventing from estimating the additional storage of SOC due specifically to agroforestry 85 

(Howlett et al., 2011).  86 

In alley cropping systems, spaces between trees in tree rows are usually covered by natural or 87 

sowed herbaceous vegetation, and the soil under tree rows is usually not tilled, which may 88 

favor SOC storage in soil (Virto et al., 2011). Moreover, while trees strongly affects the depth 89 

and spatial distribution of OM inputs to soils (Rhoades, 1997), distribution of SOC stocks 90 

close and away from trees was seldom considered. Some authors reported higher SOC stocks 91 

under the tree canopy than 5 m from the tree to 1 m soil depth (Howlett et al., 2011), others 92 

found that spatial distribution of SOC stocks could vary with the age of the trees (Bambrick et 93 

al., 2010). Some authors reported that spatial distribution of SOC stocks to 20 cm depth was 94 

not explained by the distance to the trees but by the design of the agroforestry system, tree 95 

rows having higher SOC stocks than inter-rows whatever the distance to the trees (Peichl et 96 

al., 2006; Upson and Burgess, 2013). To our knowledge, geostatistical methods (Webster and 97 
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Oliver, 2007) have never been used to describe the spatial distribution of SOC stocks in alley 98 

cropping agroforestry system although they have been recognized to be very powerful to map 99 

and understand spatial heterogeneity at the plot scale (Philippot et al., 2009) especially when 100 

dealing with more diverse and heterogeneous systems.  101 

In addition, it is not known whether additional SOC (compared to an agricultural field) due to 102 

the presence of trees and tree rows, corresponds to soil fractions with a rapid turnover, such as 103 

particulate organic matter (POM), or to clay and silt associated OM, likely to be stabilized in 104 

soil for a longer period of time (Balesdent et al., 1998). Takimoto et al. (2008) and Howlett et 105 

al. (2011) found that carbon content of coarse organic fractions was increased at different 106 

depths under agroforestry systems. But, Haile et al. (2010) found that trees grown in a 107 

silvopastoral system contributed to most of the SOC associated to the fine silt + clay fractions 108 

to 1 m depth. The potential of a soil for SOC storage in a stable form is limited by the amount 109 

of fine particles (clay + fine silt) and can be estimated by the difference between the 110 

theoretical SOC saturation (Hassink, 1997) and the measured SOC saturation value for the 111 

fine fraction (Angers et al., 2011; Wiesmeier et al., 2014).  112 

In this study, we aimed to assess the effect of introducing rows of timber trees into arable land 113 

on SOC storage. For this i) we quantified SOC stocks to a depth of 2.0 m in an agroforestry 114 

plot and in an adjacent agricultural control plot, ii) we assessed the spatial distribution of SOC 115 

stocks in a geostatistical framework taking into account the distance to the trees and to the 116 

tree rows, iii) we studied the distribution of SOC in different soil particle-size fractions. 117 

We hypothesized that SOC stocks would be higher in the agroforestry plot compared to the 118 

control plot, also at depth, and that SOC stocks would decrease with increasing distance to the 119 

trees at all depths. Moreover, our hypothesis was that additional SOC in the agroforestry plot 120 

compared to the control plot would enrich all particle-size fractions. 121 
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2. Materials and methods 122 

2.1. Site description 123 

The experimental site was located in Prades-le-Lez, 15 km North of Montpellier, 124 

France (Longitude 04°01’ E, Latitude 43°43’ N, elevation 54 m a.s.l.). The climate is sub-125 

humid Mediterranean with an average temperature of 14.5°C and an average annual rainfall of 126 

951 mm (years 1996–2003). The soil is a silty and carbonated deep alluvial Fluvisol (IUSS 127 

Working Group WRB, 2007). From 1950 to 1960, the site was a vineyard (Vitis vinifera L.), 128 

and from 1960 to 1985 the field was occupied by an apple (Malus Mill.) orchard. The apple 129 

tree stumps were removed in 1985. Then, durum wheat (Triticum turgidum L. subsp. durum 130 

(Desf.) Husn.) was cultivated.  In February 1995, a 4.6 hectare agroforestry alley-cropping 131 

plot was established after the soil was ploughed to 20 cm depth, with the planting of hybrid 132 

walnuts (Juglans regia × nigra cv. NG23) at 13 × 4 m spacing, with East–West tree rows 133 

(Fig. 1). The remaining part of the plot (1.4 ha) was kept as a control agricultural plot. The 134 

walnut trees were planted at an initial density of 200 trees ha-1. They were thinned in 2004 135 

down to 110 trees ha-1. In the tree rows, the soil was not tilled and spontaneous herbaceous 136 

vegetation grew. The cultivated inter-row was 11 m wide. Since the tree planting, the 137 

agroforestry inter-row and the control plot were managed in the same way. The annual crop 138 

was most of the time durum wheat, except in 1998, 2001 and 2006, when rapeseed (Brassica 139 

napus L.) was cultivated, and in 2010 and 2013, when pea (Pisum sativum L.) was cultivated. 140 

The durum wheat crop was fertilized as a conventional crop (120 kg N ha-1 yr-1), and the soil 141 

was ploughed annually to 20 cm depth, before durum wheat was sown. 142 

 143 

 144 

 145 

http://fr.wikipedia.org/wiki/Brassica_napus
http://fr.wikipedia.org/wiki/Brassica_napus
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 146 

Figure 1. Hybrid walnut-durum wheat agroforestry system. Left panel: in November 2013; 147 

Right panel: in June 2014. 148 

 149 

2.2. Soil core sampling 150 

The experimental site was not designed as traditional agronomical experiments with blocks 151 

and replicates, but with two large adjacent plots. First, soil texture was analyzed for 24 152 

profiles down to 2 m soil depth, following a random sampling design within the two plots. In 153 

May 2013, a sub-plot of 625 m2 was sampled in both plots, following an intensive sampling 154 

scheme (Fig. 2). In the agroforestry plot, this sub-plot included two tree rows, two inter-rows 155 

and nine walnut trees. Walnut trees had a mean height of 11.21 ± 0.65 m, a mean height of 156 

merchantable timber of 4.49 ± 0.39 m and a mean diameter at breast height of 25.54 ± 1.36 157 

cm. Soil cores (n=36) were sampled on a regular grid, every 5 m (Fig. 2). Around each tree, a 158 

soil core was collected at 1 m, 2 m and 3 m distance from the tree (n=57), in the tree row and 159 

perpendicular to the tree row. Seven soil cores were sampled additionally in the middle of the 160 

inter-row to study short scale (1 m distance) spatial heterogeneity of SOC stocks far from the 161 

trees (Fig. 2). The same sampling scheme was followed in the control plot without these seven 162 

additional soil cores. Thus, 100 soil cores were sampled in the agroforestry sub-plot (40 in 163 
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tree rows, 60 in inter-rows) and 93 in the agricultural sub-plot (Fig. 2). All cores were 164 

sampled down to 2 m depth using a motor-driven micro caterpillar driller (8.5-cm diameter 165 

and 1-m long soil probe). The soil probe was successively pushed two times into the soil, to 166 

get 0-1 m and 1-2 m cores at each sampling point. Each soil core was then cut into ten 167 

segments, corresponding to the following depth increments: 0-10, 10-30, 30-50, 50-70, 70-168 

100, 100-120, 120-140, 140-160, 160-180, and 180-200 cm.  169 

 170 

Figure 2. Description of the intensive sampling scheme in the agroforestry and in the control 171 

sub-plots. Circles represent hybrid walnuts, the grey strips represents the tree rows, 172 

triangles are for soil cores on the regular grid (every 5 m), squares are for soil cores 173 

on transects (every 1 m). 174 

 175 

2.3. Use of field visible and near infrared spectroscopy to predict SOC 176 

As core surface had been smoothed by the soil probe, each segment was refreshed with 177 

a knife before being scanned, in order to provide a plane but un-smoothed surface. Then, four 178 

VNIR spectra (from 350 to 2500 nm at 1 nm increment) were acquired in the field at different 179 
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places of each segment, using a portable spectrophotometer ASD LabSpec 2500 (Analytical 180 

Spectral Devices, Boulder, CO, USA), and were then averaged. Reflectance spectra were 181 

recorded as absorbance, which is the logarithm of the inverse of reflectance. The whole 182 

spectrum population was composed of 1908 mean spectra (i.e. 193 cores with 10 sub-cores 183 

per core but a few samples were lost due to mechanical problems). In topsoil (0-30 cm), the 184 

soil was dry and crumbled whereas in deeper soil horizons, it was moister and had higher 185 

cohesion. Thus, two different predictive models were built: one for topsoil samples, the other 186 

for subsoil (30-200 cm) samples. The “topsoil model” for predicting SOC was built using the 187 

116 most representative topsoil samples, out of 380 samples, and the “subsoil model”, using 188 

the 142 most representative subsoil samples, out of 1488 samples. The procedure to select the 189 

most representative samples is presented below. The 0-10 cm soil layer from the tree rows (40 190 

samples) was not used for the topsoil model as it contained abundant plant debris < 2 mm 191 

(roots, leaves, etc.) and a PCA revealed that these VNIR spectra were different from the 192 

whole spectra population. SOC concentration of these samples was therefore determined with 193 

a CHN elemental analyzer, and, thus, not predicted by VNIR. The SOC concentration of the 194 

258 samples selected for building the VNIR prediction models was also analyzed using a 195 

CHN elemental analyzer.  196 

 197 

2.4. VNIR spectra analysis and construction of predictive models 198 

VNIR spectra analysis was conducted on topsoil and subsoil samples separately, using 199 

the WinISI 4 software (Foss NIRSystems/ Tecator Infrasoft International, LLC, Silver Spring, 200 

MD, USA) and R software version 3.1.1 (R Development Core Team, 2013). The most 201 

representative samples, from a spectral viewpoint, were selected using the Kennard-Stone 202 

algorithm, which is based on distance calculation between sample spectra in the principal 203 



10 
 

component space (Kennard and Stone, 1969). For the topsoil model, the calibration subset 204 

included 104 samples (90%) selected as the most representative spectrally, and the validation 205 

subset 12 samples (10%). For the subsoil model, the calibration subset included 128 samples 206 

(90%), and the validation subset 14 samples. Fitting the spectra to the SOC concentrations 207 

determined with a CHN elemental analyzer was performed using partial least squares 208 

regression (PLSR; Martens and Naes, 1989). We tested common spectrum preprocessing 209 

techniques including first and second derivatives, de-trending, standard normal variate 210 

transformation and multiplicative scatter correction, but the best models were obtained when 211 

no pre-treatment was applied on the spectra (data not shown). Then cross-validation was 212 

performed within the calibration subset, using groups that were randomly selected (10 213 

groups), in order to build the model used for making predictions on the samples not analyzed 214 

in the laboratory. No outlier was removed. The number of components (latent variables) that 215 

minimized the standard error of cross-validation (SECV) was retained for the PLSR. The 216 

performance of the models was assessed on the validation subsets using the coefficient of 217 

determination (R²) and the standard error of prediction (SEP) between predicted and measured 218 

values, and also the ratio of standard deviation to SEP, denoted RPD, and the RPIQ, which is 219 

the ratio of performance to IQ (interquartile distance), i.e. IQ/SEP = (Q3 – Q1)/SEP, where 220 

Q1 is the 25th percentile and Q3 is the 75th percentile (Bellon-Maurel et al., 2010). Then all 221 

sub-set samples (i.e., calibration and validation samples) were used to build models that were 222 

applied on the samples not analyzed in the laboratory. The performance of these models was 223 

also assessed according to R², SECV, RPD and RPIQ. 224 

 225 

 226 

 227 
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Table 1. External validation and prediction model results for soil organic carbon. N: numbers of samples; SD: standard deviation (mean and 228 

standard deviation of the conventional determinations); R2: coefficient of determination; RPD is the ratio of performance to deviation, 229 

i.e. the ratio of SD to SEP or SECV. RPIQ is the ratio of performance to IQ (interquartile distance), i.e. IQ/SEP (or SECV) = (Q3 - 230 

Q1)/SEP (or SECV). 231 

Topsoil 

 External validation on 10% samples after 

calibration using 90% samples 

 Prediction model using 100% samples  

(10-group cross-validation) 

N Mean 

mg g-1 

SD 

mg g-1 

SEP 

mg g-1 

Bias 

mg g-1 

R2 RPD RPIQ  N Mean 

mg g-1 

SD 

mg g-1 

SECV 

mg g-1 

R2 RPD RPIQ 

12 9.71 2.09 1.04 -0.59 0.78 1.75 2.60  116 9.18 1.99 1.20 0.63 1.66 4.35 

  

 

 

Subsoil 

 External validation on 10% samples after 

calibration using 90% samples 

 Prediction model using 100% samples  

(10-group cross-validation) 

N Mean 

mg g-1 

SD 

mg g-1 

SEP 

mg g-1 

Bias 

mg g-1 

R2 RPD RPIQ  N Mean 

mg g-1 

SD 

mg g-1 

SECV 

mg g-1 

R2 RPD RPIQ 

14 6.19 1.80 0.83 0.01 0.74 2.03 3.03  142 6.06 1.86 0.77 0.83 2.40 4.85 

 232 

 233 
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Subsoil models performed better than topsoil models (Table 1, Fig. S1). In external 234 

validation, RPD was higher than 2 for the subsoil, which has been considered a threshold for 235 

accurate NIRS prediction of soil properties in the laboratory (Chang et al., 2001). This RPD 236 

threshold was not achieved for the topsoil model, but SOC concentrations were predicted for 237 

less than 60% of topsoil samples, the rest was directly analyzed with a CHN elemental 238 

analyzer. It is worth noting that cross-validation on the whole set (for making prediction on 239 

the samples not analyzed in the lab) yielded better results than external validation (on 10% of 240 

analyzed samples) in the subsoil, but the opposite was observed in the topsoil. 241 

 242 

2.5. Bulk densities determination 243 

 Each segment was weighed in the field to determine its humid mass. Following this 244 

step, each segment was crumbled and homogenized, and a representative sub-sample of about 245 

300 g was sampled. Sub-samples were sieved at 2 mm to separate coarse fragments such as 246 

stones and living roots. Coarse fragments represented less than 1% of each soil mass and were 247 

considered as negligible. Moisture contents were determined for 23 soil cores (i.e. 230 248 

samples) after 48 h drying at 105°C, and were used to calculate the dry mass of all samples. 249 

Bulk density (BD) was determined for each sample by dividing the dry mass of soil by its 250 

volume in the soil corer tube. 251 

 252 

2.6. Reference analysis measurements 253 

After air drying, soil samples were oven dried at 40°C for 48 hours, sieved at 2 mm, 254 

and ball milled until they passed a 200 µm mesh sieve. Carbonates were removed by acid 255 

fumigation, following Harris et al., (2001). For this, 30 mg of soil was placed in open Ag-foil 256 
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capsules. The capsules were then placed in the wells of a microtiter plate and 50 µL of 257 

demineralized water was added in each capsule. The microtiter plate was then placed in a 258 

vacuum desiccator with a beaker filled with 100 mL of concentrated HCl (37%). The samples 259 

were exposed to HCl vapors for 8 hours, and were then dried at 60°C for 48 hours. Capsules 260 

were then closed in a bigger tin capsule. Decarbonated samples were analyzed for organic 261 

carbon concentration with a CHN elemental analyzer (Carlo Erba NA 2000, Milan, Italy). 262 

Isotopic measurements were performed on a few samples to check that decarbonation was 263 

well performed (δ13C OM = -25 ‰). 264 

 265 

2.7. Soil organic carbon stock calculation 266 

In most studies comparing SOC stocks between treatments or over time periods, SOC 267 

stocks have been quantified to a fixed depth as the product of soil bulk density, depth and 268 

SOC concentration. However, if soil bulk density differs between the treatments being 269 

compared, the fixed-depth method has been shown to introduce errors (Ellert et al., 2002). A 270 

more accurate method is to use an equivalent soil mass (ESM) (Ellert and Bettany, 1995). We 271 

defined a reference soil mass profile that was used as the basis for comparison, based on the 272 

lowest soil mass observed at each sampling depth and location. For this reference, soil mass 273 

layers (0-1000, 1000-4000, 4000-7300, 7300-10700, 10700-15700, 15700-18700, 18700-274 

21900, 21900-25100, 25100-28300, 28300-31500 Mg ha−1) corresponded roughly to soil 275 

depth layers (0–10, 10–30, 30–50, 50-70, 70-100, 100-120, 120-140, 140-160, 160-180, 180-276 

200 cm, respectively). For the different treatments (control, tree row, inter-row), SOC stocks 277 

were calculated on this basis, soil mass was the same, whereas depth layer varied (Table 2). 278 

The effect of the ESM correction can be seen in Table S1. SOC stocks in the agroforestry plot 279 

were calculated with tree rows representing 16% of the plot surface area and inter-rows 84%: 280 
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SOC stock𝐴𝑔𝑟𝑜𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦 = 0.16 × SOC stock𝑇𝑟𝑒𝑒 𝑟𝑜𝑤 + 0.84 × SOC stock𝐼𝑛𝑡𝑒𝑟 𝑟𝑜𝑤       (1) 281 

We defined delta SOC stock as the difference between SOC stock in the agroforestry plot and 282 

in the control plot: 283 

Δ SOC stock = SOC stock𝐴𝑔𝑟𝑜𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦 −  SOC stock𝐶𝑜𝑛𝑡𝑟𝑜𝑙       (2) 284 

All SOC stocks were expressed in Mg C ha−1. SOC accumulation rates (kg C ha−1 yr-1) were 285 

calculated by dividing delta stocks by the number of years since the tree planting (18 years):  286 

SOC accumulation rate =
Δ SOC stock

18
 × 1000      (3) 287 

2.8. Particle-size fractionation 288 

Particle-size fractionation was performed for five soil cores from the inter-rows, five from the 289 

tree rows and six from the control plot, and at four depths: 0-10, 10-30, 70-100 and 160-290 

180 cm. Thus, 64 soil samples were fractionated, as described in Balesdent et al. (1998) and 291 

Gavinelli et al. (1995). Briefly, 20 g of 2-mm sieved samples were soaked overnight at 4°C in 292 

300 mL of deionized water, with 10 mL of sodium metaphosphate (HMP, 50 g L-1). Samples 293 

were then shaken 2 h with 10 glass balls in a rotary shaker, at 43 rpm. The soil suspension 294 

was wet-sieved through 200-µm and 50-µm sieves, successively. The fractions remaining on 295 

the sieves were density-separated into organic fractions, floating in water, and remaining 296 

mineral fractions. The 0-50 µm suspension was ultrasonicated during 10 min with a probe-297 

type ultrasound generating unit (Fisher Bioblock Scientific, Illkirch, France) having a power 298 

output of 600 watts and working in 0.7:0.3 operating/interruption intervals. This 0-50 µm 299 

suspension was then sieved through a 20-µm sieve. The resulting 0-20 µm suspension was 300 

transferred to l-L glass cylinders, which were then shaken by hand and 50 mL of the 301 

suspension were withdrawn immediately after. They constituted an aliquot of the entire 0-20 302 

µm fraction. After a settling time of 8 h approximately, a second aliquot of 50 mL was 303 
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removed by siphoning the upper 10 cm of the suspension left after the first sampling. This 304 

represented an aliquot of the 0-2 µm fraction. A third aliquot was also collected in the upper 305 

10 cm, and centrifuged two times 35 min, at 4000 rpm. This aliquot was then filtered at 2 µm 306 

to get the hydrosoluble fraction. Fractions were then dried at 40°C, finely ground, 307 

decarbonated and analyzed with a CHN elemental analyzer. A binocular microscope was used 308 

to check if separation of coarse mineral fractions and of light organic coarse fractions (200-309 

2000 and 50-200 µm) was well done. No pyrogenic particles were observed. Organic carbon 310 

contents of coarse mineral fractions were then assumed to be 0 mg C g-1. A sub-sample of 311 

each of the 64 selected samples was used to perform a classical textural analysis after 312 

destruction of organic matter. These texture analyses were used to evaluate the quality of the 313 

dispersion for soil particle size fractionation. 314 

 315 

2.9. Calculation of SOC saturation 316 

The theoretical value of SOC saturation was calculated according to the equation proposed by 317 

(Hassink, 1997): 318 

𝑆𝑂𝐶𝑠𝑎𝑡−𝑝𝑜𝑡 = 4.09 + 0.37 × particles < 20 μm     (4) 319 

where SOCsat-pot is the potential SOC saturation (mg C g-1) and where particles < 20 µm 320 

represents the proportion of fine soil particles <20 µm (%). 321 

To calculate the SOC saturation deficit (Angers et al., 2011; Wiesmeier et al., 2014), the 322 

estimated current SOC concentrations of the fine fraction were subtracted from the potential 323 

SOC saturation: 324 

𝑆𝑂𝐶𝑠𝑎𝑡−𝑑𝑒𝑓 = 𝑆𝑂𝐶𝑠𝑎𝑡−𝑝𝑜𝑡 − 𝑆𝑂𝐶𝑐𝑢𝑟     (5) 325 
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where SOCsat-def  is the SOC saturation deficit (mg C g-1) and SOCcur is the current mean SOC 326 

concentration of the fine fraction <20 µm (mg C g-1). The total amount of the SOC storage 327 

potential (SOCstor-pot, Mg C ha-1) was calculated multiplying SOCsat-def by soil bulk density and 328 

soil layer thickness. 329 

These calculations were performed for the four depths where particle-size fractionation was 330 

done (0-10, 10-30, 70-100 and 160-180 cm). But as the equation proposed by (Hassink, 1997) 331 

was calibrated for topsoil layers, calculations for deep soil layers are only indicative. 332 

 333 

2.10. Statistical analyses 334 

The observed variability in a soil property 𝑍 such as SOC concentration results from complex 335 

processes operating over various spatial scales. A simple but useful statistical model for 𝑍 at a 336 

set of observations that could be spatially located, 𝒔𝑖 
=  {𝒔 1, 𝒔 2, ⋯ , 𝒔𝑞 } is  337 

 𝑍(𝒔𝑖 ) = 𝜇(𝒔𝑖 ) +  𝜀(𝒔𝑖 )   (6) 338 

where 𝜇(𝒔𝑖 ) is a deterministic component and 𝜀(𝒔𝑖 ) is a correlated random component that 339 

can include a pure noise random one. A soil property can be correlated with other 340 

environmental variables such as, in this work, the distance to the closest tree. This can be 341 

represented in Equation 6 by assuming that 𝜇(𝒔𝑖 ) comprises an additive combination of one 342 

or more fixed effect: 343 

                                                    𝜇(𝒔𝑖 ) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗 (𝒔𝑖 )
𝑞
𝑗=1   (7) 344 

where 𝑥𝑗 (𝑗 = 1,2, ⋯ , 𝑞) are 𝑞 auxiliary variables and 𝛽0, … , 𝛽𝑞 are the associated fixed 345 

effects. This model is referred as a Mixed Effects Model which offers a flexible framework by 346 

which to model the sources of variation and correlation that arise from grouped data (Lark et 347 
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al., 2006; Pinheiro and Bates, 2000). In this work, we fitted two different linear mixed models 348 

(LMM). 349 

We first fitted a LMM using the whole set of the bulk densities, SOC concentrations, and 350 

SOC stocks observations at the different depths. We used the nlme package (Pinheiro et al., 351 

2013). Soil core ID was considered as a random effect to take into account a sample effect. 352 

These soil properties were then compared by depth and per location (control, tree row, inter-353 

row). An ANOVA was performed on these models. We then used the multcomp package 354 

(Hothorn et al., 2008) to perform a post hoc analysis and determine which means differed 355 

significantly between the control, tree rows and inter-rows, using the Tukey-Kramer test, 356 

designed for unbalanced data. To study spatial influence on SOC stocks, “distance to the 357 

closest tree” was added to the LMM model, and an ANOVA was performed.  358 

Secondly, we fitted a LMM in a geostatistical framework using the cumulated SOC stock 359 

observations for 3 depths (0-30 cm, 0-100 cm and 0-200 cm).  In a spatial context, the random 360 

effects of the LMM describe spatially-correlated random variation. The LMM model is then 361 

parameterized by a global vector, called Θ, of model parameters which include the parameters 362 

of the covariance function and the fixed effects coefficients. These can be fitted to the data by 363 

a likelihood method. Lark et al. (2006) described how the maximum likelihood estimator is 364 

biased in the presence of fixed effects and suggested that the restricted maximum likelihood 365 

estimator (REML) should be applied. Following Villanneau et al., (2011) we have tested the 366 

assumption that the random effects are spatially correlated by comparing the quality of the 367 

model-fit for spatially correlated and spatially independent models (usually called pure nugget 368 

model). Webster and McBratney, (1989) suggested that the Akaike information criterion 369 

(AIC, Akaike, 1974) should be used to compare different spatially correlated models. Once 370 

the parameters of the LMM have been fitted, they may be plugged into the best linear 371 

unbiased predictor to form the empirical best linear unbiased predictor (E-BLUP) of the 372 
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property at unsampled sites (Lark et al., 2006). The error variance of the E-BLUP can also be 373 

computed at any unsampled site. For this, the value of fixed effects covariates must be known 374 

at each prediction site. We therefore calculated several grids of the fixed effects with a 25 cm 375 

cell size. The use of any model of spatial variation implies that assumptions have been made 376 

about the type of variation the data exhibit. Once the model has been fitted, cross-validation 377 

can be used to confirm that these assumptions are reasonable and that the spatial model 378 

appropriately describes the variation. We therefore computed a ‘leave-one-out cross-379 

validation’. For each sampling location, 𝒔𝑖 (𝑖 = 1,2, ⋯ , 𝑞), the value of the property at 𝒔𝑖 was 380 

predicted by the E-BLUP upon the vector of observations excluding 𝑍(𝒔𝑖 ), in order to 381 

compute the standardized squared prediction error (SSPE: the squared difference between the 382 

E-BLUP and the observed value  divided by the computed prediction error variance (PEV)). 383 

Under an assumption of normal prediction errors, the expected mean SSPE is 1.0 if the PEVs 384 

are reliable (which requires an appropriate variogram model), and the expected median SSPE 385 

is 0.455. The spatial analysis package GeoR (Ribeiro and Diggle, 2001) was used for REML 386 

fitting and kriging. 387 

Finally, a Kruskal-Wallis test (Kruskal and Wallis, 1952) was performed to analyze SOC 388 

concentration in soil fractions per depth and per location (5 or 6 replicates). This test was 389 

followed by a post hoc analysis using Dunn’s test (Dunn, 1964) with a Bonferroni correction 390 

(p-value=0.017). 391 

All the statistical analyses were performed using R software version 3.1.1 (R Development 392 

Core Team, 2013), at a significance level of <0.05.  393 

 394 

 395 

 396 
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Table 2. Soil organic carbon stocks (Mg C ha-1) and SOC accumulation rates (kg C ha-1 yr-1). Associated errors are standard errors (40 replicates 397 

for the tree-row, 60 replicates for the inter-row, and 93 replicates for the control plot). ESM = Equivalent Soil Mass. Significantly (p-398 

value<0.05) different SOC stocks are followed by different letters. 399 

Cumulated 

ESM     

(Mg ha-1) 

Cumulated calculated depth to 

ESM (cm) 

Cumulated SOC stocks (Mg C ha-1) Δ SOC stocks 

(Mg C ha-1) 

SOC accumulation rates 

(kg C ha-1 yr-1) 

 Tree-row Inter-row Control Tree-row Inter-row Agroforestry Control Δ (Agroforestry 

– Control) 

Agroforestry 

vs Control 

Inter-row 

vs Control 

1000 

 

0-9 

 

0-8 

 

0-7 

 

21.6 ± 1.0 

a 

9.8 ± 0.4 

c 

11.7 ± 0.3 

b 

9.3 ± 0.1 

c 
2.3 ± 0.4 

 

129 ± 20 

 

24 ± 21 

 

4000 

 

0-29 

 

0-27 

 

0-26 

 

52.8 ± 1.4 

a 

37.9 ± 0.6 

c 

40.3 ± 0.5 

b 

35.8 ± 0.2 

d 

4.5 ± 0.6 

 

248 ± 31 

 

115 ± 33 

 

7300 

 

0-49 

 

0-47 

 

0-45 

 

77.1 ± 1.5 

a 

62.0 ± 0.7 

c 

64.4 ± 0.6 

b 

59.4 ± 0.2 

d 

5.0 ± 0.6 

 

276 ± 36 

 

141 ± 39 

 

10700 

 

0-69 

 

0-66 

 

0-64 

 

98.1 ± 1.5 

a 

82.4 ± 0.7 

c 

84.9 ± 0.6 

b 

79.7 ± 0.3 

d 

5.1 ± 0.7 

 

286 ± 39 

 

147 ± 43 

 

 15700 

 

0-98 

 

0-95 

 

0-93 

 

130.4 ± 1.5 

a 

113.7 ± 0.7 

c 

116.4 ± 0.7 

b 

110.1 ± 0.3 

d 

6.3 ± 0.7 

 

350 ± 41 

 

202 ± 45 

 

18700 

 

0-118 

 

0-115 

 

0-112 

 

150.3 ± 1.5 

a 

133.1 ± 0.8 

c 

135.9 ± 0.7 

b 

129.3 ± 0.4 

d 

6.5 ± 0.8 

 

363 ± 43 

 

210 ± 46 

 

21900 

 

0-137 

 

0-134 

 

0-131 

 

170.9 ± 1.5 

a 

152.8 ± 0.8 

c 

155.7 ± 0.7 

b 

149.5 ± 0.4 

c 

6.2 ± 0.8 

 

345 ± 44 

 

185 ± 48 

 

25100 

 

0-157 

 

0-154 

 

0-150 

 

191.0 ± 1.6 

a 

172.4 ± 0.8 

c 

175.4 ± 0.7 

b 

169.9 ± 0.4 

c 

5.5 ± 0.8 

 

306 ± 45 

 

140 ± 49 

 

28300 

 

0-176 

 

0-173 

 

0-170 

 

209.5 ± 1.6 

a 

190.5 ± 0.8 

c 

193.5 ± 0.7 

b 

189.3 ± 0.4 

c 

4.3 ± 0.8 

 

238 ± 47 

 

69 ± 51 

 

31500 

 

0-196 

 

0-193 

 

0-189 

 

226.1 ± 1.6 

a 

206.0 ± 0.84 

c 

209.2 ± 0.7 

b 

205.9 ± 0.4 

c 

3.3 ± 0.9 

 

183 ± 48 

 

5 ± 53 
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3. Results 400 

3.1. Changes in soil texture with depth 401 

Clay, silt and sand profiles were very similar at both plots (Fig. 3). Soil texture was 402 

homogeneous in the first 50 cm. Clay and silt contents linearly increased till 100 cm soil 403 

depth to reach about 325 g kg-1 and 575 g kg-1 respectively, while sand content decreased. Soil 404 

texture did not change between 100 and 200 cm soil depth. Below 140 cm depth, clay and 405 

sand content were significantly different (F=71.31, P<0.001) in both plots, but the maximum 406 

difference was less than 20 g kg-1. 407 

 408 

Figure 3. Changes in soil texture with depth in the control plot and in the agroforestry plot. 409 

Error bars represent standard errors (n=100 in the agroforestry, n=93 in the control). 410 

 411 

 412 

 413 
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3.2. Soil bulk densities 414 

Soil bulk densities were significantly higher in the control plot than in the tree row at all 415 

depths except for 30-50 and 140-160 cm, and higher than in the inter-row, except for 10-30 416 

and below 140 cm depth (Table 3). In the agroforestry system, soil bulk densities were higher 417 

in the inter-row than in the tree row for 0-10 and 10-30 cm.  418 

 419 

Figure 4. Soil organic carbon concentration (mg C g-1 soil) of soil layers to 2-m depth in the 420 

control plot and in the agroforestry plot. Error bars represent standard errors (n=100 421 

in the agroforestry, n=93 in the control). Significantly (p-value<0.05) different SOC 422 

concentrations per depth are followed by different letters. 423 
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Table 3. Mean soil bulk densities (g cm-3). For a given depth, means followed by the same letters do not differ significantly at p = 0.05. 424 

Associated errors are standard errors (40 replicates for the tree-row, 60 replicates for the inter-row, and 93 replicates for the control plot). 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

Depth (cm) Agroforestry – tree row Agroforestry – inter-row Control plot 

0-10 1.10 ± 0.02 c 1.23 ± 0.03 b 1.41 ± 0.01 a 

10-30 1.49 ± 0.01 b 1.60 ± 0.02 a 1.61 ± 0.00 a 

30-50 1.71 ± 0.01 ab 1.67 ± 0.02 b 1.73 ± 0.00 a 

50-70 1.73 ± 0.01 c 1.77 ± 0.01 b 1.80 ± 0.00 a 

70-100 1.68 ± 0.00 c 1.71 ± 0.00 b 1.74 ± 0.00 a 

100-120 1.55 ± 0.01 b 1.55 ± 0.01 b 1.61 ± 0.00 a 

120-140 1.63 ± 0.00 b 1.64 ± 0.01 b 1.65 ± 0.00 a 

140-160 1.64 ± 0.00 a 1.64 ± 0.01 a 1.65 ± 0.00 a 

160-180 1.62 ± 0.01 b 1.65 ± 0.01 a 1.65 ± 0.00 a 

180-200 1.64 ± 0.00 b 1.65 ± 0.00 a 1.65 ± 0.00 a 
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3.3. Soil organic carbon concentrations 435 

An ANOVA performed on the LMM model revealed that soil depth (F-value=270, P<0.0001) 436 

and location, i.e., tree row vs. inter-row (F-value=171, P<0.0001), were the only variables 437 

affecting significantly SOC concentrations. Distance to the closest tree had no significant 438 

effect (F-value=1.3, P=0.28). As shown in Fig. 4, for 0-10 cm, SOC concentration doubled in 439 

the tree row (21.6 ± 0.8 mg C g-1) compared to the inter-row (9.8 ± 0.1 mg C g-1) and to the 440 

control (9.3 ± 0.1 mg C g-1), whereas the latter two were not significantly different. SOC 441 

concentration was significantly higher in the tree row than in the control plot to 120 cm soil 442 

depth, except in the 50-70 cm soil layer where no difference was observed. SOC 443 

concentration was significantly higher in the tree row than in the inter-row to 30 cm soil 444 

depth. 445 

 446 

3.4. Soil organic carbon stocks 447 

Fig. 5 represents SOC stocks in the agroforestry plot as a function of soil depth, location and 448 

distance to the closest tree. For a given depth and distance to the closest tree, variability of 449 

SOC stocks was high, and there was no effect of the distance to the closest tree on SOC stocks 450 

(Fig. 5). An ANOVA performed on the LMM model confirmed that SOC stocks were 451 

significantly influenced by soil depth (F-value=483, P<0.0001) and location, i.e., tree row vs. 452 

inter-row (F-value=66, P<0.0001), but not by the distance to the closest tree (F-value=1.5, 453 

P=0.22).  454 

For an equivalent soil mass (ESM) of 4000 Mg ha-1 (to 26-29 cm depth), SOC stocks were 455 

significantly higher in the tree row than in the inter row and in the control (Table 2). For an 456 

ESM of 31500 Mg ha-1 (to 189-196 cm depth), SOC stocks were about 20 Mg C ha-1 higher in 457 

the tree rows compared to the inter-rows or to the control. Cumulated SOC stocks were 458 
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significantly higher in the inter-row than in the control plot to an ESM of 18700 Mg ha-1 (to 459 

112-115 cm depth), except for an ESM of 1000 Mg ha-1 where not difference was found 460 

(Table 2).  461 

At the plot scale, cumulated SOC stocks in the agroforestry plot were significantly higher than 462 

in the control plot at all depths (Table 2). For an ESM of 4000 Mg ha-1  (to 26-29 cm depth), 463 

SOC stocks were 40.3 ± 0.5 Mg C ha-1 and 35.8 ± 0.2 Mg C ha-1 in the agroforestry and in the 464 

control, respectively. For a soil mass of 15700 Mg ha-1 (to 93-98 cm depth), Δ SOC stock 465 

between the agroforestry and the control was 6.3 ± 0.7 Mg C ha-1. This difference was much 466 

lower without the ESM correction (Table S1). 467 

 468 

3.5. Soil organic carbon accumulation rates 469 

Compared to the control, inter-rows accumulated 115 ± 33 kg C ha-1 yr-1 for an ESM of 4000 470 

Mg ha-1 (26-29 cm) (Table 2), and 202 ± 45 kg C ha-1 yr-1 for an ESM of 15700 Mg ha-1 (93-471 

98 cm). SOC accumulation rates in the agroforestry plot compared to the control were 248 ± 472 

31 kg C ha-1 yr-1 for an ESM of 4000 Mg ha-1, 350 ± 41 kg C ha-1 yr-1 an ESM of 15700 Mg 473 

ha-1, and 183 ± 48 kg C ha-1 yr-1 an ESM of 31500 Mg ha-1 (Table 2). The additional SOC 474 

storage rates for 0-10 cm and 10-30 cm were respectively explained at 80% and 60% by the 475 

tree rows.  476 

 477 

 478 

 479 

 480 
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 481 

Figure 5. Soil organic carbon stocks (Mg C ha-1) in the agroforestry plot as a function of depth, location (tree row vs. inter-row) and distance to 482 

the closest tree. The lines represent the regression lines fitted using soil samples per investigated depth. The gray shades display the 483 

prediction confidence interval at the 0.95 level.  484 
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Table 4. Summary of selected models fitted to the data on cumulated soil organic carbon stocks at 3 depths (0-30 cm, 0-100 cm and 0-200 cm) 485 

for the 2 plots, and cross validation. SSPE, standardized squared prediction errors; ME, mean error (Mg C ha-1); RMSQE, root mean 486 

squared error (Mg C ha-1); AIC, AIC of the spatially correlated model; AIC.ns, AIC of the non-spatially correlated model; 𝛽0 and 𝛽1 the 487 

fixed effects (Mg C ha-1). Bold characters represent the smallest AIC for each depth. The medians and the mean of the cross validation 488 

statistics are within the 95% confidence interval. 489 

 Depth 

(cm) 

Mean 

SSPE 

Median 

SSPE 

ME RMQSE AIC AIC.ns 𝛽0 𝛽1 

 

Nugget Sill Range Nugget to 

Sill ratio 

Agroforestry 
0-30 0.99 0.36 -0.004 20.7 585 583 38.1 14.8 19.7 1.3 15.2 0.94 

0-100 0.99 0.45 -0.010 43.3 662 665 114.1 16.4 36.0 16.3 12.8 0.69 

0-200 0.98 0.39 0.055 123.1 769 780 207.1 19.4 97.8 79.2 12.9 0.55 

              

Control 
0-30 1.01 0.33 0.000 2.6 361 357 35.9 - 2.4 0.2 19.4 0.93 

0-100 1.01 0.50 0.061 25.7 578 579 111.2 - 20.2 11.0 12.6 0.65 

0-200 0.98 0.40 0.519 57.5 665 681 208.9 - 16.4 85.8 6.3 0.16 
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3.6. Spatial distribution of SOC stocks 490 

The AIC (Table 4) of the spatially correlated model were less than that of the spatially 491 

uncorrelated model for 2 depths (0-100 cm and 0-200 cm for the agroforestry and the control 492 

plots), indicating that spatial correlation should be included in the model of variation. We 493 

tested several models of spatial variation and retained the spherical model (Webster and 494 

Oliver, 2007). For top soil depth of the two plots (0-30 cm), the AIC of the spatially 495 

uncorrelated model was slightly the smallest indicating that the residual variation could be 496 

independent once fixed effects had been included in the model. But the difference was very 497 

small so we considered the spatially correlated model for the rest of the study. The cross-498 

validation results confirmed the validity of the fitted LMM. The nugget to sill ratio measures 499 

the unexplained part of the observed variability. The smallest value was observed for the 0-500 

200 cm depth in the control plot and the higher was observed for the 0-30 cm depth in both 501 

plots. When mapping the SOC stocks for three fixed depths with the BLUP in the two plots, a 502 

clear pattern can be observed in the agroforestry plot, with high SOC stocks in the tree rows 503 

(Fig. 6). The fitted fixed effects indicate that, in average, the SOC stocks were 15 to 20 Mg C 504 

ha-1 higher in the tree rows to 30 to 200 cm depth (Table 4). At the opposite, the control plot 505 

did not exhibit any spatial pattern.  506 

 507 

 508 

 509 

 510 

 511 

 512 
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 513 

Figure 6. Krieged maps of cumulated soil organic carbon stocks (Mg C ha-1) in the 514 

agroforestry and in the control plot. 515 

 516 
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3.7. Organic carbon distribution in soil fractions 517 

An average mass yield of 98% and an average carbon yield of 96% were obtained, showing 518 

the quality of the particle size fractionation. Furthermore, the variation between soil texture 519 

and soil fractionation was only 5-6% (data not shown). Soil segments used for soil 520 

fractionation had similar total SOC concentrations compared to mean SOC concentrations at 521 

the same depth (Fig. S2). However, the small differences found between SOC concentrations 522 

in the inter row and in the control was not visible with the soil segments used for 523 

fractionation. 524 

For 0-10 cm depth, the distribution of OC in particle size fractions was strongly modified in 525 

the tree rows, with an important increase of C in particulate organic matter (POM) fractions 526 

(50-200 µm and 200-2000 µm) compared to the inter-row and to the control (Fig. 7). An 527 

increase of C in silt size fractions (2-20 µm and 20-50 µm) of the tree rows compared to the 528 

inter row and to the control was also observed. Significantly higher C concentrations in the 529 

clay fraction (0-2 µm) were observed in the tree row than in the inter-row (Fig. S3), but it was 530 

not the case for the amount of C in the clay fraction per gram of soil (Fig. 7). 531 

Similar trends in C distribution in fractions were observed at 10-30 cm depth compared to 0-532 

10 cm, although with much smaller differences (Figs. 7, S3). At deeper depths (70-100 and 533 

160-180 cm) there were no differences between the three locations (tree row, inter-row and 534 

control) except a lower amount of C in the soluble fraction in the tree row. The potential SOC 535 

saturation of particles <20 µm was not reached at any depths (Table 5), and the SOC deficit 536 

was high. The saturation capacity was far from being reached, as it amounted 17 to 40% of 537 

saturation capacity in the tree rows. 538 

 539 

 540 
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 541 

Figure 7. Organic carbon contents in each soil fraction (mg C g-1 soil). Error bars represent standard errors (n=6 in the control, n=5 in the inter-542 

row and in the tree row). OF = Organic fraction, F = organo-mineral fraction. 0-2, 2-20, 20-50, 50-200 and 200-2000 represent particle 543 

size (µm). Means followed by the same letters do not differ significantly at p=0.017 (Dunn’s test with Bonferroni correction).  544 
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Table 5. Soil organic carbon saturation of the fractionated soil samples in the agroforestry plot. SOCsat-pot, potential SOC saturation (mg C g-1); 545 

SOCcur , current mean SOC concentration of the fine fraction <20 µm (mg C g-1); SOCsat-def , SOC saturation deficit (mg C g-1); SOCstor-pot, 546 

total amount of the SOC storage potential (Mg C ha-1). Associated errors are standard errors (n=5). Values of SOC saturation for deep soil 547 

layers are only indicative. 548 

 SOCsat-pot  

(mg C g-1) 

SOCcur  (mg C g-1) SOCsat-def  (mg C g-1) SOC𝑐𝑢𝑟

SOC𝑠𝑎𝑡−𝑝𝑜𝑡
 

SOCstor-pot  

(Mg C ha-1) 

Depth (cm) Agroforestry Tree row Inter-row Tree row Inter-row Tree row Inter-row Agroforestry 

0-10 18.0 ± 0.4 7.2 ± 0.3 5.4 ± 0.3 10.3 ± 0.4 13.1 ± 0.4 40% 30% 15.3 ± 0.4 

10-30 18.7 ± 0.4 6.1 ± 0.1 5.4 ± 0.1 12.6 ± 0.3 13.3 ± 0.3 33% 29% 41.8 ± 0.9 

70-100 32.9 ± 0.8 5.6 ± 0.1 5.6 ± 0.1 26.9 ± 0.7 27.6 ± 0.4 17% 17% 140.7 ± 1.9 

160-180 32.0 ± 1.1 4.6 ± 0.2 4.6 ± 0.3 26.8 ± 0.7 28.1 ± 0.9 14% 14% 91.9 ± 2.4 
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3.8. Distribution of additional OC in soil fractions 549 

For 0-10 cm depth, the additional OC stored between the tree row and the inter-row was 550 

explained at 80% by POM fractions, at 15% by silt size fractions, and at 5% by clay fraction, 551 

whereas the additional OC stored between the tree row and the control was explained at 80% 552 

by POM and at 20% by silt size fractions (Fig. 7). For 10-30 cm, the additional SOC storage 553 

between the tree row and the inter-row was explained at 50% by POM fractions, at 25% by 554 

coarse and fine silt fractions, and at 25% by clay fraction (Fig. 7), whereas when comparing 555 

the tree row and the control these numbers were of 50% (POM) and 50% (silt).  556 

 557 

4. Discussion 558 

4.1. A shallow additional SOC storage  559 

Sampling to 2-m soil depth indicated that the 0-30 cm soil layer contained less than 20% of 560 

total SOC stocks to 2-m depth, demonstrating the importance of deeper soil layers for storing 561 

SOC (Harper and Tibbett, 2013; Jobbagy and Jackson, 2000). SOC stocks observed in 0-30 562 

cm, from 36 to 41 Mg C ha-1, were comparable to reported values for the Mediterranean 563 

region, i.e., 25 to 50 Mg C ha-1 (Martin et al., 2011; Muñoz-Rojas et al., 2012). Additional 564 

SOC storage in the agroforestry system compared to the agricultural system was mainly 565 

observed up to 30 cm soil depth in the inter-row and up to 50 cm in the tree row. A 566 

companion study at the same site indicated that 60% of additional OM inputs (leaf litter, 567 

aboveground and belowground biomass of the natural vegetation in the tree row, tree fine 568 

roots) to 2 m depth in the agroforestry plot compared to the control plot were located in the 569 

first 50 cm (unpublished data). Even if 50% of tree fine root density was found between 1 and 570 

4 m soil depth (Cardinael et al., 2015), it was also proven at this site (Germon et al., 571 

submitted) and at other sites (Hendrick and Pregitzer, 1996) that the turnover rate of fine roots 572 
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decreased with increasing depth, resulting in low OM inputs in deep soil layers. Time since 573 

the tree planting (18 years) is probably not long enough to detect changes in SOC stocks at 574 

deeper soil depths considering low organic inputs below 1 m depth. For 2012, organic C input 575 

due to tree fine root mortality was estimated to be less than 150 kg C ha-1 for 100-200 cm soil 576 

depth. Below 1.2 m soil depth, delta of cumulated SOC stocks between the agroforestry and 577 

the control plot decreased, due to higher SOC concentrations and stocks in the control at these 578 

depths. These higher SOC concentrations were linked to higher SOC concentrations in the 579 

clay fraction. This difference may be due to pre-experimental soil heterogeneity, the soil in 580 

the agroforestry plot may have had a lower level of SOC below 1.2 m depth before tree 581 

planting. An initial heterogeneity was also proposed by Upson and Burgess (2013) who found 582 

higher SOC stocks at depth in a control plot compared to an agroforestry plot in an 583 

experimental site in England . This shows the limit of paired comparisons - or synchronic 584 

studies - to evaluate SOC changes after land use change (Junior et al., 2013; Olson et al., 585 

2014), and pleads for long-term diachronic studies in agroforestry systems. An alternative 586 

explanation could be a positive priming effect, i.e., the acceleration of native SOC 587 

decomposition by the supply of fresh organic carbon (Fontaine et al., 2007, 2004) from the 588 

trees. However, this seems highly unlikely since positive priming effect could not explain 589 

such a high C loss of about 3.2 Mg C ha-1 between 1.2 and 2.0 m soil depth in 18 years, i.e., 590 

about 180 kg C ha-1 yr-1. Another hypothesis to explain higher SOC stocks below 1.2 m depth 591 

in the control plot is a different belowground water regime between the two plots. Water table 592 

depth at this site is known to be very variable (between 5 to 7 m). A shallower water table in 593 

the agroforestry plot compared to the control plot may promote capillary action, and therefore 594 

cause wetting-drying cycles that could enhance SOM decomposition in deep soil layers 595 

(Borken and Matzner, 2009).  596 

 597 
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4.2. Tree rows and SOC storage in agroforestry systems 598 

The high SOC stocks observed in tree rows accounted for an important part of SOC stocks of 599 

the agroforestry plot even though tree rows only represented 16% of the surface area. In a 600 

poplar (Populus L.) silvoarable agroforestry experiment in England, Upson and Burgess, 601 

(2013) also found that the SOC concentration was greater in the top 40 cm under the tree row 602 

(19.6 mg C g−1) in the agroforestry treatment than in the cropped alleys (17 mg C g−1), or the 603 

arable control (17.1 mg C g−1). Tree rows are comparable to a natural permanent pasture with 604 

trees, given that spontaneous herbaceous vegetation grows and that the soil is not tilled. 605 

Conversion of arable lands to permanent grasslands is recognized as an efficient land use for 606 

climate change mitigation (Soussana et al., 2004). Grasslands can accumulate SOC at a very 607 

high rate. For instance, it was estimated on about 20 years old field experiments that 608 

conversion from crop cultivation to pasture stored SOC at a rate of 1.01 Mg C ha-1 yr-1 in 0-30 609 

cm (Conant et al., 2001). In our case, SOC accumulation rate in the tree rows was 0.94 ± 0.09 610 

Mg C ha-1 yr-1 in 0-30 cm. Management of tree rows could therefore have an important role in 611 

improving agroforestry systems in terms of SOC storage. Improved grass species could be 612 

sown in the tree rows, as well as shrubs between trees. Further research should focus on this 613 

aspect to evaluate benefits in terms of SOC storage and biodiversity for instance. 614 

 615 

4.3. Homogeneous distribution of SOC stocks in the cropped alley 616 

There was no significant effect of the distance to the trees on SOC stocks at all depths, either 617 

in the tree row or in the inter-row. This was also indicated by the maps of the SOC stocks. 618 

Tree density was high at this site, and walnuts were about 13 m in height, which is also the 619 

distance between two tree rows. This could explain the homogeneous distribution of leaf 620 

litterfall observed in the plot (personal observation). In a similar agroforestry system in terms 621 
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of tree density in Canada, Bambrick et al., (2010) and Peichl et al., (2006) also found no 622 

effect of the distance to the trees on SOC stocks to 20 cm depth. They also suggested that the 623 

18 m high poplar trees distributed litterfall equally in the crop alleys. Close to the tree rows (1 624 

to 2 m distance), the intercrop had a lower yield (15% less in 2012) compared to the middle of 625 

the inter-row at the study site (Dufour et al., 2013). On the contrary, tree fine root density was 626 

higher close to the tree rows (2.79 t DM ha-1 between 0 and 1.5 m from the tree row in the 627 

inter row, and to 4-m soil depth) than in the middle of the inter-rows (1.32 t DM ha-1 between 628 

3 and 4.5 m from the tree row in the inter row, and to 4-m soil depth) (Cardinael et al., 2015). 629 

Thus, lower carbon inputs from crop residues close to the tree rows may be counterbalanced 630 

with higher inputs from tree fine root mortality, explaining homogeneous distribution of SOC 631 

stocks within the inter-row (Bambrick et al., 2010; Peichl et al., 2006). In the tree row, 632 

homogeneous distribution of SOC stocks may be explained by the short distance between 633 

trees and by the presence of abundant herbaceous vegetation. 634 

 635 

4.4. Agroforestry systems: an efficient land use to improve SOC stocks 636 

Compared to other agroforestry systems having about the same tree density, a lower SOC 637 

accumulation rate in 0-30 cm (0.25 Mg C ha-1 yr-1) was observed at our site. Peichl et al. 638 

(2006) reported a SOC accumulation rate of 1.04 Mg C ha-1 yr-1 (0-20 cm) in a 13-year old 639 

temperate barley (Hordeum vulgare L.)-poplar intercropping system (111 trees ha-1). In a 21-640 

year old agroforestry system in Canada where poplars were intercropped with a rotation of 641 

wheat (Triticum aestivum L.), soybean (Glycine max (L.) Merr.) and corn (Zea mays L.), 642 

Bambrick et al. (2010) estimated a SOC accumulation rate of 0.30 Mg C ha-1 yr-1 (0-20 cm). 643 

Our lower accumulation rate may be explained by warmer climate, higher temperatures 644 

enhancing OM decomposition (Hamdi et al., 2013). Moreover, valuable hardwood species 645 
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like walnut trees have a slower growing rate than fast growing species like poplar (Teck and 646 

Hilt, 1991), and therefore for a same tree age, the amount of OC inputs (leaflitter, fine roots) 647 

to the soil is lower for slow growing species.  648 

Together with other climate-smart farming practices (Lipper et al., 2014), alley-cropping 649 

agroforestry systems have the potential to enhance SOC stocks and to contribute to climate 650 

change mitigation  (Nair et al., 2010; Pellerin et al., 2013). No-till farming is a commonly 651 

cited agricultural practice supposed to have a positive impact on SOC stocks. But recent meta-652 

analyses showed this practice had no effect on SOC stocks to 40 cm depth (Luo et al., 2010) 653 

or a smaller one (0.23 Mg C ha-1 yr-1 to 30 cm depth) than previously estimated (Virto et al., 654 

2011). A meta-analysis also revealed that the inclusion of cover crops in cropping systems 655 

could accumulate SOC at a rate of 0.32 ± 0.08 Mg C ha-1 yr-1 to a depth of 22 cm (Poeplau 656 

and Don, 2015). At our site, we found a mean SOC accumulation rate of 0.13 in 0-30 cm in 657 

the inter-rows compared to the control. This rate reached 0.25 Mg C ha-1 yr-1 for the whole 658 

agroforestry system. A companion study at this site estimated that the tree aboveground C 659 

stock was 117± 21 kg C tree-1 (unpublished data). With 110 trees ha-1, total organic carbon 660 

(SOC to 1 m soil depth + aboveground tree C) accumulation rate was 1.11 ± 0.13 Mg C ha-1 661 

yr-1, making agroforestry systems a possible land use to help mitigating climate change (Lal, 662 

2004; Lorenz and Lal, 2014). 663 

 664 

4.5. A long-term SOC storage? 665 

Most of additional SOC in the agroforestry plot compared to the control plot was located in 666 

coarse soil fractions (50-200 µm and 200-2000 µm). These soil fractions are assumed to 667 

contain labile fractions (Balesdent et al., 1998), that are not stabilized by interaction with 668 

clays and thus prone to be decomposed by soil microorganisms. Our site might not be old 669 
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enough to observe a difference in the fine soil fractions as changes in the clay fractions are 670 

often long-term processes (Balesdent, 1996; Balesdent et al., 1988). For example, Takimoto et 671 

al., (2008) found in a 35-year-old Faidherbia albida parkland in Mali, that the silt + clay soil 672 

fraction (< 53 µm) was enriched in C at depth compared with treeless systems. But on the 673 

other hand, Howlett et al., (2011) did not observe any difference for the same soil fraction in a 674 

80 year-old Dehesa cork oak (Quercus suber L.) silvopasture, but they found that C storage in 675 

the macroaggregate fraction (250–2000 mm) was 68% greater underneath versus away from 676 

the tree canopy (in 0-25 cm). Several studies have demonstrated that protection of C within 677 

the macroaggregate size class was affected by afforestation (Del Galdo et al., 2003; Denef et 678 

al., 2013) and cessation of tillage (Tan et al., 2007). The fractionation method that was used in 679 

this study disrupted macroaggregates, and part of this labile fractions could be located within 680 

them and therefore be physically protected from decomposition by soil microorganisms  (Six 681 

et al., 2000). Further work will focus on this aspect in order to estimate the amount of 682 

particulate organic matter located in soil aggregates. Calculation of SOC saturation revealed a 683 

high deficit of SOC of this soil compared to the theoretical value, suggesting that 684 

accumulation of SOC due to the agroforestry system could continue for decades before 685 

reaching saturation. 686 

 687 

5.  Conclusion 688 

This study showed the potential of agroforestry systems to increase SOC stocks. However, 689 

despite a deep tree rooting system, additional SOC was mainly located in topsoil layers, and 690 

in labile organic fractions, making this C storage vulnerable. Tree rows were shown to be a 691 

key factor for SOC storage in alley cropping systems. Combining agroforestry systems with 692 

no-till or permanent cover systems could be a very efficient way to increase SOC stocks, but 693 

more research is needed on this aspect. To fully estimate the impact of agroforestry systems 694 



38 
 

on SOC sequestration, other aspects should be taken into account. For instance, higher SOC 695 

stocks in the inter-rows could increase soil fertility and reduce the need for chemical fertilizer, 696 

contributing indirectly to a reduction of greenhouse gases emissions; further work should 697 

therefore focus on nutrient cycling in these systems. 698 
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Supplementary materials 991 

Table S1. Soil organic carbon stocks (Mg C ha-1) and SOC accumulation rates (kg C ha-1 yr-1) 992 

without the equivalent soil mass (ESM) correction. Associated errors are standard errors (100 993 

replicates for the agroforestry plot, 93 for the control plot). 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 Cumulated SOC stocks (Mg C ha-1) Δ SOC stocks 

(Mg C ha-1) 

SOC accumulation 

rates (kg C ha-1 yr-1) 

Soil depth 

(cm) 

Agroforestry Control Δ (Agroforestry – 

Control) 

Agroforestry vs 

Control 

0-10 13.9 ± 0.3 13.2 ± 0.1 0.7 ± 0.4 41 ± 20 

0-30 44.5 ± 0.5 41.9 ± 0.2 2.5 ± 0.6 139 ± 32 

0-50 67.9 ± 0.7 65.5 ± 0.4 2.5 ± 0.8 137 ± 42 

0-70 88.8 ± 0.7 86.3 ± 0.4 2.6 ± 0.8 143 ± 46 

0-100 121.2 ± 0.7 118.0 ± 0.5 3.1 ± 0.9 173 ± 54 

0-120 140.9 ± 0.8 138.4 ± 0.6 2.5 ± 1.0 138 ± 56 

0-140 161.4 ± 0.8 159.4 ± 0.6 1.9 ± 1.0 106 ± 58 

0-160 181.5 ± 0.8 180.5 ± 0.6 0.9 ± 1.0 53 ± 60 

0-180 199.5 ± 0.9 199.3 ± 0.6 0.2 ± 1.1 11 ± 60 

0-200 214.6 ± 0.9 214.5 ± 0.6 0.1 ± 1.1 7 ± 62 
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 1004 

Figure S1. Measured and cross-validation predicted values of soil organic carbon 1005 

concentrations for the topsoil and subsoil models.  1006 
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 1017 

Figure S2. Carbon concentration of bulk fractionated samples. Error bars represent standard 1018 

errors (n=6 in the control, n=5 in the inter-row and in the tree row). 1019 
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Figure S3. Carbon concentration of each soil fraction. Error bars represent standard errors (n=6 in the control, n=5 in the inter-row and in the tree 

row). OF = Organic fraction, F = organo-mineral fraction. Means followed by the same letters do not differ significantly at p=0.017 

(Dunn’s test with Bonferroni correction).  


