N

N

Implementation of a knowledge representation and
reasoning tool using default rules for a decision support
system in agronomy applications
Patrice Buche, Virginie Cucheval, Awa Diattara, Jérome Fortin, Alain

Gutierrez

» To cite this version:

Patrice Buche, Virginie Cucheval, Awa Diattara, Jérdome Fortin, Alain Gutierrez. Implementation of
a knowledge representation and reasoning tool using default rules for a decision support system in
agronomy applications. GKR 2013 - 3rd International Workshop of Graph Structures for Knowledge
Representation and Reasoning, Aug 2013, Beijing, China. pp.1-12, 10.1007/978-3-319-04534-4_1 .
hal-01268923

HAL Id: hal-01268923
https://hal.science/hal-01268923
Submitted on 29 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01268923
https://hal.archives-ouvertes.fr

Implementation of a knowledge representation and reasoning tool using default
rules for a decision support system in agronomy applications

Patrice Buche* Virginie Cucheval™

Awa Diattara

*kk

Jérome Fortin® Alain Gutierrez*

INRA IATE, CTFC Poligny INRA TATE Université Montpellier I CNRS LIRMM
LIRMM GraphlK, France France IATE/LIRMM GraphlK, France
France France
Abstract This is why the CTFC has decided to develop a knowledge

This is an application paper in which we pro-
pose to use an extended version of the conceptual
graph framework to represent and reason on expert
knowledge for cheese making. In this extension,
we propose to use default rules to represent spe-
cific pieces of knowledge. We use the CoGui soft-
ware to manage conceptual graphs in the applica-
tion from the CTFC data expressed in Freeplan. A
specific end user interface has been designed on top
of CoGui to ensure that end-user experts in cheese
making can use it in a convenient way.

1 Introduction

The CTFC (Centre Technique des Fromages Comtois, which
means Technical Centre for Comtois Cheese) is a technical
centre in the east part of France that helps traditional cheese
companies to manage cheese making process. For example
when a cheese maker finds a problem in some cheeses (as
bitterness or a consistency default), some diagnostic can be
made by the CTFC in order to propose a solution to the
cheese maker. For this purpose, the CTFC needs to capital-
ize knowledge and experience about traditional cheese mak-
ing process. This knowledge is owned, mainly in an informal
way, by a group of experts employed by CTFC. Capitaliz-
ing this knowledge is a crucial topic to maintain the quality
of specific cheese making process as Comté, Morbier, Bleu
de Gex or Mont d’or. It is also important to capitalize ex-
pert knowledge because some processes are not fashionable
at a given moment but may become fashionable in the fu-
ture. For example the traditional Comté had some holes like
Swiss Gruyere around 15 years ago. There is no more hole
nowadays in Comté, so if the knowledge on the way to ob-
tain Comté with holes is not capitalized, nobody will be able
to do it again in the future. As this knowledge is not always
formally represented, the risk to loose this information is im-
portant.

* Patrice.Buche @supagro.inra.fr
** y-cucheval @ctfc.fr
*** awa.diattara@supagro.inra.fr
T fortin @polytech.univ-montp2.fr
1 alain.gutierrez @lirmm. fr

management system that allows to capitalize technological
and scientific knowledge about cheese making. The imple-
mentation of this system requires a methodology to collect
the operational knowledge of technical experts and identify
the underlying scientific knowledge. A tool to structure this
knowledge and a tool able to reason on this knowledge to
provide answers to cheese experts queries are also required.

A methodological approach has been defined to collect the
expert knowledges through two kinds of interviews: on the
one hand, individual interviews and on the other hand, col-
lective and contradictory ones. This approach is now oper-
ational and the expert knowledge resulting from those inter-
views is represented in a tree structure using a free mind map-
ping software called Freeplan. Once the knowledge collected
and entered in Freeplan, a “scientific validation” session is
done in collaboration with INRA researchers (National Insti-
tute of Agronomy) of the URTAL unit in Poligny. A lack of
Freeplan is that pieces of information must be stored in sep-
arate files as the information is voluminous and no reasoning
tool is available to use this information. For example, infor-
mations may be easily displayed in Freeplan mind map. But,
if the user wants to find the list of possible corrective actions
in order to control a given property of the cheese (quality or
default), it becomes difficult to display all the mind maps in
a short time. Therefore, automatic operations are required to
analyze the knowledge. As the CTFC wants to manage the
knowledge associated with around 50 properties of cheese, a
complementary tool that permits to query automatically the
information is required.

To reach this aim, our approach consists in translating the
knowledge described in Freeplan mind maps into the concep-
tual graph formalism which permits to perform automatic rea-
soning. To implement the tool, we use CoGui free software,
which is a conceptual graph editor that permits to manage the
terminology of an application domain, the facts, the rules and
more recently default rules. We developed a user interface on
top of CoGui to ensure that end-users of the application can
easily use it without knowing anything about the conceptual
graph formalism.

The paper is organised as follows : the next section
presents how the CTFC actually structures its knowledge us-
ing Freeplan mind maps. In Section 3, we recall the concep-
tual graph formalism and explain how the expert knowledge

of the CTFC can be entered in CoGui using rules and default
rules. Section 4 presents the end-user application, built on top
of CoGui, which permits experts to access to the knowledge
without particular background formalism. We conclude the
paper in the last section.

2 Structuring CFTC knowledge using
Freeplane

Currently, expert and scientific CTFC knowledge are struc-
tured in a tree using the open software Freeplane. The struc-
ture of the tree is performed in such a way that from a given
descriptor (defined as a desired or not desired property of
cheese), we list all explanatory mechanisms, from the most
general to the most specific and leading finally to some cor-
rective actions (see Figure 1). We read this figure as follows
: The descriptor (which may be, for example, a default in the
cheese making process) can be explain by Explanatory Mech-
anism 1 or by Explanatory Mechanisms 2... Each mechanism
can be explained by several sub-mechanisms. This way to
consider the different mechanisms to explain a default nat-
urally leads to a tree structure. Finally a mechanism is asso-
ciated with a particular corrective action, which can permit to
control the descriptor (for example, to avoid a default if the
descriptor represents a default) which is the root of the tree.

Moreover, relationships between explanatory mechanisms
and more complex actions must be taken into account. We can
cite for example the joint effects or the compensatory actions,
which are presented in the following.

We’re talking about joint effect when two or more explana-
tory mechanisms should be grouped together to affect the de-
scriptor or the n — 1 mechanism level. The effect is expressed
in the Freeplan tree by the creation of the relationship "AND”.
An example of joint effect in given in Figure 2, which repre-
sents that the descriptor salt intake after 15 days is low” is
explain by the mechanism “low salt absorption”, which is ex-
plained by “low granularity of cheese crust”, which is jointly
explained by “using smooth mold” and "high duration contact
between cheese and mold (> 8h)”.

A corrective action is defined as a way to control a descrip-
tor (for example to correct a default) for the next manufac-
turing. On another hand, a compensatory action is an action
that is taken to control a descriptor (for example to correct
a default) during the current manufacturing. Compensatory
actions are expressed on the tree using the relationship "UN-
LESS” ("SAUF SI” in french). Figure 3 presents an example
of compensatory action. It means that we can explain that a
“badly realized brining” is due to a "use of a low concen-
tration of brine (< 250¢/L))” unless the “brining time ex-
tended”.

The mind map model of Freeplane can represent all the
knowledge expressed by the CTFC. However, the same ex-
planatory mechanisms may appear in different trees (concern-
ing different descriptors). In this case, using Freeplan model
leads to duplicate many informations, which is not satisfac-
tory for several reasons : it is a waste of time to manage du-
plications, especially when the knowledge must be updated,
and this may lead to some inconsistencies of the knowledge
base if updates are not propagated in all the duplicates.

Moreover, no reasoning can be performed using the
Freeplan software. To overcome this drawback, we propose
to use the CoGui software which allows both the representa-
tion of knowledge and reasoning with the conceptual graph
model. It includes all the required elements to represent the
explanation mechanisms and the joint effect relationships.

3 Structuring knowledge of CTFC with
CoGui

In general, a knowledge representation formalism should sat-
isfy three essential criteria. First, it must allow to repre-
sent the knowledge of an application domain in a declarative
way, meaning that the semantics associated with the knowl-
edge must be defined regardless of the programs that use the
knowledge base. The second criterion is that for reasoning, it
must allow to make inferences that are based on logic. The
third criterion is to structure the knowledge in an unambigu-
ous way: it means that the informations linked in a seman-
tic way should be grouped and that the knowledge of differ-
ent natures must be clearly differentiated. Conceptual graphs
(noted CG in the following) and CoGui (one CGs editor) sat-
isfy all these three essential criteria.

3.1 The Conceptual Graph Formalism

The conceptual graph formalism [Sowa, 1984; Chein and
Mugnier, 2009] is a knowledge representation and reasoning
formalism based on labelled graphs. In its simplest form, a
CG knowledge base is composed of two parts: the support,
which encodes terminological knowledge —and constitutes a
part of the represented domain ontology— and basic concep-
tual graphs built on this support, which express assertional
knowledge, or facts. The knowledge base can be further en-
riched by other kinds of knowledge built on the support: in
this paper, we will consider two kinds of rules: “usual rules”
and CG defaults, which lead to non-monotonic reasoning.

The support. It provides the ground vocabulary used to build
the knowledge base. It is composed of a set of concept types,
denoted by 7¢, and a set of relation types (or simply rela-
tions), denoted by Tg. Relation types represent the possible
relationships between concept instances, or properties of con-
cept instances for unary relation types. T¢ is partially ordered
by a kind of relation, with T being its greatest element. T is
also partially ordered by a kind of relation, with any two com-
parable relation types having necessarily the same arity (i.e.,
number of arguments). Each relation type has a signature that
specifies its arity and the maximal concept type of each of its
arguments.

CoGui (Conceptual Graphs Graphical User Interface)'is a
software which permits to build knowledge bases as CGs. It
provides a Java graphical interface for editing support, CGs ,
rules and constraints. The knowledge base can be serialized
in a XML predefined format called CogXML. It includes a
querying system based on forward chaining mechanism for
querying a knowledge base.

! http://www2 lirmm.fr/cogui/

Explanatory mechanism 1.1.1 Corrective action 1.1.1
Explanatory mechanism 1.1

Explanatory mechanism 1.1.n Corrective action 1.1.n

Explanatory mechanism 1.2)

Explanatory mechanism 1]-'—@

Explanatory mechanism 1

Corrective action 1.n.1
Explanatory mechanism 1.n.1
Explanatory mechanism 1.n

Corrective action 1.n.m
Explanatory mechanism 1.n.m

Explanatory mechanism 2

Explanatory mechanism |

Explanatory mechanism m

Fig. 1. Tree structure of CTFC knowledge expressed using the FreePlan software

.,

..-{Using smooth mold]

‘salti L W e ——— i {anD
|' Salt intake after T —— {Low granularity of cheese crust U .

\ 15 days is low

High duration contact between |
cheese and mold (>=8h)

Fig. 2. Representation of a joint effect

.

Low concentration of brine |
(250g/L)

/salt intake after

\ 15 days is low
5 b

- -IfLow salt absorption .l-’ \

—Badly realized brining \}—&UNLESS}I \

-"{ACOM = brining time extended |

Fig. 3. Example of a compensatory action (ACOM)

Definition of the support for the CTFC application. We re-
call that all the knowledge of CTFC is represented as trees in
Freeplane. To model this knowledge in CoGui, we first define
the basic vocabulary as concept types and relation types. The
concept types used to represent the specific vocabulary of the
CTFC application are of three categories:

— cheese descriptors with two subtypes of concepts: the
sensory descriptors and analytical descriptors,

— explanatory mechanisms including three subtypes of
concepts: the states of milk, the states of the cheese and
the process parameters,

— actions with two subtypes of concepts:compensatory ac-
tions which appear in UNLESS relationships and correc-
tive actions associated with the last level of explanatory
mechanisms in Freeplane trees.

We have identified two types of relations:

— unary relations with several subtypes to qualify the set
of different sensory and analytical descriptors and cor-
rective action mechanisms

— binary relations with several subtypes including: the re-
lationship "is explained by” that connects a descriptor
or an explanatory mechanism to an explanatory mech-
anism, the relationship has for corrective action that
connects an explanatory mechanism of last level in the
Freeplan tree to a corrective action.

Figure 4 shows on its left-side the hierarchy of concept types
and on its right-side the hierarchy of relations. The current
version of the CTFC knowledge base is composed of 114 con-
cept types and 39 relation types.

Basic conceptual graphs. A basic CG is a bipartite graph
composed of:

(i) a set of concept nodes (pictured as rectangles), which
represent entities, attributes, states or events;

g
File Edit View Graph Reasoning Tools Help

=1
File Edit View Graph Reasoning Tools Help

&ﬁl@@lﬁ}?ﬂ |$v°tf§GR| C& Cogui Solv &ﬁl@@l@% |$\’oc$ﬁl}| E&. Cogui Sol
M Project | B Vocabulary M Project | @ Vocabulary
O Concept types .0 [Relation types P |
2| B | ¥

E-Top [=l-binary relation(Top Top) ~
- Pertinence ~-corrective action(Lever Lever)
- Comment ~illustrated by(Top ,Top)
- Experience case ~-gxperience case(Top Top)
- Bibliography ~-equal to(Top , Top)
- Explanation --has for relevance(Top ,Top)

=HExplanatory mechanism
I State of milk

---Para meter of process
[*-State of cheese

= Action

E--"-Currective action
“--Compensatory action
B Lever

- Statistic

- Expert claims

- llustration

- Reference

-~ Join effect

=+ Cheese descriptor
---Anar:.rlical descriptor
[*-Sensorial d escriptor

1t Individuals)’I Mesting types)’l Relation types / E Concept types

--ig explicated by(Top Top)
~-gource(Top ,Top)

~-comment(Top , Top)

--iz a part of(Join effect Top)
--bibliographic reference(Top Top)
[=-Unary relation(Top}

~-ig unfavorable(Top)

iz excess(Top)

--return to the record value{Corrective action)
--to revise(Top}
~-increase(Corrective action)

iz moderately reliable(Top)

--ig high(Top)

--has a string effect(Top)

iz too low (Top)

~ig unsuitable(Top})

iz too high(Top)

g6t up(Top)

o+ Individuals)fﬂ Mesting bypes / @ Relation btypes [@ Concept bypes

Fig. 4. Hierarchy of concept types and relation types for the CTFC application

(i1) a set of relation nodes (pictured as ovals), which express
the nature of relationships between concept nodes;

(iii)
(iv)

a set of edges linking relation nodes to concept nodes;

a labelling function, which labels each node or edge:
the label of a concept node is a pair ¢ : m, where ¢ is a
concept type and m is a marker; the label of a relation
node is a relation type; the label of an edge is its rank in
the total order on the arguments of the incident relation
node.

Furthermore, a basic CG has to satisfy relation signatures: the
number of edges incident to a relation node is equal to the ar-
ity of its type r, and the concept type assigned to its neighbour
by an edge labelled 7 is less or equal to the i*" element of the
signature of r. The marker of a concept node can be either
an identifier referring to a specific individual or the generic
marker (denoted *) referring to an unspecified instance of the
associated concept type. The generic marker followed by a
variable name (for instance *x) is used in a basic CG or a rule
to indicate that the instance (noted z) represented by several
concept nodes is the same. A basic CG without occurrence of
the generic marker is said to be totally instantiated.

Logical translation. Conceptual graphs have a logical trans-
lation in first-order logic, which is given by a mapping classi-
cally denoted by ¢. ¢ assigns a formula ¢(S) to a support .S,
and a formula ¢(G) to any basic CG G on this support. First,
each concept or relation type is translated into a predicate (a
unary predicate for a concept type, and a predicate with the
same arity for a relation type) and each individual marker oc-
curring on the graphs is translated into a constant. Then, the

kind of relation between types of the support is translated by
logical implications.

Given a basic conceptual graph G on S, ¢(G) is built as
follows. A distinct variable is assigned to each concept node
with a generic marker. An atom of the form ¢(e) is assigned
to each concept node with label ¢ : m, where e is the variable
assigned to this node if m = *, otherwise e = m. An atom of
the form r(eq, ..., ex) is assigned to each relation node with
label r, where e; is the variable or the constant corresponding
to the i*" neighbour of the relation. ¢(G) is then the exis-
tential closure of the conjunction of all atoms assigned to its
nodes.

Specialization relation, homomorphism. Any set of concep-
tual graphs is partially preordered by a specialization rela-
tion, which can be computed by a graph homomorphism (al-
lowing the restriction of the node labels), also called projec-
tion in the conceptual graph community. The specialization
relation, and thus homomorphism, between two graphs, cor-
responds to the logical entailment between the corresponding
formulas, i.e., there is a homomorphism from G to H both
built on a support S if and only if ¢(G) is entailed by ¢(H)
and ¢(S) (see e.g., [Chein and Mugnier, 2009] for details)?.
The specialization relation is particularly interesting in our
application to query the knowledge base. For example, an ex-
pert will be able to look for any kind of explanatory mech-

% Note that, for the homomorphism completeness part, H has to be
in normal form: each individual marker appears at most once in
it, i.e., there are no two concept nodes in H representing the same
identified individual.

anisms or can specify that he/she wants only to retrieve the
explanatory mechanisms associated with specific parameters
of the process.

Basic CG rules. Basic CG rules [Salvat and Mugnier, 1996]
are an extension of basic CGs. A CG rule (notation: R =
(H,(C)) is of the form “if H then C”, where H and C are
two basic CG (respectively called the hypothesis and the con-
clusion of the rule), which may share some concept nodes.
Generic markers referenced by a variable name as *x refer to
the same individual in the hypothesis and in the conclusion.
Graphically, it can be represented by a single bicolored basic
CG.

A rule R is applicable to a basic CG G if there is a homo-
morphism from its hypothesis to G. Let 7 be such a homo-
morphism. Then, the application of R on G according to
produces a basic CG obtained from G by adding the conclu-
sion of R according to 7, i.e., merging each frontier node c of
the added conclusion with the node of G that is image of ¢ by
the homomorphism 7.

The mapping ¢ to first-order logic is extended to CG
rules. Let R = (H,C) be a CG rule, and let ¢'(R) de-
note the conjunction of atoms associated with the basic CG
underlying R (all variables are kept free). Then, ¢(R) =
Yoy .. Vep(¢'(H) — (3yi...3y,¢'(C))), where ¢'(H)
and ¢/(C') are the restrictions of ¢’(R) to the nodes of H
and C respectively, x1, ...,z are the variables appearing in
¢(H) and y1, . . ., y, are the variables appearing in ¢(C') but
not in ¢(H).

Given a set of rules R, basic CGs G and H (represent-
ing for instance a query and a set of facts), all defined on a
support S, ¢(G) is entailed by ¢(H), ¢(S) and the logical
formulas assigned to R if and only if there is a sequence of
rule applications with rules of R leading from H to a basic
CG H'’ such that there is a homomorphism from G to H' (in
other words, by applying rules to H, it is possible to obtain
H’ which entails G).

When a rule is applied, it may create new individuals (one
for each generic concept node in its conclusion, i.e., one for
each existential variable y; in the logical translation of the
rule). In the following, we will assume that all facts (repre-
sented as basic CGs) are completely instantiated. Then, when
a rule is applied, we will instantiate each new generic con-
cept node created, by replacing its generic marker with a new
individual marker (which can be seen as a Skolem function,
moreover without variable in this case). This way of doing
will allow us to represent CG defaults in a simpler way (see
the next section).

Translation of Freeplane trees into CG rules. In the CTFC
application, each Freeplane tree is translated into a set of CG
rules. To do that, each elementary explanatory mechanism
(defined as a couple of explanatory mechanisms linked by the
”is explained by” relationship) will be translated into a new
CG rule. By this way, a given information about an explana-
tory mechanism has to be entered only once, even if is it used
to explain several descriptors. Moreover as we will see in the
next sections, it will be possible to reconstruct easily all the

CTFC knowledge trees, just by defining a descriptor (root of
the tree) as a graph fact and by applying all the rules to it.

Figure 5 is an example of a rule meaning that ”a low salt
rate in ripened cheese” is explained by “a low salt intake
during ripening”. This CG rule is associated with one of the
explanatory mechanisms represented in the Freeplan knowl-
edge tree partially given in Figure 3. Note that the hypothesis
and the conclusion of the rule are presented as two different
CGs, linked together by a co-reference link (represented by a
dashed line in the figure 5).

Default Rules in the Conceptual Graph Formalism

We now present an extension of CG rules, which has been
introduced in [Baget et al., 2009; Baget and Fortin, 2010]
and allows for default reasoning. It can be seen as a graph-
ical implementation of a subset of Reiter’s default logic [Re-
iter, 1980]: indeed, we restrict the kind of formulae that can
be used in the three components of a default. These three
components are called the hypothesis H, the conclusion C
and some justifications Jy, - - -, J. We can deal directly with
non—closed defaults, i.e., without instantiating free variables
before processing the defaults. In Reiter’s logic, the applica-
tion of a default is subject to a consistency check with respect
to current knowledge: each justification J has to be consistent
with the current knowledge, i.e., =.J should not be entailed by
it. In CG defaults, justifications are replaced by graphs called
constraints; a constraint C' can be seen as the negation of a
justification: C' should not be entailed by current knowledge.

Definition 1 (CG defaults). A CG default is a tuple D =
(H,C,C,...,Ck) where H is called the hypothesis, C' the
conclusion and C1, . . ., and CYy, are called the constraints of
the default; all components of D are themselves basic CGs
and may share some concept nodes.

Briefly said, H, C' and each C; respectively correspond to the
prerequisite, the consequent and the negation of a justification
in a Reiter’s default. H, C and the C;’s can share some con-
cept nodes that have the same marker. These markers can be
individual or generic, in which case the identification of the
concept nodes is made by comparing the name of the variable
associated with this generic marker.

The intuitive meaning of a CG default is rather simple:
“for all individuals 1 ...z, if H[z1 ...z] holds true, then
Clzy ... xx] can be inferred provided that no C;[xy ... 2]
holds true”. If we can map by homomorphism the hypothesis
H of a default to a fact graph G, then we can add the con-
clusion of the default according to this homomorphism (as in
a standard rule application), unless this homomorphism can
be extended to map one of the constraints from the default.
As already pointed out, while the negation of a justification
in a Reiter’s default should not be entailed, in a CG default
the constraint itself should not be entailed.

The entailment mechanism is based on the construction of
a default derivation tree, we let the reader refer to [Baget et
al., 2009; Baget and Fortin, 2010] for more precise details
about default entailment mechanism.

Representing compensatory actions in the CTFC application
using CG default rules. In the CTFC application, the default

Hypothesis

Salt rate in riperied cheese ; #

A

-0

Conclusion

Salt rate in ripemed cheese : ¥

.

q:lexplicated h}-)

&

Explication : *

/ oy
(Equal to)

p i

Salt intake durlfig ripening : *

Fig. 5. Example of a standard CG rule associated with an elementary explanatory mechanism

rules permit to model the compensatory actions in the CG
knowledge base. Figure 6 shows how to represent a default
rule in CoGui. This CG default rule is the translation in the
CG model of the Freeplan knowledge tree presented in Fig-
ure 3. The hypothesis and the conclusion of the default are
shown as for standard rule, while the justification is put in
grey (left part of the rule).

The current version of the CTFC knowledge base is com-
posed of 67 CG rules including 3 CG default rules associated
with 3 descriptors. As the objectives of the CTFC is to man-
age 50 descriptors in the knowledge base, the estimated size
of the targeted knowledge base is around 1000 CG rules.

4 End-user application

The objective of this section is to describe the implementation
an application for the CTFC technicians that have no back-
ground on knowledge representation models and especially
on the CG model. Therefore, an end-user application must be
proposed on top of the CoGui software used to manage the
CG knowledge base.

Functional requirements address the specifications defined
for the CTFC application. This application must be as trans-
parent as possible regarding the CG knowledge formalism.
The information should be presented to the end-user in a sim-
ilar way as to the knowledge tree presentation in Freeplan.

For our system, we have identified the following needs:

— Display of the list of possible corrective actions asso-
ciated with a given descriptor: an expert should be able
to choose a cheese descriptor from a provided list, and
then get all the corrective actions associated with it. For
example, if in the presence of the descriptor correspond-
ing to the cheese default ’salt intake after 15 days is
low”, the expert wants to know the different corrective
actions that can be used to solve the problem. More-
over, for a given corrective action, the expert wants to

know which compensatory actions would be avoided if
the corrective action is implemented.

— Visualization of the path from a descriptor to the as-
sociated corrective actions: for a given descriptor, the
user must have access to the “path” that links the de-
scriptor to the associated corrective actions in order to
visualize the various intermediate explanatory mecha-
nisms.

— Impact of the implementation of a corrective action:
the expert wants to know the different descriptors that
may be impacted by the choice of a particular corrective
action.

We obviously see that these requirements are all quite easy
to fulfil when we represent the knowledge as CG rules with
CoGui but was impossible to take into account when the
knowledge model by CTFC was represented using the mind
map model of Freeplan.

An end-user application has been developed in order to ful-
fil to all these specifications. It permits to demonstrate that
CoGui can be used as an internal knowledge base engine in
a dedicated application software and there is no need for the
final user to be familiar neither with CoGui nor with the con-
ceptual graph formalism. Figure 7 and 8 shows 2 screen copy
of the final end-user application. In this last figure, we see
that we can reconstruct the tree structure mind map model of
Freeplan from the CG rules defined in CoGui. Doing that is
quite easy as it only requires to define the root of the tree (the
descriptor) as a simple conceptual graph, and to saturate the
knowledge base composed of CG rules to construct the tree.

Figure 9 shows a screen copy of the application which dis-
plays all the descriptors impacted by a given corrective action.

Badly realized brining : * e
= . e SELEIe Badly realized brining ; *

=
-
S 5,

= @xplimted by

Explicakion : *

extended duration

Equal to

15

Concentration of brine ; *

Fig. 6. Example of CG default rule translating in the CG model the Freeplan representation of a compensatory action shown in figure 3.

File Help

Access by descriptor r Access by corrective action

Thermostat sensitivity : is insufficient 4
of the pre-ripening room : is low .4
Pre-ripening room temperature setting : is low
Insulation of the pre-ripening room : is low

Choose a descriptor |Humidity of the pre-ripening room : is low ‘ v| List of associated levers

Fig. 7. Screen-shot of the final application showing how the corrective actions (4 actions in this example) of a given descriptor are presented.

CTFC =1
Insulation of the pre-ripening room
Cooling unit warking excessively Cooling unit temperature unsuitable for the size of pre-ripening room
Pre-ripening room temperature setting : is low
Humidity of pre-ripening room : is low Excesslve condensation at cooling unit Thermastat sensitivity : is Insufficient
P 2 Season : winter
Pre-ripening room temperature © is low Insulation of the pre-ripening room : is low
Fig. 8. Screen-shot of the final application showing a particular path in a knowledge tree
Tcrrc =TT — O — [. . =o %

Access by corrective action

Acces by descriptor

Hymidity of the pre-ripening room : is low|
Salt intake after 15 days : is low

Choose a corrective action |Fabric ducts : install | - ‘ List of descriptors impacted

Fig. 9. Screen-shot of the final application showing all the descriptors impacted by a given corrective action

5 Conclusion which made the specifications of the application, needs a

We have presented in this paper a real end-user application re- tool that will be used by technological experts of traditional

quiring knowledge representation and reasoning. The CTFC,

cheese production. We showed that on the one hand the ap-
plication has a strong formal background based on conceptual
graphs formalism and on the other hand that this formalism
is relevant to model a complex knowledge information sys-
tem. Especially, we have shown that the default conceptual
rules are a good solution to manage complex knowledge as
compensatory actions in the CTFC application. We have de-
veloped an end user application on top of the CoGui soft-
ware which implements the CG model. This end-user appli-
cation ensures that a non knowledge representation specialist
can use it easily. Perspectives of this work will be to extend
the CG model in order to be able to represent and take into
account in the reasoning the reliability of the relationship ”is
explained by” between two explanatory mechanisms, which
is another requirement of the CTFC application. Finally, an-
other perspective of this work, suggested by the CTFC appli-
cation, is to develop semi-automatic translation tools of semi-
structure knowledge representation models, as Freeplan mind
maps, into formal representation models as the CG model.

References

[Baget and Fortin, 2010] J.F. Baget and J. Fortin. Default concep-
tual graph rules, atomic negation and Tic-Tac-Toe. In Proc. of
ICCS’10, volume 6208 of LNAI, pages 42-55, 2010.

[Baget et al., 2009] J.F. Baget, M. Croitoru, J. Fortin, and R. Tho-
mopoulos. Default conceptual graph rules : preliminary results for
an agronomy application. In Proc. of ICCS’09, volume 5662 of
LNAI, pages 86-99, 2009.

[Chein and Mugnier, 2009] Michel Chein and Marie-Laure Mug-
nier. Graph-based Knowledge Representation and Reasoning.
Computational Foundations of Conceptual Graphs. Springer, Ad-
vanced Information and Knowledge Processing Series, London,
2009.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13:81-132, 1980.

[Salvat and Mugnier, 1996] E. Salvat and M-L. Mugnier. Sound
and complete forward and backward chaining of graph rules. In
Proc of ICCS 1996: Conceptual Structures: Knowledge Represen-
tation as Interlingua, volume 1115, 1996.

[Sowa, 1984] J. F. Sowa. Conceptual Structures: Information Proc.
in Mind and Machine. Addison—Wesley, 1984.

https://www.researchgate.net/publication/264518642

