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Abstract

Background: A critical step in the RT-qPCR workflow for studying gene expression is data normalization, one of the
strategies being the use of reference genes. This study aimed to identify and validate a selection of reference genes
for relative quantification in Talaromyces versatilis, a relevant industrial filamentous fungus. Beyond T. versatilis, this
study also aimed to propose reference genes that are applicable more widely for RT-qPCR data normalization in
filamentous fungi.

Results: A selection of stable, potential reference genes was carried out in silico from RNA-seq based transcriptomic
data obtained from T. versatilis. A dozen functionally unrelated candidate genes were analysed by RT-qPCR assays
over more than 30 relevant culture conditions. By using geNorm, we showed that most of these candidate genes
had stable transcript levels in most of the conditions, from growth environments to conidial germination. The
overall robustness of these genes was explored further by showing that any combination of 3 of them led to
minimal normalization bias. To extend the relevance of the study beyond T. versatilis, we challenged their stability
together with sixteen other classically used genes such as β-tubulin or actin, in a representative sample of about
100 RNA-seq datasets. These datasets were obtained from 18 phylogenetically distant filamentous fungi exposed
to prevalent experimental conditions. Although this wide analysis demonstrated that each of the chosen genes
exhibited sporadic up- or down-regulation, their hierarchical clustering allowed the identification of a promising
group of 6 genes, which presented weak expression changes and no tendency to up- or down-regulation over
the whole set of conditions. This group included ubcB, sac7, fis1 and sarA genes, as well as TFC1 and UBC6 that were
previously validated for their use in S. cerevisiae.

Conclusions: We propose a set of 6 genes that can be used as reference genes in RT-qPCR data normalization in
any field of fungal biology. However, we recommend that the uniform transcription of these genes is tested by
systematic experimental validation and to use the geometric averaging of at least 3 of the best ones. This will
minimize the bias in normalization and will support trustworthy biological conclusions.
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Background
Filamentous fungi are involved in several natural and
industrial processes. They have long been used for the
production of additives used in food and beverages [1].
Some fungi produce enzymes that degrade lignocellu-
losic material with applications in food, feed, textile,
pulp and paper industries [2,3]. The genera Penicillium
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and Aspergillus are the most biotechnologically import-
ant fungi, due to their ability to produce secondary me-
tabolites, organic acids or enzymes, but recent genome
sequences of hundreds of fungal species indicate that
the potential of fungi has been substantially underesti-
mated [4,5]. Talaromyces is another industrially relevant
genus closely related to Penicillium [6], among which
Talaromyces versatilis is exploited for the production of
a commercial cocktail called “Rovabio Excel™” that is
used as feed additive for enhancing digestibility of cereal
based diets. However, fungi are not restricted to biotech-
nologically relevant organisms. Recent estimates suggest
that more than 5 million fungal species exist in this
This is an Open Access article distributed under the terms of the Creative
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monophyletic kingdom, the huge majority being in the
Ascomycota and Basidiomycota phyla [7]. Fungi have
considerable impact in agriculture, as fungi are capable
of intimate symbiotic associations with plants as in
the case of Rhizophagus irregularis [8] while some spe-
cies are economically serious plant pathogens [9], e.g.
Leptosphaeria maculans [10], Blumeria graminis [11],
Rhizoctonia solani [9,12], Magnaporthe grisea [13]. Fi-
nally, they not only draw interest as pathogens of inver-
tebrate animals, but they are also harmful for human
health, as for example with the production of myco-
toxins and allergens [14], with several species, including
Aspergillus fumigatus, causing invasive disease [15]. For
all these reasons, and aided by extraordinary advances
in genome sequencing facilities [16,17], there has been a
tremendous effort to pursue the sequencing of filament-
ous fungi. The availability of genomic sequences from
several fungi has favoured the rapid development of
high throughput transcriptomic studies and functional
genomics analysis.
Better knowledge of gene function usually begins by

investigating expression of the genes of interest (GOIs)
under a broad set of culture conditions. Several tech-
niques have been developed to measure expression
levels, among which the coupling between reverse tran-
scription and quantitative (real-time) PCR (RT-qPCR)
appears to be the most appropriate to study limited
numbers of genes in large sets of conditions [18,19].
Significant technical advances made this mRNA quanti-
fication method very accessible, highly specific and sen-
sitive, but numerous critical issues remain that limit the
ability to draw meaningful conclusions [20]. The Mini-
mum Information for Publication of Quantitative Real-
Time PCR Experiments (MIQE) guidelines help in the
design of experiments, to keep track of the experimental
data and to improve analysis [21,22]. Importantly, and
no matter what the technique for measuring gene ex-
pression is, data normalization is a critical step. Per-
formance and pitfalls of the different normalization
strategies has already been compared in a number of
dedicated review articles [19,23]. Few articles promote
the use of external controls [24,25], a normalization
strategy stimulated by the ERCC or EQUAL-quant pro-
grams [26,27], and especially relevant for the assess-
ment of technical robustness in clinical and biological
diagnostic laboratories. But normalization of gene ex-
pression levels by reference genes (internal controls) is
most certainly the gold standard, even if it is now clearly
established that the use of a single gene is not accept-
able, as there is not a single gene that has a stable tran-
script level over all kinds of culture conditions or
among different cell types [28-31]. The main challenge
concerning these internal controls is the circular prob-
lem in evaluating expression stability of a candidate
normalization gene [32], i.e. how can the expression sta-
bility of a candidate be evaluated if no reliable measure
is available to normalize the candidate? To overcome
this circular problem, Vandesompele et al. [33] first
developed more than ten years ago a method called
geNorm, which allows the evaluation and ranking of
candidate reference genes in terms of expression stabil-
ity (or suitability as normalizing gene). In a subsequent
step, the algorithm is able to indicate how many refer-
ence genes are optimally required to remove most of
the technical variation. Other algorithms were then
developed (e.g. Normfinder [32] or BestKeeper [34])
and were presented in a comprehensive survey [28].
Good practice in data normalization for gene expression
analysis therefore relies on the identification, experi-
mental validation and use of several reference genes. In
filamentous fungi, such efforts have been observed with
recent publications dedicated to the validation of suit-
able reference genes under specific experimental con-
texts [35-45]. In Zhou’s work [39], cypB and crzA were
evaluated because of their stability in transcriptomic
datasets. Similarly, Kim and Yun [46] selected 8 refer-
ence genes from transcriptomic data available with
Fusarium graminearum. Such an approach was an ex-
ception, as most often, authors have evaluated more
classic “housekeeping genes” encoding for example actin,
glyceraldehyde-3-phosphate dehydrogenase or β-tubulin,
which are still and too frequently used as single, non-
validated reference genes.
During the course of the RNA-seq based transcriptomic

analysis of the industrial strain T. versatilis exposed to
wheat straw, it was found that most of the classical refer-
ence genes exhibited expression changes in the presence
of this lignocellulosic substrate (unpublished data). This
finding prompted the formulation of a list of putative
reference genes and validation of their expression stability
in T. versatilis cultivated under more than 30 different
relevant conditions, following the MIQE guidelines for
robust and reliable RT-qPCR expression data acquisition
and treatment. Finally, 90 RNA-seq based transcriptomic
datasets from 18 phylogenetically distant filamentous
fungi were scrutinized, including datasets from industrially
important or model species as well as plant or animal
interacting fungi, to demonstrate that some of the candi-
date genes suitable for T. versatilis can be proposed as
promising reference genes for data normalization in RT-qPCR
analysis in other filamentous fungi.

Methods
Strain and culture conditions
The industrial strain used in this work, Talaromyces versa-
tilis (basionyme Penicillium funiculosum, IMI378536), is
an ADISSEO proprietary strain (patent no. W0 99/57325).
Spores of T. versatilis were obtained by growing the strain
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on Potato Dextrose Agar (PDA) plates and the spores
were used to inoculate liquid medium. The minimal
medium (MM) contained for 1 L: 1.9 g KH2P04, 0.65 g
KCl, 0.65 g MgSO4, 12.5 mg ZnSO4, 12.5 mg MnCl2,
12.5 mg FeSO4, 5 g NH4Cl. The MM was supplemented
with 10 g/L glucose as the sole carbon source, unless
otherwise stated. The pH was adjusted to 6.0 with 50 mM
KH2P04. The liquid medium was inoculated with 2 × 105

spores/mL in Erlenmeyer flasks. The cultures were carried
out at 30°C and agitated at 150 rpm for 48 h.

Mycelia samples
A summary table of the culture conditions is presented
as Additional file 1. To prepare mycelia samples of
T. versatilis exposed to different carbon sources, the my-
celia were grown for 48 h in MM broth culture and were
filtered through Miracloth (Merck), washed with MM
without carbon source and transferred to fresh media
containing the desired carbon sources. The cultures
were incubated from 30 minutes to 2 hours for growth
on monosaccharides (arabinose 0.2% (w/v) or xylose
0.2%) or disaccharides (cellobiose 0.2%, xylobiose 0.2%
or thio-gentiobiose 0.2%), or up to 24 hours for the cul-
tures containing complex carbon sources (Avicel 1%,
Arbocel 1%, beechwood xylan 1%, ball-milled wheat
straw 1% or micronized wheat bran 1%). For exposure to
stress, the T. versatilis mycelia grown for 48 h in MM
medium were filtered through Miracloth, washed with
MM without carbon source and transferred to MM sup-
plemented with 0.5 M KCl for salt stress, MM without
glucose for carbon starvation, MM without ammonium
for nitrogen starvation, and MM with the pH adjusted
to 2 or 8 for pH stress. The cultures were incubated at
30°C for 1 h before sampling. For the temperature stress,
the mycelia were similarly collected and transferred to
a pre-heated MM broth culture for an additional 1 h
at 40°C. Samples of about 50 mg of mycelium were
then collected by filtration through Miracloth and flash
frozen in liquid nitrogen.
The conidia at different developmental stages were

prepared after inoculating MM with 2 × 105 spores/mL.
Samples were harvested by centrifugation at 3000 g for
2 min, after incubation of the spores at 30°C, 150 rpm
for 2 h (no morphological change), 4 h (early swelling),
8 h (late swelling), 12 h (germ tube on one side of the
conidia) and 16 h (hyphae already visible). 500 μL of
pre-heated RNA extraction buffer (NaCl 0.6 M, sodium
acetate 0.2 M, EDTA 0.1 M, SDS 4%) were added to
each sample before immersing in liquid nitrogen.

RNA extraction and cDNA synthesis
Mycelia and conidia samples were mechanically dis-
rupted using the TissueLyser II (Qiagen). Frozen mycelia
samples were disrupted with a single 5 mm stainless
steel bead (Qiagen), whereas thawed conidia preparations
were mixed with approx. 150 μL of 625 μm glass beads
(Sigma). Both were submitted to two high-speed shaking
cycles of 3 minutes at 30 Hz. Total RNA was isolated from
disrupted mycelia samples using the GeneJET Plant RNA
Purification Mini Kit (Thermo). An on-column DNase I
treatment (Thermo – Reference #EN0521) was added to
the protocol, applying 100 μL of the DNase I mix (50 μL
of DNase I, 10 μL of 10 X buffer and 40 μL of nuclease-
free water) to the column after the first wash, for a 30
minutes incubation at room temperature and final wash
with the wash buffer I. The remaining of the protocol was
performed as recommended by the Supplier. For conidia
and germinating conidia samples, total RNA was isolated
after transfer of the liquid, beads-free phase to a tube con-
taining 1 mL of TRIzol reagent (Invitrogen). 0.25 mL of
chloroform was added to each sample and the tubes were
incubated for 5 minutes at room temperature and then
vortexed. The tubes were centrifuged at 16000 g for 15
minutes. The aqueous phase (approx. 750 μL) was trans-
ferred to a clean tube and 1 volume of isopropanol
was added. The samples were mixed by inverting the
tubes several times. The tubes were incubated at room
temperature for 10 minutes and centrifuged at 16000 g for
10 minutes. The supernatant was removed and the pellet
was washed with 1 mL of 70% (v/v) ethanol and centri-
fuged once again at 16000 g for 10 minutes. The ethanol
was discarded and the pellet was left to dry. Each pellet
was resuspended in 50 μL of nuclease-free water. A clean-
up protocol using the RNeasy Mini Kit (Qiagen) and on-
column DNase I treatment (Thermo) was then performed
on these RNA samples.
The quantification of the RNA samples was assessed

by using the ND-1000 UV-visible light spectrophotom-
eter (NanoDrop Technologies) while the Bioanalyzer
2100 with the RNA 6000 Nano LabChip kit (Agilent)
was used to certify RNA integrity. Only RNA samples
with 260/280 nm wavelength ratio of approximately 2
and 260/230 nm wavelength ratio greater than 2 were
retained for analysis. Synthesis of cDNA was performed
using the PrimeScript First Strand cDNA Synthesis Kit
(Takara), following the Manufacturers’ protocol. One
microgram of total RNA from mycelia samples and
100 ng of total RNA from conidia and germinating co-
nidia were used for the cDNA synthesis reaction. The
cDNA was diluted 1:10 with water and stored at −20°C.

Primer design and validation
Primers were designed using Vector NTI advance v11
(Life Technologies) with melting temperature of 58─60°C,
length of 18─25 bp and GC content of 50─60%. All ex-
cept R7 and R9 (see Table 1) possess one to several introns
in their sequence, which allowed designing the primers at
the exon-exon junctions to minimise the amplification of



Table 1 List of putative reference genes and genes of interest

Name Annotation GO terms Pathway Primer sequence Primers
efficiency

Amplicon
size

R1 DUF221 domain protein (DUF221) Vacuolar membrane (GO:0005774) Transmembrane protein with
unknown function

Fw: CGGAACGCCCCATTGACC 95.1% 126 bp

Rv: TTGGATGCTTATGTTTTGCTCTCG

R2 Ubiquitin carrier protein (ubcB) Ligase activity (GO:0016874) Involved in the ubiquitin
mediated proteolysis

Fw: TCGTTGAGTAGACTCTGAATGCTG 99.2% 125 bp

Cellular response to stress
(GO:0033554)

Rv: AGCCAGATGTTCCACCCG

Cytoplasm (GO:0005737)

R3 CECR1 family adenosine
deaminase (ADA)

Adenosine deaminase activity
(GO:0004000)

Involved in the purin metabolism Fw: CTGCGCAATGCAAAGTCATGTCTCTG 100.7% 97 bp

Rv: CCCAGGTCGAAGATCCCTTTATCCA

R4 Mitochondrial membrane fission
protein (fis1)

Metal ion binding (GO:0046872) Mitochondrial complex that
promotes mitochondrial fission

Fw: GTTCAACTACGCCTGGGGACTC 101.1% 91 bp

Mitochondrial fission (GO:0000266) Rv: AGCGGTGCGAAAAATCTGGG

Membrane (GO:0016020)

R5 Copper-transporting ATPase
(Cu-ATPase)

Nucleotide binding (GO:0000166) Fw: TGGTGCCCTGTGCCAACTCTCCCAGTC 103.6% 78 bp

Cellular metal ion homeostasis
(GO:0006875)

Rv: TTGCTGCGGGTGCTTTTG

Membrane (GO:0016020)

R6 Cohesin complex subunit (psm1) DNA secondary structure binding
(GO:0000217)

Involved in chromosomes
segregation during mitosis

Fw: GTATTTGCGGAGATCCAGAGTGAG 93.1% 102 bp

Mitotic sister chromatid segregation
(GO:0000070)

Rv: TTGAAGACGGGTCTGTTCCA

Nucleus (GO:0005634)

R7 Spo7-like protein (spo7) Phosphatase activity (GO:0016791) Involved in the spore formation
process

Fw: GCCGATGGTGCTGATGTTGG 102.5% 110 bp

Sporulation (GO:0043934) Rv: AGAACGCCAACGAGCCCG

Integral to membrane (GO:0016021)

R8 SAGA-like transcriptional regulatory
complex subunit Spt3 (spt3)

Transferase activity (GO:0016740) Component of the nuclosomal
histone acetyltransferase (SAGA)
complex

Fw: ACGACTTGTTGGCGGACG 96.3% 95 bp

Chromatin modification (GO:0016568) Rv: GAGATTCAGCAGATGATGTTTGTC

Nucleus (GO:0005634)

R9 DUF500 domain protein (DUF500) Actin filament organization
(GO:0007015)

Cytoskeleton organization Fw: ACTTGGCCGGTTGTGCGTTC 98.5% 101 bp

Cytoplasm (GO:0005737) Rv: TTGGTGTTCCGGCGGCTG

R10 Rho GTPase activator (sac7) Rho GTPase activator activity
(GO:0005100)

Involved in signal transduction Fw: AGGAGGATGAAAGTAAAGGACCCC 100.5% 159 bp

Small GTPase mediated signal
transduction (GO:0007264)

Rv: AAACCCCACACTTGGCGAC

Intracellular (GO:0005622)
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Table 1 List of putative reference genes and genes of interest (Continued)

R11 AP-2 adaptor complex subunit
beta (AP-2 β)

Transporter activity (GO:0005215) Involved in chlatrin-dependent
endocytosis

Fw: TTTCGCACATAGGGGTCG 98.4% 148 bp

Rv: TTTTGGTCGATGATATGGACG

R12 Protein translocation complex
componenet (npl1)

Protein transporter activity (GO:0008565) Involved in the protein progression
in endoplasmic reticulum

Fw: CGCTGGAACAAGAAAAATACG 98.2% 117 bp

Post-translational protein targeting to
membrane (GO:0006620)

Rv: ACGAACGATATGCGCCAA

Endoplasmic reticulum (GO:0005783)

β-tub Beta-tubulin Nucleotide binding (GO:0000166) Cytoskeleton Fw: GTTCTGGACGTTGCGCATCTG 97.2% 110 bp

Cytoskeleton (GO:0005856) Rv: TGATGGCCGCTTCTGACTTCC

abf-B2* Arabinofuranosidase-B2 Hydrolase activity, acting on glycosyl
bonds (GO:0016798)

Sugar metabolism Fw: CGGAGCTTGGGTGAGATGGTTC 103.6% 112 bp

Carbohydrate metabolic process
(GO:0005975)

Rv: CGGCGGCGTTGCTAATGC

Extracellular region (GO:0005576)

xynC* Xylanase C Hydrolase activity, acting on glycosyl
bonds (GO:0016798)

Sugar metabolism Fw: CAAATGGCGACAATGGCG 94.4% 104 bp

Xylan metabolic process (GO:0045493) Rv: TGAGTACGTGACAGTCTGTGCATTG

Extracellular region (GO:0005576)

The annotation and GO terms were taken from the Talaromyces versatilis genome (basionyme Penicillium funiculosum, ADISSEO proprietary sequence, unpublished). Forward (Fw) and reverse (Rv) primer sequences
used for RT-qPCR. The two genes at the bottom of the table marked with an asterisk (*) correspond to the genes of interest.
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contaminant gDNA. Amplicon sizes ranged between 70
and 200 bp. Reaction efficiency for each pair of primers
was tested by the dilution series method using a mix of
cDNA samples as the template. The efficiency of validated
primer pairs focused around 100% (Table 1).

qPCR
The qPCR was performed in a CFX96 Real Time PCR De-
tection System (Bio-Rad), using 96-well white PCR plate
(Thermo) sealed with ABsolute qPCR seals (Thermo). The
reaction mix consisted of 7.5 μL of the DyNamo Color-
Flash SYBR Green master mix (Thermo), 300 nM of each
primer and 3 μL of the 1:10 diluted cDNA in a final vol-
ume of 15 μL. The PCR reaction cycle was: initial denatur-
ation for 7 min at 95°C, followed by 40 cycles of
10 seconds at 95°C and 30 seconds at 60°C. A melting
curve was performed at the end of the qPCR run, increas-
ing the temperature in a stepwise fashion by 0.5°C every
5 seconds, from 65°C to 95°C. Each RT-qPCR reaction was
performed in technical triplicate. Two control samples
were included for each primer pair tested; the no template
control (NTC) and T. versatilis genomic DNA. For each
sample, a ValidPrime Assay (VPA), consisting of a pair of
primers that bind to a non-transcribed intergenic region
identified from RNA-seq data, was also included to detect
and quantify the presence of contaminating gDNA [47].
The primers for the VPA were; 5′ACCGAATGGCACCGA
GTTGG 3′ and 5′AATGGAGGAAGCGTGCCGTG 3′.
As gDNA contamination rarely exceeded 1%, the RT-
qPCR data were directly analysed using the CFX Manager
software (Bio-Rad).

Stability analysis
The stability of putative reference genes was assessed using
the geNorm VBA applet for Microsoft Excel [33]. geNorm
allows the calculation for each reference gene of the gene
expression stability value M, which is the average pairwise
variation of a particular gene with all other control genes,
the most stable genes presenting the lowest M values. To
determine the optimal number of genes that are required
for an accurate normalization, the normalization factors
(NFn, based on the geometric mean of the n most stable
genes) were calculated by stepwise inclusion of the most
stably expressed genes. Pairwise variations (V(n/n+1)) be-
tween NFn and NFn+1 were then calculated to determine
the effect of adding the (n + 1)th gene. If the Vn/n+1 is super-
ior to the cut-off value 0.15, the addition of the (n + 1)th

gene has a significant effect on normalization quality and
should preferably be included for calculation of a reliable
normalization factor.

In-silico analysis of RNA-seq data
Three RNA-seq datasets from the industrial T. versatilis
were at our disposal (unpublished data) and were prepared
from: 1) growth of the mycelium on MM for 48 h (refer-
ence condition); 2) transfer of the water-rinsed mycelium
to MM with ball-milled wheat straw 1% (w/v) as carbon
source and sampling after 24 h; 3) direct addition of
glucose at 1% final concentration to the mycelium exposed
to wheat straw, and sampling after 5 h. These RNA-seq
data were used for the pre-selection of stable genes (fold
change (FC) equal to one, see Additional file 2) after calcu-
lating the FC as follow: RPKM (Reads Per Kilobase of
exon model per Million mapped reads) value in the sam-
ple of interest / RPKM in the reference condition, for each
gene. Similarly, FC for candidate reference genes were cal-
culated from RNA-seq data publicly available at the NCBI
GEO database [48,49]. To identify the homologues of
T. versatilis selected reference genes in the different fungi,
a standard protein BLAST (blastp) using the amino-acid
sequence from T. versatilis was performed against protein
databases, specifying the organism. Each homologous
sequence was then used for a reciprocal BLAST against
the T. versatilis database in order to confirm the accuracy
of the result. The detailed list of locus tags for each gene
in every fungus is available in the Additional file 3. For
each GOI in these studies, the ratio between the expres-
sion in a condition of interest and the expression in the
control condition was calculated. Collected datasets were
from Trichoderma reesei ([50], accession #GSE44648),
Aspergillus niger ([51], #GSE33852), Aspergillus flavus
([52,53], #GSE40202 and #GSE30031), Aspergillus fumiga-
tus (#GSE30579), Aspergillus oryzae ([54], #GSE18851),
Aspergillus nidulans ([55], #GSE44100), Blumeria grami-
nis ([11], #GSE43163), Colletotrichum graminicola ([56],
# GSE34632), Colletotrichum higginsianum ([56], #GSE33683),
Fibroporia radiculosa ([57], #GSE35333), Magnaporthe oryzae
([58], #GSE30327), Neurospora crassa ([55], #GSE44100), ([59],
#GSE35227), ([60], #GSE36719), Pyronema omphalodes ([61],
#GSE41631), Rhizoctonia solani ([12], #GSE32577), Sordaria
macrospora ([62], #GSE33668). We also accessed unpub-
lished data from Rhizophagus irregularis ([7], #SRX375378
at NCBI Short Read Archive) and Leptosphaeria maculans
(personal communication from T. Rouxel, INRA-Bioger,
Thiverval-Grignon, France).

Gene expression and statistical analyses
Three independent cultures of T. versatilis were carried
out to perform RNA-seq. For reference gene stability ana-
lysis by RT-qPCR, cultures of T. versatilis in the different
conditions were performed in duplicate. qPCR assays were
performed in technical triplicates. Inter-run calibrators
were included in each qPCR plate. The RT-qPCR data
were directly analysed using the CFX Manager software
(Bio-Rad), which allows inter-run calibrations, efficiency
correction, normalization with multiple reference genes
and calculation of ratios with (technical) errors propaga-
tion. As advised for final calculation of FC values from



Figure 1 Distribution of the raw Cq values. For each gene, the
box-plot gathered all the 66 raw Cq values obtained from the 33
duplicated culture conditions of T. versatilis. The lower and upper
boundaries of the box (interquartile) represent the 25th and the 75th

percentile, respectively. The line within the box corresponds to the
median and the cross to the mean of the distribution, while the
whiskers indicate the highest and the lowest Cq values, with the
exception of the outliers that are represented by the squares
outside the whiskers.
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biological replicates [20], statistics (mean ± SD) were
assessed from FC values obtained from biological repli-
cates. Other statistical analyses were conducted by using
the STATGRAPHICS Centurion 16 software. This in-
cluded: the ANOVA on relative FC values (Three-level,
nested ANOVA with ‘genes’ as the first level, ‘culture con-
ditions’ as the second level and ‘biological replicates’ as the
third level); the Hierarchical Ascendant Classification
(HAC) that was performed according to the Ward method,
using default parameters (standardization of the data and
squared Euclidean distances); the graphical representation
of box plots.

Results and discussion
Selection of candidate reference genes from T. versatilis
RNA-seq datasets
In a preliminary study on the industrial Talaromyces
versatilis strain IMI378536, RNA-seq data were gener-
ated to analyse the transcriptome of this filamentous
fungus on wheat straw (unpublished data, property of
ADISSEO SAS). An in silico screen for genes that
showed no differential expression between glucose and
wheat straw, was used to select about a hundred genes
with fold-changes close to one, indicating stability of
transcript levels under those conditions. From this pre-
selection, genes were discarded because of anti-sense
transcription, alternative splicing events, as well as very
low expression level (RPKM below 15). The design of
primers and their experimental validation by RT-qPCR
were then performed on a residual list of 20 candidate
genes taking care to avoid their participation in similar
cellular functions to minimise the risk of co-regulation
under culture conditions of interest. Finally, 12 putative
reference genes were selected whose primers led to good
reaction efficiency. As shown in Table 1, this selection
included genes involved in intracellular signalling, vesicu-
lar trafficking, metal transport, cytoskeleton organization
or protein ubiquitinylation, but quite surprisingly, it did
not contain any gene implicated in the central carbon
metabolism. To this list, the gene encoding β-tubulin was
also included, as it is frequently used for RT-qPCR data
normalization [63-67].

Evaluation of the stability of candidate genes expression
in T. versatilis cultivated under a large set of conditions
To evaluate whether the 13 candidate genes harboured a
stable transcript level and could be used as proper in-
ternal control for data normalization in RT-qPCR gene
expression analysis, their transcript levels were quanti-
fied by this technique in more than 30 different condi-
tions (Additional file 1). Growth was explored in the
presence of different carbon sources (from monosaccha-
rides to complex plant cell wall polymers), temperature,
pH and salt stresses, as well as to carbon and nitrogen
starvation. In addition, transcript levels of these genes
were monitored during conidial germination, as this de-
velopmental process is a particularly interesting aspect
of fungal biology [68-70]. The raw Cq values of the 13
genes were therefore collected under 33 conditions and
compiled in the box plot (Figure 1). Most of these genes
showed a compact distribution of Cq values, with less
than 2 Cq between the 1st and 3rd quartiles, indicating
relatively low variation of the transcript level among the
different conditions (i.e. less than 4-fold differential ex-
pression for the middle fifty). Some of them, R3 (ADA),
R11 (AP-2β) as well as the β-tub gene displayed slightly
higher dispersion of their Cq values. The genes R3 and
β-tub also exhibited weaker and stronger transcript levels,
respectively, with approx. 100-fold differential average
transcript level between each other. Besides these 2 candi-
dates, quite similar average expression levels for the
remaining 11 genes, with raw Cq values around 25, were
observed. This average expression level was acceptable for
robust RT-qPCR assays and normalization, based on the
validated reaction efficiencies and the possibility to amplify
target cDNA over several logs of concentration. However,
this was contrary to the notion that the transcript level
of the ideal reference gene must be close to the average
transcript level of the GOIs. That situation cannot
occur when the GOIs present very different average
transcript levels, or when a single GOI presents either
potent repression or strong induction in the same study.
As an example, the expression of abf-B2 encoding a
GH54 α-L-arabinofuranosidase [71], showed more than
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25-fold relative change between the 1st and 3rd quartiles.
The huge whiskers of abf-B2’s box (Figure 1) reflected
more than four log differential expression, and at least a
5-log differential expression of abf-B2 between the two
extreme conditions was observed.
The raw Cq values were transformed to quantities with

efficiency correction and then analysed with the geNorm
algorithm to rank the 13 candidate genes according to
their M value and to ascertain their expression stability
over a specified set of conditions (Figure 2A). When con-
sidering the whole set of conditions that were investigated
(“all conditions”), the M value of these 13 genes (num-
bered 1 to 13 on the X axis in Figure 2A) was below the
recommended threshold of 1.5, even for the β-tub gene,
but also R3 and R11, which ranked amongst the least
Figure 2 geNorm–based ranking of the putative reference genes. (A)
stable (on the right) according to their M value (Y axis). This classification w
‘All conditions’ included the whole set of culture conditions studied by RT-
obtained from growth on different sugars; the ‘Stress’ subset corresponded
subset included the 6 germination time points. For each set of conditions,
colours attributed to each gene for the sake of clarity). (B) Result of the pa
optimal number of genes for reliable normalization. Values below the 0.15
stable genes in agreement with the behaviour that was
reported in Figure 1. To reinforce this result, RefFinder
(http://www.leonxie.com/referencegene.php), a web-based
tool that integrates the currently available major com-
putational programs (geNorm [33], Normfinder [32],
BestKeeper [34] and the comparative ΔCt method [72])
was also used. As can be seen in the Additional file 4,
these algorithms led to similar classifications with the
notable exception of Bestkeeper that ranked R5 and
β-tub as the most stable genes. Also surprisingly, geN-
orm from RefFinder did not lead to the same output as
we got from our geNorm interface, which certainly re-
lied on different versions of the algorithm. Similar rank-
ing could nevertheless be observed with respect to the
most stable candidates (R2, R10, R6, R12 (Figure 2A) vs.
Genes were ranked from the least stable (on the left) to the most
as independently performed by using different sets of conditions: the
qPCR in this work; the ‘C sources’ subset gathered the 18 samples
to 6 samples harvested during stress exposition; the ‘Germination’
the result of the classification was given below the X-axis (arbitrary
irwise variation analysis between NFn and NFn+1 to determine the
threshold mean that n genes might be sufficient.

http://www.leonxie.com/referencegene.php
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R10, R12, R2, R4 (geNorm from RefFinder)) or the least
stable ones (R3, R11, β-tub, R5 (Figure 2A) vs. β-tub,
R3, R11, R5 (RefFinder)). The fact that these algorithms,
in particular geNorm versus NormFinder and ΔCt method,
did not yield to identical results was not so surprising. As
will be discussed in the next section with the classification
of the genes in subsets of conditions, we indeed observed
an unexpectedly uniform stability of the candidate refer-
ence genes, suggesting that they are all almost as good as
each other. This is most likely the reason why these differ-
ent algorithms could not propose clear-cut, identical classi-
fications of these genes.
Still using geNorm, the optimal number of reference

genes required for accurate normalization in the “all
conditions” set (Figure 2B) was evaluated. Vandesompele
and coworkers [33] recommended a cut-off value at 0.15
for the pairwise variation value (Vn/(n+1)), below which
the inclusion of an additional gene does not result in a
significant improvement of the normalization. According
to this criterion, the V2/3 and V3/4 values indicated that
three genes, i.e. R2 (ubcB), R10 (sac7) and R6 (psm1),
were sufficient for accurate normalization of transcript
levels in any of the samples examined.

Evaluating gene expression stability in subsets of conditions
The stability of transcript levels was similarly analysed in
subsets of selected conditions, i.e. samples from myce-
lium grown in different carbon sources (‘C sources’ sub-
set), samples from mycelium exposed to different stress
conditions (‘Stress’ subset) and samples harvested during
conidial germination (‘Germination’ subset) (Figure 2A).
While R1, R11 and R3 were amongst the least stable
genes when analysing the whole set of conditions, they
classified amongst the 3 best genes in the ‘C sources’,
‘Stress’ and ‘Germination’ subsets, respectively. This
reorganisation of the ranking, when conditions changed,
could be explained by the uniformly stable transcript
levels from these genes, particularly in the ‘C sources’
and ‘Stress’ subsets, which led to low and stable M
values for 11 and 9 genes amongst the 13 candidates, re-
spectively. This remarkable stability for most of the
genes was also supported by the pairwise variation
values (Figure 2B), which indicated that only two genes
could ultimately be used for robust normalization in
these ‘C-sources’ (R6 and R2), ‘Stress’ (R7 and R11) and
‘Germination’ (R10 and R2) subsets. In the first two sub-
sets, the stepwise inclusion of reference genes led to
continuous decrease of the V value, until the inclusion
of the least stable genes reversed the tendency. These
values were nevertheless always below the 0.15 cut-off
value, confirming the extreme stability of transcript
levels from these genes.
In the context of conidial germination, the identifica-

tion of reliable reference genes was first challenged by
the difficulty of producing good quality RNA samples.
The influence of RNA quality on reproducibility of mea-
sured transcript levels was recently reviewed [73,74],
highlighting that the process of normalization does not
completely resolve the bias of using compromised RNA
quality on the final results. In our hands, only the use of
the TriZol reagent secured the mRNA quality standard
required for reliable RT-qPCR analysis. This technical
prerequisite being fulfilled, the analysis of Cq values in
this ‘Germination’ subset showed that the M values in-
creased more rapidly than for ‘C-sources’ and ‘Stress’
subsets, indicating higher expression variability of the
genes. This was further illustrated by a hierarchical
ANOVA of the relative transcript level data (Figure 3),
where it was observed that 70 to 80% of the variation for
the ‘C-sources’ and ‘Stress’ subsets took place at the level
of the biological replicates (Figure 3A & B), supporting
the extremely low variation between genes as well as the
low influence of conditions on the transcript levels. In
contrast, the variation observed between genes strongly
increased in the ‘Germination’ subset, to reach about
50% of total variation (Figure 3C), which was particularly
emphasized with genes such as R6 and R11 that exhib-
ited a strong bias (higher expression and activation dur-
ing germination). The genes R10, R2 and R3, which were
classified by geNorm as the best reference genes in this
specific subset, were used for normalization (see below,
NF(R10, R2, R3)) and confirmed that R6 and R11 were in-
duced respectively by 6 and 12-fold, 6 hours after the
beginning of the germination process (data not shown).

Robust normalization using the geometric mean of a
minimal number of these candidate reference genes
In order to minimise the risk of bias from using a single
gene as a reference, it is preferable to normalize using
the geometric mean of multiple reference genes, as it
was proposed previously [33]. This normalization bias,
i.e. under- or over-estimation of the normalised expres-
sion value of GOIs, or how the use of different reference
genes can impact biological conclusions, was illustrated
by studying the transcript level of two relevant genes of
T. versatilis, namely abf-B2 encoding a GH54 arabino-
furanosidase [71] and xynC encoding a GH11 xylanase
[75], under three different culture conditions (Figure 4A).
Using a theoretically ideal normalization factor (NF(R2,
R10, R6), geometric mean of R2, R10 and R6 transcript
levels), it was found that the transcript level of abf-B2
increased by 2.2 and 32-fold upon transfer from glucose
to thio-gentiobiose and arbocel, respectively, whereas
the transfer to C-starved medium did not cause any sig-
nificant change. Different regulatory patterns were ob-
tained using single reference genes for normalization.
The use of R3, the worst gene according to geNorm
classification, led to no-significant change of abf-B2



Figure 3 Hierarchical ANOVA of the putative reference genes. Three-level, nested ANOVA with ‘genes’ as the first level, ‘culture conditions’
as the second level and ‘biological replicates’ as the third level. As in Figure 2, this ANOVA was carried out using different sets of conditions:
‘C sources’ subset (A); ‘Stress’ subset (B); ‘Germination’ subset (C). Left graph: relative expression values (Log (base 2)) as a function of the
different conditions for the different genes, taking as the control conditions the glucose sample (A & B subsets) and the T0 time-point for
spore germination (C subset). Two values were used for each condition (i.e. duplicated experiment). Right panel: partitioning of the variance
into the three levels (in %).
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transcript level upon transfer to thio-gentiobiose, slightly
over-estimated induction on arbocel (64-fold), and indi-
cated that this gene was repressed by 3-fold upon
C-starvation. The use of β-tub also modified the expres-
sion pattern but in contrast to R3, it allowed concluding
that abf-B2 was induced by 9 and 7-fold upon transfer
to thio-gentiobiose and C-starvation, respectively. Simi-
lar conclusions could be drawn by analysing xynC.
While transcripts levels of this gene were not signifi-
cantly affected upon transfer to thio-gentiobiose or
C-starved medium when using NF(R2, R10, R6), the use of
R3 allowed concluding that this gene is slightly repressed
upon transfer to these conditions, while the use of β-tub
would conclude on clear induction by 5- and 12-fold,
respectively. Only in a few circumstances (e.g. arbocel
sample in this example), the use of single genes for
normalization may lead to similar fold change values
whatever the reference gene used. To better prove the
importance of averaging several, functionally unrelated
candidate reference genes to gain a significant reduction
of the normalization bias, we gathered together the three
worst candidate genes, including R3, to calculate the
normalization factor NF(R5, R11, R3). Fold change values
reported in Figure 4A clearly showed that the use of NF
(R2, R10, R6) and NF(R5, R11, R3) lead to almost identical re-
sults. This result discredited the use of single genes such
as R3 or β-tub (even if their use could, by chance, lead
to fairly good conclusions (e.g. arbocel condition in this
figure)), but it illustrated the strength of geometric aver-
aging multiple genes to smooth individual, sometimes
important variations of the transcript level of single ref-
erence genes. This is a particularly relevant aspect to
avoid incorrect biological interpretation of gene regula-
tion, particularly if the biological significance of subtle
differences in fold-changes values is to be considered.
These preliminary, illustrative results prompted us to

extend this analysis in our specific set of conditions to
obtain a better idea of the frequency and extent of
under- or over-estimation of normalized expression
value of GOIs by using different reference genes. Also,
different sub-optimal combinations of reference genes
were challenged by evaluating the normalization bias
that might result from their use. We studied here
normalization factors (NF) calculated from combinations
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(See figure on previous page.)
Figure 4 Normalization bias analysis according to reference genes selection. (A) Example of normalized transcript levels of abf-B2 and xynC
under different culture conditions (Thio-gentiobiose, Arbocel and C starvation samples) using 4 different Normalization Factors (NFs): NF(R2, R10, R6),
NF(R5,R11,R3), NF(R3) and NF(β-tub). Log (base 2) of FC values on the Y axis (mean ± SD, n = 2 in this experiment) using glucose as the calibrator sample.
(B) Comparison of NF(R2, R10, R6) to NF calculated from less stable genes, as well as from single genes such as R3 and β-tub. For each condition of
interest (X axis, see Additional file 1), we calculated a normalization bias (i.e. under- or over-estimation of the normalised expression value of GOIs)
as the ratio between the theoretically best NF (NF(R2, R10, R6) as determined from geNorm classification by using the entire set of conditions) and
NF calculated from other combinations of reference genes. Log (base 2) of the normalization bias is represented on the Y axis. Yellow zone: less
than 1.5 fold bias; Green zone: 1.5─2 fold bias; Blue zone: 2─3 fold bias; Red zone: 3─8 fold bias. (C) Quantile plot of the normalization bias
values for each NF. The normalization bias (Log (base 2)) is represented on the X axis and the same colour code used in (B) was applied. The
quantile fractions are represented on the Y axis. (♦) NF(R12,R7,R8), (☐) NF(R4,R9,R1), (◯) NF(R5,R11,R3), (+) NF(R3) and (×) NF(β-tub).
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of three candidates, from less well ranked genes (NF(R12,
R7, R8), NF(R4, R9, R1) and NF(R5, R11, R3), respectively). The
normalization bias was calculated in each condition as
the ratio between a given normalization factor and the
theoretically ideal one (NF(R10, R2, R6)). The use of the
β-tub gene alone, which ranked amongst the least stable
genes (Figure 2A), altered the quality of the normalization
with over-estimation in most of the conditions that were
studied (Figure 4B, crosses in the upper blue and red
zones). This effect was emphasized in the quantile plot
(Figure 4C), as an unbiased response (i.e. less than 1.5-fold
bias) was observed in less than 10% of the conditions,
while 50% of the samples showed more than 3-fold over-
estimation. Conversely, the use of R3 alone resulted in
3.0–8.0-fold under-estimation in more than half of the
samples tested in our study (Figure 4B & C, lower red
zone). We could observe a significant reduction of the
normalization bias by averaging R3 in NF(R5, R11, R3), which
led to a clear shift of the curve towards the central zone,
with more than 70% of the conditions exhibiting less than
2-fold bias while the remaining 6 samples did not exceed
3.0-fold down-estimation (conditions #12, 17, 20 and 21
from the NF(R5, R11, R3) series, blue zone), confirming the
results shown on Figure 4A. In most cases, the use of NFs
that were calculated from multiple genes led to a minimal
normalization bias (yellow-green zone), which was a clear
illustration of the prime importance of normalising by the
geometric averaging of multiple genes to minimize the
bias during normalization of GOIs [33].

Expression data collection from phylogenetically distant
filamentous fungi
To demonstrate the suitability of some of the 12 putative
reference genes for RT-qPCR analysis in fungi, RNA-seq
based transcriptomic datasets from 18 phylogenetically
distant filamentous fungi were interrogated, exploiting
web resources such as the GEO portal [48,49]. These data-
sets covered model fungi [55,59-62], biotechnologically
important organisms [50,51,54], agronomically relevant
fungi such as symbiotic organisms or plant pathogens
([8,11,12,47-49] and personal communications), and hu-
man pathogens [52,53]. This collection corresponded to
90 independent datasets, most of them in triplicates and
harvested from a broad variety of experimental conditions,
e.g. exposure to stress, nutritional source utilisation, fungi-
host interactions or development stages (see Additional
file 5 for further details). To further strengthen this ana-
lysis, genes were included that have been evaluated for
their use in Aspergillus niger [35] and Trichoderma reesei
[36]. The 12 genes selected here are henceforth referred to
as the ‘R series’ and the additional reference genes were
termed ‘C series’ and contained the actin (C1, act), amino-
peptidase C (C2, apsC), cytochrome C oxidase subunit V
(C3, coxV), glyceraldehyde-3-phosphate dehydrogenase
(C4, gapdh), glucokinase (C5, glkA), glucose-6-phosphate
dehydrogenase (C6, g6pdh), isocitrate dehydrogenase pre-
cursor (C7, icdA), phosphofructokinase (C8, pfkA), phos-
phoglucose isomerase (C9, pgiA), a secretion associated
GTP-binding protein (C10, sarA), and the translation
elongation factor a1 (C11, ted1a). The β-tub gene (C12),
which was not part of A. niger and T. reesei studies, was
also included in this study as it has been evaluated
amongst other putative reference genes in similar studies
([38-43] and Additional file 6). Finally, 4 further genes
were added that were homologous to S. cerevisiae ALG9
(Sc1), TAF10 (Sc2), TFC1 (Sc3) and UBC6 (Sc4), which
have been previously validated as good reference genes
in this yeast [76]. For every gene, in each specific study,
fold changes (FC) were calculated as the ratio between
the expression in a condition of interest and the expres-
sion in the control condition that was designed in this
specific study.
Changes in transcript levels in the different conditions

for the different fungi, were used to generate a heat map
(Figure 5). None of the genes from the ‘C series’ was stable
in the two T. versatilis conditions and explains why they
were not pre-selected in this study. Also, in RNA seq data
collected from R. irregularis, P. omphalodes, R. solani,
F. radiculosa, M. oryzae and A. nidulans, almost all the
candidate genes and those from the ‘C series’ exhibited
good expression stability, as indicated by the generalized
greenish colour. Half of those genes had FC values lower
than 1.2 (data not shown) and FC values almost never
higher than 2. During the early stages of plant infection



Figure 5 (See legend on next page.)
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Figure 5 Heat map of RNA-seq based expression data of putative reference genes, collected from 18 phylogenetically distant fungi.
For each RNA-seq dataset (study), we calculated for each gene fold changes (FC) as the ratio between the expression in a condition of interest
and the expression in the condition that was defined as the control in this study. Each line represents a condition of interest, each column a gene
of interest (corresponding names of the genes are given in Figure 6). Genes have been distributed in three groups: the ‘R series’ that corresponds
to 12 candidate reference genes pre-selected from T. versatilis data; the ‘C series’ that corresponds to more classic reference genes previously used
in most of gene expression studies, including for filamentous fungi; and the ‘Sc series’ that corresponds to genes homologous to S. cerevisiae
genes, which were previously validated as promising reference genes in this yeast species. Numbers reported in the heat map correspond to
log (base 2) of FC values. Colour scale and correspondences between Log (base 2) and FC values are indicated in the legend (green colour set for a
fold-change of 1 (log2 = 0); red colour arbitrary set for differential expression equal or higher than 12 (|log2|≥ 3,5). Empty cells: data not available.
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by B. graminis, extensive transcriptomic changes were
observed for most of the genes. A similar situation was
observed during different development stages of S. macro-
spora, where most of the reference genes were either
down- or up-regulated. These two datasets strengthened
the conclusion that even the best reference genes will
never escape sporadic differential expression, so that valid-
ation of their stability is highly recommended prior to
their use for normalization in each new project. When fo-
cused on the different Aspergillus and Neurospora species,
visual inspection of the heat map suggested that genes
from the ‘R series’ were slightly more stable. This was con-
firmed when pooling and analysing together all FC values
from the ‘R’ and ‘C’ series, respectively, as the median and
interquartile of these two gene subsets indicated a clear
tendency to down regulation of the ‘C series’ (results not
shown). A striking feature within this ‘R series’ was never-
theless the R5 (Cu-ATPase) gene that was strongly regu-
lated under a few conditions, particularly in N. crassa
exposed to Avicel or carbon starvation. This latter obser-
vation was however specific to N. crassa, as this gene was
perfectly stable in T. versatilis mycelium similarly exposed
to this carbon source or to C starvation (not shown).
Finally, the fungal genes homologous to yeast Sc3 (TFC1)
and Sc4 (UBC6) exhibited relatively stable transcript levels
in most of the filamentous fungi and conditions of inter-
est, with the notable exception of B. graminis during plant
infection as already mentioned above. In contrast, Sc1
(ALG9) exhibited much higher fluctuations of FC values.

Global analysis of reference genes stability in filamentous
fungi
To identify the most relevant reference genes among the
whole ‘R’ and ‘C’ series, the 92 FC values were pooled
for each gene independently (Figure 6). When looking at
the median and interquartile, which are robust statistical
parameters especially for small samples that are not nor-
mally distributed, the most promising genes should
present a median close to zero and a compact interquar-
tile, indicating no differential expression and low vari-
ation, respectively. Remarkably, R2 (ubcB), which was
identified by geNorm as the best reference gene for
T. versatilis, exhibited such requirements with a median
close to zero and FC values that did not exceed 1.3 (re-
pression or induction) in half of the conditions collected
in this study. In contrast, the R5 gene (Cu-ATPase) ex-
hibited a very strong bias towards overexpression and a
much higher variation in FC values, even when remov-
ing outliers that mostly fitted with N. crassa samples
exposed to cellulose.
To search for groups of genes presenting similar be-

haviour, a cluster analysis (HAC) was conducted, using
the median and the interquartile as variables (Additional
file 7). Moderate partitioning led to the identification
of 5 classes, highlighted in the interquartile versus me-
dian scatter plot (Figure 7). The best class (red), with its
centroid having a median at zero and the lowest vari-
ation, contained three of the new candidates (R2 (ubcB)
and R10 (sac7), previously designated as the best refer-
ence genes for T. vesatilis, and R4 (fis1)), C10 (sarA) that
encodes a secretion-associated GTP-binding protein that
was already identified as a good reference gene [35,36],
and two genes homologous to S. cerevisiae TFC1 (Sc3)
and UBC6 (Sc4). In contrast, the orange class, which
had the largest interquartile of the study indicative of
poor stability and higher probability of differential ex-
pression, included C8 (pfk), C4 (gapdh) and C2 (apsC)
genes. In between, the green category contained several
classic reference genes such as C1 (act) and C5 (glk),
which presented fairly centred medians but showed the
highest variability within this class. Other frequently
used reference genes such as C12 (β-tub), C11 (tef1) and
C6 (g6pdh) were categorised in a less promising group
that presented a reasonable level of variability but a ten-
dency towards down-regulation (class 4, blue). Finally,
R5 (Cu-ATPase) and R3 (ADA), which classified amongst
the least stable genes in T. versatilis samples, confirmed
their low stability in other filamentous fungi and a clear
bias to overexpression (class 5, violet).
Even though genes in the red class could be considered

as a very promising set of reference genes for normalization
purposes in fungi, they too may present unexpected regula-
tory changes in specific contexts. An interesting case-study
was indeed found in this work with two of these most
promising reference genes, i.e. R4 (fis1) and Sc4 (UBC6),
which were strongly down-regulated in C. higginsianum



Figure 6 Distribution of fold change values. For each gene, the box-plot gathered about a hundred log2(FC) values presented in Figure 5
(Legend as in Figure 1). The extreme values amongst outliers are marked with a red asterisk. The colours of the boxes relate the classes that were
determined from the HAC (see Figure 7). From the top to the bottom, we listed the new candidates (‘R series’), the classical reference genes
(‘C series’) and the putative references homologous to S. cerevisiae genes (Sc1─Sc4). The right panel resumes the type of distribution (normal or
not), average, median and interquartile for each gene.
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during infection phases of Arabidopsis thaliana (Figure 5).
Moreover, although a reference gene is certified in an or-
ganism of interest, it does not preclude extremely different
regulatory patterns in phylogenetically distant organisms
exposed to strictly similar conditions. It was found for ex-
ample that R5 (Cu-ATPase) was stable in T. versatilis ex-
posed to Avicel or C starvation (data not shown), while it
was strongly activated by these environmental conditions in
N. crassa. Such examples clearly emphasise that validation
experiments are mandatory to avoid the drawbacks of using
inappropriate reference genes [77,78]. The second import-
ant point that should be stressed is the possible co-
regulation of selected reference genes. While apparently
linked to GTP, R10 (sac7) and C10 (sarA) seem to be impli-
cated in independent functions, i.e. signal transduction
and secretion, respectively. Unfortunately, this is not the
case for R2 (ubcB, Ubiquitin-protein ligase activity) and
Sc4 (UBC6, ER-associated protein catabolic process), which
belong to a similar functional category and hence may
show undesirable co-regulation. Therefore, the use of both
of them as references genes should be discouraged, al-
though both could be evaluated.
It is unlikely that expression of most of these promis-

ing reference genes will be found to be unstable simul-
taneously in future projects. If this was the case, it will
require identifying and validating new genes. Transcrip-
tomic data obtained from distant organisms studied
under comparable conditions, or from the organism of
interest cultivated in conditions as diverse as possible,
could be collected. This strategy turned out to be suc-
cessful in our hands for pre-selection of appropriate
reference genes, even from a very limited set of tran-
scriptomic data as starting material. The automated
identification of suitable reference genes by the use of
tools such as RefGenes [30] might be useful, taking care
to focus on functionally unrelated candidates, provided



Figure 7 Classification of the reference genes according to
their median and interquartile. Scatter plot of the interquartile
versus median. The clusters that were obtained by hierarchical
classification (HAC, see Additional file 7) are circled with different
colours. The black crosses indicate the centroid of each cluster.
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that transcriptomic data that are targeted by this tool
are generalised to all published datasets, including those
that have been produced from filamentous fungi.

Conclusions
Starting with a restricted set of 3 RNA-seq based tran-
scriptomic datasets from T. versatilis cultivated under ex-
tremely different growth conditions, a list of 12 stable
genes that belong to different functional classes was se-
lected. The stability of transcript levels in more than thirty
conditions of interest such as varied nutritional sources,
stress exposure or time course analysis of conidial germin-
ation was examined. Three genes, R2 (ubcB), R10 (sac7)
and R6 (psm1), were certified as the best reference genes
for accurate normalization of expression levels in T. versa-
tilis. Ideally, the optimal number of genes relies on the
stepwise inclusion of additional reference genes until the
time when this supplementary gene may not improve, nor
worsen the normalization factor [33]. The overall good
stability of the 12 candidates selected allowed us to show
that any combination of 3 of them resulted in very similar
normalized fold-change values and minimal normalization
bias, even with the least stable genes on the list.
The main challenge concerning reference gene-based

normalization is the circular problem in evaluating the
expression stability of the candidate reference genes if
no reliable normalization method is available [32]. To
overcome this problem, transcriptomics can be used for
pre-selection of unregulated candidates, choosing func-
tionally unrelated genes to avoid co-regulated candidates,
and identifying the best genes with the help of specific
algorithms such as geNorm [33]. We clearly observed that
normalization by single non-validated genes, i.e. β-tub or
one of the least stable candidate genes of the list, intro-
duced 3 to 8-fold normalization bias in more than half of
the conditions investigated in this study. This could lead
to inaccurate biological interpretation of gene regulation,
particularly if the biological significance of subtle differ-
ences in fold-changes values of GOIs is to be considered.
Beyond their robustness in T. versatilis, the suitability

of these reference genes for RT-qPCR analysis within the
filamentous fungal kingdom was assessed, by collecting
RNA-seq based transcriptomic data from 18 phylogenet-
ically distant fungal species. The representative set of or-
ganisms and experimental conditions that was collected,
confirmed that most of the classic “housekeeping” genes
such as g6pdh, β-tub and act did not appear as the most
stable genes, even if the latter has been classified among
the best reference genes in few specific studies [35,41].
Other genes involved in central metabolism, e.g. pfk,
gapdh, aspC or glk, also showed the highest occurrence of
significant down- or up-regulation, which, together with
their probable risk of co-regulation, strongly discouraged
their further use as reference gene for RT-qPCR gene
expression analysis.
The most promising group of six reference genes in-

cluded ubcB (ubiquitin carrier protein), sac7 (Rho GTPase
activator), fis1 (mitochondrial membrane fission protein),
sarA (secretion associated GTP-binding protein), and
two genes homologous to S. cerevisiae TFC1 and UBC6
(proteins involved in transcription initiation on Pol III
promoters and ER-associated protein catabolic process,
respectively). Four of these six genes – sac7, fis1, sarA and
UBC6 – presented a non-normal distribution with rare
cases of strong differential expression in these RNA-seq
conditions. There is no single universal gene that exhibits
stable expression levels in any sample and/or organism of
interest [33]. The need for systematic validation of the sta-
bility of transcript levels from these reference genes in fu-
ture studies is therefore warranted.
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