
HAL Id: hal-01268903
https://hal.science/hal-01268903

Submitted on 21 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the space of gene/species reconciliations with
transfers

Yao-Ban Chan, Vincent Ranwez, Celine Scornavacca

To cite this version:
Yao-Ban Chan, Vincent Ranwez, Celine Scornavacca. Exploring the space of gene/species reconcilia-
tions with transfers. Journal of Mathematical Biology, 2015, 71 (5), pp.1179-1209. �10.1007/s00285-
014-0851-2�. �hal-01268903�

https://hal.science/hal-01268903
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Exploring the space of gene/species reconciliations with transfers

Yao-ban Chan · Vincent Ranwez ·
Céline Scornavacca

Received: date / Accepted: date

Abstract Reconciliations between gene and species trees have important applications in the study
of genome evolution (e.g. sequence orthology prediction or quantification of transfer events). While
numerous methods have been proposed to infer them, little has been done to study the underlying
reconciliation space. In this paper, we characterise the reconciliation space for two evolutionary
models: the DTL (duplication, loss and transfer) model and a variant of it — the no-TL model —
which does not allow TL events (a transfer immediately followed by a loss).We provide formulae to
compute the size of the corresponding spaces and define a set of transformation operators sufficient
to explore the entire reconciliation space. We also define a distance between two reconciliations
as the minimal number of operations needed to transform one into the other and prove that this
distance is easily computable in the no-TL model. Computing this distance in the DTL model is
more difficult and it is an open question whether it is NP-hard or not. This work constitutes an
important step toward reconciliation space characterisation and reconciliation comparison, needed
to better assess the performance of reconciliation inference methods through simulations.

Keywords reconciliation, counting, distance, gene duplication, gene transfer, sampling,
phylogenomics

1 Introduction

Gene families evolve through a complex process involving, among other things, incomplete lineage
sorting and evolutionary events such as speciation (S), gene duplication (D), horizontal gene
transfer (T) and gene loss (L). Genomes of related species share a common evolutionary history
that leaves shared footprints on them that are used to infer the species phylogeny (depicted as
a species tree). However, some evolutionary events (such as losses, duplications, or transfers) act
only on some genes, and so their resulting gene histories (depicted as gene trees) may differ from
the overall species tree. Each series of evolutionary events which explains the observed discrepancy
between gene and species trees is called a reconciliation. See Figure 1 for an example of a gene
and species tree and a reconciliation between the two.

Yao-ban Chan
School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia, E-mail:
yaoban.chan@uq.edu.au

Vincent Ranwez
Montpellier SupAgro (UMR AGAP), 2 place Pierre Viala 34060 Montpellier Cedex 02, France, E-mail: ran-
wez@supagro.inra.fr

Céline Scornavacca
Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS), Université Montpellier II, Place E. Bataillon - CC
064 - 34095 Montpellier Cedex 5, France, E-mail: celine.scornavacca@univ-montp2.fr

2 Yao-ban Chan et al.

G S

A B C A B C

u

v

B

w

x

y

A B C

x

y

u

v

w

Fig. 1 An example of a gene and species tree and a reconciliation between the two. Here, there are two copies of
the gene in species B, and a single copy in species A and C.

Reconciliation methods aim to infer the macro events (e.g. gene duplication and gene transfer)
undergone by a gene family, by constructing reconciliations which explain the differences between
the gene and species trees. Standard models either consider only speciation, gene duplication and
loss as macro events — the DL model — or additionally consider transfer events — the DTL
model. In some parts of the Tree of Life, gene transfers are very uncommon; in these cases, the
DL model is a reasonable proxy of gene evolution, having the advantage of reducing false transfer
prediction. However, in other kingdoms gene transfers are the main mechanism for introducing
genomic novelties and cannot be ignored. Hence, depending on the studied species, one should favor
the DL model, e.g. for mammals, or the DTL one, e.g. for bacteria that are known to regularly
exchange genomic material through transfers [2].

Accurate inference of these evolutionary events plays an important role in studying genome
evolution as well as in inferring orthology relationships [17,11], and may also help to improve
phylogeny inference and datation [3,1,5,15,18]. However, although considerable work has been
done on inferring reconciliations, comparatively less study has been made of the underlying space
of all possible reconciliations.

In [8], Doyon et al. explored the space of all possible reconciliations in the DL model. They
gave an algorithm to count the number of possible reconciliations in this space and defined an
operator set which allows us to transform any reconciliation into any other. The minimal number
of operations needed for this transformation defines a distance between reconciliations. These
operators allowed them to explore the space of reconciliations; they showed how to construct a tree
which allows an efficient traversal of all or some reconciliations in the space, using this to analyse
the distribution of reconciliations and the relationship between cost, number of reconciliations in
the space and their distance to optimality. They conclude that parsimony is indeed a justified
paradigm for the inference of evolutionary scenarios for the DL model.

In this paper, we extend the basis of the work of Doyon et al. to the more complex DTL
model [10,14,9,20]. We aim both at exploring the space of all possible DTL reconciliations and
at defining a distance measure between two DTL reconciliations. In order to do this, we shall
define an operator set which allows us to transform one DTL reconciliation into another. Doyon
et al. defined operators for this purpose for the DL model; some of our operators are natural
extensions of theirs, and we introduce new operators to obtain a complete set which can transform
any reconciliation into any other. We anticipate that our work here will enable the development
of techniques to draw similar conclusions to Doyon et al. about the space of DTL reconciliations.

This paper provides a deeply needed theoretical framework for the DTL model, presenting the
first formal characterisation of the valid reconciliation space; this is a prerequisite for proving the
correctness of any algorithm that aims to compute DTL reconciliations. This framework allows for
many possible applications; as a demonstration, we present an algorithm to count the number of all
possible reconciliations between a gene tree and a dated species tree under the DTL model. Finally,
we prove that the operators introduced here are sufficient to transform any valid reconciliation
into any other one, hence allowing a full exploration of the valid reconciliation space and defining
a distance between reconciliations. This will, among other things, allow a better comparison of

Exploring the space of gene/species reconciliations with transfers 3

reconciliations — for example for software validation — and to design Bayesian reconciliation
methods for complex gene evolution models.

In the DTL model [9], loss events are not considered separately but only as part of speciation-
loss (SL) or transfer-loss (TL) events (duplication-loss events leave no trace and are therefore
undetectable). As we shall show, allowing TL events expands the space of possible reconciliations
greatly and changes its structure. For this reason, we consider here two related models: one where
TL events are not allowed and one where they are. We refer to the former model as the no-TL
model.

2 Notation

Let T = (V (T), E(T)) be a (rooted) tree with labelled leaf vertices. We denote the root of T
by r(T) and the leaves of T by L(T). If x ∈ L(T), then we denote the label of x by s(x). The
(multi)set of all labels of leaves in T is denoted by L(T).

If x ∈ V (T), we define Tx to be the subtree of T with root x and the height of x (denoted
h(x)) to be the number of edges on the unique path from r(T) to x (so for example, h(r(T)) = 0).
If x ∈ V (T) is not the root of T , then xp and e(x) denote its parent vertex and parent edge
respectively. If x ∈ V (T) is not a leaf, then xl and xr are its left and right child vertices respectively.
The child vertices are unordered, so they are interchangeable. For edges e ∈ E(T), we define et to
be the target vertex of e, and the height of e as h(e) = h(et).

We define an element of T to be a member of V (T)∪E(T). For two elements x, y of T , we say
that x is below y (and y is above x) and write x ≤ y if y lies on the unique path from r(T) to x.

We define a gene tree G as a tree where each leaf represents an extant gene. Likewise, we
define a species tree S as a tree in which each leaf represents an extant species. The labels of the
leaves of S are the identifiers of the species, so they are unique, while internal vertices represent
speciation events. We suppose that gene and species trees are rooted and binary and that L(G) is
a (multi)set such that each label of L(G) appears in L(S) (denoting in which species each gene is
found).

A species tree S is said to be dated if it is associated to a time function θS which represents
the time separating a vertex from any extant species descending from it, i.e. θS : V (S)→ R+ such
that if y ≤ x then θS(y) ≤ θS(x) and if x ∈ L(S) then θS(x) = 0. In order to have time-consistent
scenarios [9], we subdivide S by creating artificial vertices in every branch where a speciation
occurs at the same time in another branch. These artificial vertices represent time boundaries,
which helps us ensure that transfer events in the reconciliation only occur between co-existing
entities. We also add an edge which is the parent of r(S). We denote the resulting unary-binary
tree by S′. For any vertex x ∈ V (S′), we define Λ(x) = 1 if x is artificial and 0 otherwise. See
[9, Figure 3] for an example of subdivision. If not specified otherwise, a reconciliation is always
between the gene tree G and the subdivided species tree S′.

In the DTL model [9], seven elementary (combinations of) events are considered: S speciation,
D duplication, T transfer, SL speciation-loss, TL transfer-loss, ∅ no event (indicating that a gene
lineage has crossed a time boundary), and C contemporary event (associating an extant gene
copy to its corresponding species). In the next section we consider a simplified version of this
model where TL events are not allowed. Note that this model is not biologically meaningful, and
is analysed here because of its theoretical properties and as an intermediate step toward the full
DTL model.

3 The no-TL model

For the no-TL model, a key observation is that reconciliations are completely determined by the
images of the vertices of G. For example, if we know that a particular gene is transferred from
another species, the transfer must have occurred where its parent vertex in the gene tree is mapped.

4 Yao-ban Chan et al.

We follow the notation of [8] and define a reconciliation as being a mapping of the vertices of G
onto the elements of S′.

Definition 1 A reconciliation is a mapping α : V (G) → V (S) ∪ E(S′). For any u ∈ V (G), if
u ∈ L(G), then α(u) must be the unique extant species which contains the gene u (C event).
Otherwise:

– if α(u) ∈ V (S), then α(ul) ≤ e(α(u)l) and α(ur) ≤ e(α(u)r), or vice versa; (S event)
– if α(u) ∈ E(S′), then one of the following conditions is satisfied:

– α(ul), α(ur) ≤ α(u); or (D event)
– α(ul) ≤ α(u) and α(ur) 6≤ α(u), h(α(ur)) ≥ h(α(u)), or vice versa. (T event)

Moreover, SL and ∅ events can be deduced from α in the following way: for every vertex u, an
SL (respectively ∅) event is associated to each non-artificial (resp. artificial) vertex of S′ on the
path from α(up) to α(u), extremities excluded.

Since SL and ∅ events can be deduced from α, in this section we will focus only on S, D and
T events. If u is a T event, the target of the transfer can be inferred by observing the positions of
α(ul) and α(ur). Note that by this definition we cannot map a vertex of G to an artificial vertex
in S′. This is because mapping a vertex of G to a vertex of S′ represents an S event, and S events
can occur only at vertices of S.

This definition enforces certain relations between the heights of the images of u and its children.
More precisely, if x and y are elements of S′ and either h(x) < h(y), or h(x) = h(y) and x ∈ E(S′),
we say that x allows y. By Definition 1, α(u) must allow both α(ul) and α(ur).

Observe that, due to subdivision, two events belonging to two different reconciliations located
in different branches of S′ may correspond to the same event in the original species tree S. This
implies that two reconciliations that are distinct according to Definition 1 in S′ may be equivalent
in S. Because of this, we define a “canonical” reconciliation which is a representative member of
this equivalent set. In essence, a D or T event can be “moved lower” if the corresponding vertex
of G is mapped just above an artificial vertex, and its children also allow it to be mapped to the
edge below that vertex. In a canonical reconciliation [16,7], no D or T event can be moved lower:

Definition 2 A reconciliation α is canonical if neither of the following two cases happens for any
u ∈ V (G):

– α(u) is a D event, (α(u))t is artificial, and h(α(u)) < min(h(α(ul)), h(α(ur)));
– α(u) is a T event transferring to the edge x, both (α(u))t and xt are artificial, and h(α(u)) <

min(h(α(ul)), h(α(ur))).

3.1 Reconciliation space

In order to describe the reconciliation space, we define a partial reconciliation α to be a reconcili-
ation where we have assigned α(v) for all vertices v of G with height greater than some number,
say h. Now let u be a vertex of height h.

Definition 3 Given a partial reconciliation α, if α(ul) ≤ α(ur) or vice versa, we say u is a forced
duplication. Otherwise, the speciation point of u is the lowest vertex of S that is an ancestor of
both α(ul) and α(ur).

In a model with no transfers, the speciation point (where it exists) of a vertex is identical to
the so-called LCA mapping of the vertex [10], defined as the lowest common ancestor of all species
which contain an extant gene descended from that vertex. It is known that the LCA mapping
induces a most parsimonious reconciliation in this model.

Definition 4 Given a partial reconciliation α, we define the set Aα(u) as follows:

– If u is a forced duplication, Aα(u) consists of all edges above both α(ul) and α(ur). (D event)

Exploring the space of gene/species reconciliations with transfers 5

– Otherwise, Aα(u) is the union of:
– all edges above the speciation point of u; (D event)
– the speciation point of u; (S event)
– any edge lying on the path between the speciation point of u and α(ul) which allows α(ur),

or vice versa. (T event)

Lemma 1 Let α be a partial reconciliation to height h + 1 and u an internal vertex of G with
height h. Then Aα(u) is the set of all possible mappings for u, i.e. Aα(u) is the set of images of
u which appear in at least one full reconciliation between G and S′ that extends α.

Proof. We need to show that u is a valid event (according to Definition 1) if it is mapped to an
element of Aα(u) and not a valid event if it is mapped to any other element of S′. Certainly if it is
not mapped to a valid event, no reconciliation which extends α can include that image. Conversely,
if it is mapped to a valid event, we can trivially extend the partial reconciliation to a full one by
mapping all un-assigned vertices of G to e(r(S′)) as D events. There are two cases:

– u is a forced duplication, i.e. α(ul) ≤ α(ur) (or vice versa). From Definition 1, neither S nor
T events have this property, and since it is not a leaf, u can only be mapped to a D event
(hence the name). It is clear that any edge which lies above both α(ul) and α(ur) satisfies the
conditions of a D event, and no other element of S′ does.

– u is not a forced duplication. Then there are three cases corresponding to the type of event
that u could be mapped to in S′:
– u is mapped to a D event. Then α(u) ≥ α(ul), α(ur) and so α(u) must lie above or at the

speciation point. Since α(u) ∈ E(S′) by definition, u can only be mapped to an edge above
the speciation point. Any such edge satisfies the conditions of a D event (and no other
element of S′ does).

– u is mapped to an S event. Again α(u) ≥ α(ul), α(ur) and so α(u) must lie above or at the
speciation point. However, we also require that the paths from α(ul) and α(ur) to α(u) be
mutually exclusive; otherwise the child edges of u would be mapped to the same branch in
S′ and it would not be a valid S event. This property holds for the speciation point of u,
so we can map it to there, but not for any other vertex above the speciation point (and we
cannot map u to an edge of S′ as a speciation).

– u is mapped to a T event. We can take α(u) ≥ α(ul) without loss of generality. Then, since
α(u) 6≥ α(ur), α(u) must be between the speciation point and α(ul). Moreover, h(α(ur)) ≥
α(u) so α(u) must allow α(ur). It can be checked that any edge of S′ which satisfies these
conditions also satisfies the conditions of a T event (and by the above reasoning, no other
element does).

As there are no other types of events that u can be mapped to, u cannot be mapped as a valid
event to any other element of S′.

Lemma 1 implies that we can construct all possible reconciliations using a bottom-up approach.
We can also count the number of possible reconciliations in this fashion, as we prove next.

Theorem 1 Let R(u, x) be the number of reconciliations between Gu and S′ where α(u) = x. If
u ∈ L(G), then R(u, x) = 1 if x ∈ L(S) and s(u) = s(x), and 0 otherwise. If u 6∈ L(G), then

R(u, x) =

∑
x1≤e(xl),
x2≤e(xr)

[R(ul, x1)R(ur, x2) +R(ul, x2)R(ur, x1)] if x ∈ V (S),

∑
x1,x2≤x

R(ul, x1)R(ur, x2) +
∑

x1≤x,x2 6≤x,
h(x2)≥h(x)

[R(ul, x1)R(ur, x2) +R(ul, x2)R(ur, x1)]

if x ∈ E(S′).

6 Yao-ban Chan et al.

Proof. The case for u ∈ L(G) is obvious, so suppose that u 6∈ L(G). If x ∈ V (S), then u is an
S event, so ul maps to an element below the left child edge of x and ur maps to an element
below the right child edge of x, or vice versa. The expression follows by calculating the number of
possibilities for reconciling the child subtrees. If x ∈ E(S′), then either u is a D event, in which
case both ul and ur must map to an element below x, or it is a T event. In the latter case, ul
maps to an element below x and ur maps to an element which is at a greater height than x, but
not below it, or vice versa. The expression again follows from the possibilities for reconciling the
child subtrees.

The total number of possible reconciliations betweenG and S′ is given by
∑
x∈V (S)∪E(S′)R(r(G), x).

This can be calculated from Theorem 1 by recursively computing R(u, x) for all u ∈ V (G) and
x ∈ V (S)∪E(S′), considering the vertices of G in post-order (the order of vertices of S′ does not
matter). For an example of this, see Appendix A.

Once R(u, x) is computed for all (u, x) pairs, the values can be stored in a directed acyclic
graph, with each vertex of the graph corresponding to a (u, x) pair and each edge representing
the fact that the target vertex was used to compute the R(u, x) value of the parent vertex. A
uniformly random reconciliation can then be drawn from the space of all possible reconciliations
by a top-down traversal of this graph, weighting each child vertex by its R(u, x) value. This is a
modification of Algorithm 1 of [8].

With a little more care, we can also count the number of canonical reconciliations. As noted
before, reconciliations which belong to the same equivalence class are not really “different”, in the
sense that they represent the same evolutionary scenario. As such, it provides a more biologically
meaningful picture of the reconciliation space if only canonical reconciliations are included. Thus,
is it more interesting to count the number of canonical reconciliations rather than simply the total
number of reconciliations; the former is free of distortions induced in the latter by the subdivision
of S.

Theorem 2 Let R′(u, x) be the number of canonical reconciliations between Gu and S′ where
α(u) = x. If u ∈ L(G), then R′(u, x) = 1 if x ∈ L(S) and s(u) = s(x), and 0 otherwise. If
u 6∈ L(G), then

R′(u, x) =

∑
x1≤e(xl),
x2≤e(xr)

[R′(ul, x1)R′(ur, x2) +R′(ul, x2)R′(ur, x1)] if x ∈ V (S)

∑
x1,x2≤x

R′(ul, x1)R′(ur, x2) if x ∈ E(S′)

−Λ(xt)
∑

x1,x2<x

R′(ul, x1)R′(ur, x2)

+
∑

x1≤x,x2 6≤x,
h(x2)≥h(x)

[R′(ul, x1)R′(ur, x2) +R′(ul, x2)R′(ur, x1)]

−
∑

x1<x,x2 6≤x,
h(x2)>h(x)

Λ(xt)Λ(x3) [R′(ul, x1)R′(ur, x2) +R′(ul, x2)R′(ur, x1)]

(1)
where in the last line, x3 denotes the vertex ancestor of x2 of the same height as x.

Proof. The reasoning is the same as for Theorem 1, except we must take care not to count non-
canonical reconciliations. This can be done by ensuring that when counting R′(u, x), the mapping
α(u) = x satisfies Definition 2. There are three cases:

– α(u) is an S event. This can never cause a reconciliation to be non-canonical.
– α(u) is a D event. If xt is artificial, then potentially the D event could be moved downwards

through it. However, we also need both children of u to be mapped to elements strictly below
x, as otherwise the move would be “blocked” by one of them. Therefore, if Λ(xt) = 1, and

Exploring the space of gene/species reconciliations with transfers 7

uNMC

dNMC

uNMC

dNMCr

Fig. 2 The effect of the uNMC and dNMC operators. Here we operate on the filled vertex.

x1, x2 < x, the D event can be moved downwards and the reconciliation is non-canonical. This
results in the term on the third line of (1).

– α(u) is a T event. If xt and x3 are both artificial and both children of u are mapped to elements
with height strictly greater than h(x), the T event can be moved downwards through xt and
x3 to the next time-step and the reconciliation is non-canonical. This results in the term on
the fifth line of (1).

As before, the total number of canonical reconciliations is given by
∑
x∈V (S)∪E(S′)R

′(r(G), x),

and this can be computed by recursively computing R′(u, x) in the order previously described.

3.2 Operators

We define two operators which change one reconciliation to another. These operators are the
natural equivalent of the up and down Nearest Mapping Change operators introduced in [8],
denoted respectively as uNMC and dNMC, and so we also use these names for our operators.

Definition 5 Let α be a reconciliation and u an internal vertex of G. Let ωu and ωd be two
elements of S′ defined as follows:

– ωu is the lowest element of Aα(u) above α(u) which is allowed by α(up);
– ωd is one of the highest elements of Aα(u) below α(u).

If α(u) is an S event, then its two child edges both lie in Aα(u) and are legal choices for ωd. In
this case we denote the corresponding operators by dNMClu and dNMCru. We define uNMCu(α)
and dNMCu(α) as two mappings V (G) → V (S) ∪ E(S′), such that uNMCu(α)(u) = ωu and
dNMCu(α)(u) = ωd, and uNMCu(α)(v) = dNMCu(α)(v) = α(v) for any vertex v 6= u. If there
is no legal choice for ωu or ωd, the corresponding operator cannot be applied.

We illustrate these operators in Figure 2.

Lemma 2 If uNMCu(α) and dNMCu(α) are defined, they are legal reconciliations.

Proof. By definition, ωu and ωd lie in Aα(u) and are allowed by α(up), so they are valid images
for u. Since we have not changed the image of any other vertex, we only need to show that α(up)
still satisfies one of the conditions of Definition 1, i.e. it is a valid event. But it can be seen that if
α(up) satisfies one of these conditions in α, then moving α(u) to an ancestor or descendant does
not invalidate that condition, as long as the new image is still allowed by α(up). Thus α(up) is
still a valid event of the same type in both uNMCu(α) and dNMCu(α) and so these mappings
are indeed valid reconciliations.

It is intuitively easy to see that repeated application of uNMC and dNMC operators can
change any reconciliation into any other (for example, by moving all vertices of G to e(r(S′)),
and then moving them downwards to their desired images). A formal proof of this fact is an easy
consequence of Theorem 3, presented in the next section.

8 Yao-ban Chan et al.

3.3 Distance measure

In [8], Doyon et al. define a distance measure between two reconciliations, which they call d(α, β),
as the smallest number of NMC operators needed to change α to β. We extend this definition to
our model.

Definition 6 Let α and β be two reconciliations. We define d(α, β) to be the smallest number of
uNMC and dNMC operators needed to convert α to β.

If we disallow transfers, this distance measure reduces to the measure in [8]. Note that as every
uNMC operator is the inverse of a dNMC operator and vice versa, it is clear that this distance
is indeed a metric.

Given two reconciliations, we can calculate the distance between them by defining a third
reconciliation which can be reached from both by moving vertices upwards only.

Definition 7 Let α and β be two reconciliations. The midpoint γ of α and β is the reconciliation
for which γ(u) is an element of S′ above both α(u) and β(u) for all u ∈ V (G), and there exists no
reconciliation γ′ 6= γ with this property where γ′(u) ≤ γ(u) for all u ∈ V (G).

Lemma 3 Given γ(ul) and γ(ur), γ(u) is the lowest element of S′ above both α(u) and β(u)
which allows both γ(ul) and γ(ur). In particular, the midpoint is unique.

Proof. It is certainly true from the definition that γ(u) is above α(u) and β(u), and it must allow
γ(ul) and γ(ur) since γ is a valid reconciliation. Let y be the lowest element of S′ with these
properties. Since y ≥ α(u) and γ(u) ≥ α(u), we must have y ≤ γ(u).

Now consider the mapping γ′ which is equal to γ everywhere except at γ′(u) = y. It suffices
to show that γ′ is a valid reconciliation, as the definition of the midpoint then gives y = γ(u). To
do this, we only need to check that γ′(up) and γ′(u) are valid events. The former follows from the
fact that y ≤ γ(u). For the latter, there are two possibilities:

– y ∈ E(S′). Without loss of generality, we can take α(u) ≥ α(ul). Then y ≥ α(u) ≥ α(ul) and
γ(ul) ≥ α(ul), so y ≥ γ(ul) since y allows γ(ul) by definition. Since y also allows γ(ur), γ

′(u)
must satisfy the conditions for either a D or a T event.

– y ∈ V (S). Since any edge allows the same elements as its parent vertex, we see that y must
be the lowest common ancestor of α(u) and β(u) — otherwise, we could move it to one of its
child edges. As in the previous case, y ≥ α(ul) and so α(ul) ≤ γ(ul) < y (since a vertex does
not allow itself) without loss of generality.
Now if β(u) = y, it must be an S event and so one of β(ul) and β(ur) lies in the child subtree of
y not containing α(ul). Otherwise, β(u) itself lies in that subtree, and one of β(ul) and β(ur)
also does. If β(ul) lies in this subtree, then α(ul) and β(ul) lie in different child subtrees of y,
and so γ(ul) ≥ y, a contradiction. Thus β(ur) ≤ β(u) and by the same argument as above we
have β(ur) ≤ γ(ur) < y. Morever, since α(ul) and β(ur) lie in different child subtrees of y, so
must γ(ul) and γ(ur), and so γ′(u) is a valid S event.

The uniqueness of the midpoint follows immediately from the fact that there is a full ordering
of all elements of S′ above, say, α(u).

This lemma allows us to easily calculate γ recursively from the leaves upward.

Theorem 3 Let α and β be two reconciliations with midpoint γ. Let Aγα(u) be the subset of Aα(u)
that lies strictly above α(u) and below γ(u) (and includes γ(u) itself). Then

d(α, β) = d(α, γ) + d(γ, β) =
∑

u∈V (G)

|Aγα(u)|+
∑

u∈V (G)

|Aγβ(u)|.

In particular, d(α, β) is always finite, so any reconciliation can be transformed into any other by
a finite number of uNMC and dNMC operators.

Exploring the space of gene/species reconciliations with transfers 9

Proof. Firstly, we show by induction that in any sequence of reconciliations that transforms α to
β, the vertex u must be mapped to γ(u) in at least one reconciliation. This is certainly true for
u ∈ L(G), as here α(u) = β(u) = γ(u) by definition. Now let u /∈ L(G) and suppose that this
property is true for all vertices v ∈ V (G) with height greater than h(u).

Let R be a sequence of reconciliations which transforms α into β but never maps u to γ(u).
Let y be the element of S′ with lowest height to which u is mapped over all reconciliations in R.
Since the uNMCu and dNMCu operators can only move α(u) to an element of S′ above or below
it (and no other uNMCv, dNMCv with v 6= u move α(u) at all), all images of u in reconciliations
in R are descendants of y, or y itself.

By induction, R contains two reconciliations γ1 and γ2 (not necessarily distinct) such that
γ1(ul) = γ(ul) and γ2(ur) = γ(ur). But y ≥ γ1(u), γ2(u), and by the definition of a reconciliation
γ1(u) allows γ1(ul) and γ2(u) allows γ2(ur), so y must allow both γ(ul) and γ(ur). Now consider
the mapping γ′ with γ′(u) = y and γ′(v) = γ(v) for v 6= u. If y < γ(u) then γ′ is a valid
reconciliation, but this contradicts the definition of γ. So we must have y ≥ γ(u) and that u must
be mapped to γ(u) at some stage in R, since γ is also valid. This proves that u is mapped to γ(u)
in any sequence of reconciliations that transforms α to β.

Now consider a sequence of operators that transforms α to γ by applying uNMC operators to
every vertex until it reaches its image in γ, starting with r(G) and moving each vertex of G only
if its parent has been moved. Because the children of any vertex u are fixed at α(ul) and α(ur)
when we move u, we require |Aγα(u)| moves for this vertex. Therefore it is clear that

d(α, γ) ≤
∑

u∈V (G)

|Aγα(u)|.

We still need to show that |Aγα(u)| is the minimum number of uNMCu operators required to
move α(u) to γ(u). Since the uNMCu operator moves u to either its parent vertex or edge, in any
sequence of reconciliations transforming α to γ, u must be mapped to every edge between α(u)
and γ(u) at least once.

Now consider the set of images of u in the sequence defined above (including γ(u) but not
α(u)), which is Aγα(u). This set must contain all edges between α(u) and γ(u), and possibly also
the speciation point of u in α. This means that either it is minimal among all sequences which
transform α(u) to γ(u), or that Aγα(u) contains the speciation point and the minimal set does not.
In the latter case, since α(u) lies below its speciation point, it is a T event. Since Aγα(u) contains
the speciation point of u in α, u must be an S or D event in γ. But if the minimal set does not
contain an element of V (S), there must exist a sequence of NMC operators which transforms α
into γ without changing the type of u. This means that u is also a T event in γ, a contradiction.
Therefore Aγα(u) is minimal, so we require at least |Aγα(u)| operators to change α(u) to γ(u). Thus

d(α, γ) ≥
∑

u∈V (G)

|Aγα(u)|,

and the equality of these two terms is shown.

Since u must always pass through γ(u), and there exists a sequence of operators which trans-
forms α to γ in the minimum number of operators required to transform α(u) to γ(u) for all
u ∈ V (G), we see that the minimum-length sequence of reconciliations from α to β can be taken
to pass through γ. This means that d(α, β) = d(α, γ) + d(γ, β). However, because every uNMCu
is the inverse of a dNMCu operator and vice versa, we know that d(γ, β) = d(β, γ). This proves
the theorem.

We note that it is clear that Theorem 3 would not hold if we took a strict subset of uNMCu
and dNMCu operators for any vertex u, as we require all of these operators to move u to all
elements in Aα(u) for any reconciliation α.

10 Yao-ban Chan et al.

4 The DTL model

Exploring the space of reconciliations when TL events are allowed is more complicated. Without
TL events, a reconciliation is determined by the images of the vertices of G in S′ (i.e. by the
placement of D, T and S events). On the other hand, TL events are not unambiguously determined
by these images, and in fact it is almost always possible to have more than one reconciliation with
the same D, T and S events, but with different TL events. From now on, we therefore follow the
notation of [16] and define a reconciliation as a mapping α from V (G) to a sequence of elements
of V (S′). The sequence α(u) = (α1(u), α2(u), . . . , α`(u)) represents the sequence of edges to which
e(u) is assigned (in both the argument and the value of α, a vertex represents its parent edge).
We reproduce the full formal definition of a reconciliation [16, Definition 1] in Appendix B.

As before, we are also interested in counting the number of canonical reconciliations. In this
model, a canonical reconciliation is one in which no D, T or TL event can be moved lower. We
also reproduce the formal definition of a canonical reconciliation [16, Definition 2] in Appendix B.

The space of reconciliations that we analyse is not theoretically the full space of all possible
reconciliations. In particular, we impose five conditions:

– DL events are not allowed;
– T events followed immediately by an L event in the transferred branch are not allowed;
– consecutive TL events in the same time-step are not allowed;
– non-trivial subtrees of genes which all end in L events are not allowed (e.g. an S event followed

by L events in both its children); and
– the gene family appears where the root of G is placed and not before (i.e. |α(r(G))| = 1).

Disallowing DL events is necessary, because this event sequence can occur an arbitrary number
of times in a reconciliation. If we were to allow it, the reconciliation space would be infinite. The
same applies to a T followed by an L in the transferred branch, and consecutive TLs in a time-
step. The other two assumptions (and, indeed, the first three) are standard in the literature (for
example, in [9]), even though disregarding them does not result in an infinite space. All of these
requirements are also consistent with a parsimony approach: no reconciliation breaking any of
these requirements can possibly be a most parsimonious reconciliation.

We lastly make one final assumption: in the species tree S, no two speciations occur at the exact
same time. This is reasonable if you consider the species evolving as a continuous-time process;
the probability of two events occurring at exactly the same time is zero. For our purposes, this
assumption simplifies our counting theorems.

4.1 Reconciliation space

We construct a reconciliation in two stages: firstly we allocate the placement and types of the
vertices of G and their immediate outgoing edges. These can, in some sense, be chosen freely, as
we show in Lemma 4. We define an undetermined reconciliation α as a reconciliation where we
have not assigned α(u) for any vertex u ∈ V (G).

Lemma 4 Let α be an undetermined reconciliation. For all u ∈ V (G), we allocate the first and
the last elements of α(u), i.e. α1(u) and α`(u) — but not the length of α(u) — such that condition
(a) of Definition 15 is satisfied. In addition, we require that h(α1(u)) ≤ h(α`(u)). Then there
always exists at least one reconciliation α which satisfies these allocations.

Proof. We need to show that there exists a valid path (sequence of vertices satisfying the conditions
of ∅, SL or TL events) in S′ between α1(u) and α`(u) for all u. Let α′1(u) be the ancestor of α`(u)
which is at the same height as α1(u) (a TL event). Then we complete α(u) by adding — between
α1(u) and α`(u) — the ordered sequence of vertices composing the path in S′ from α′1(u) to
(α`(u))p. If α1(u) = α′1(u), we do not add a second copy to α(u). All events on this path are either
SL or ∅ events. It is easy to verify that the resulting sequence satisfies condition (b) of Definition
15.

Exploring the space of gene/species reconciliations with transfers 11

Next, we choose for each edge of G the path that it follows in S′. As we have already allocated
the beginning and end of each edge, i.e. α1(u) and α`(u), we only have to deal with possible TL
events, since SL and ∅ events will be determined according to whether or not there is a speciation
in S′. Furthermore, these edges do not interact, so they can be allocated independently. The
following lemma formally describes the possibilities for allocating these edges.

Lemma 5 Let α be a partial reconciliation obtained as described in Lemma 4. Then α can be
completed into a full reconciliation by independently completing the mapping of each edge as fol-
lows:

1: i← 1;
2: repeat
3: if h(αi(u)) = h(α`(u)) then
4: if αi(u) = α`(u) then
5: we set |α(u)| = i and declare α(u) completed;
6: else
7: we set αi+1(u) = α`(u), |α(u)| = i+ 1 and declare α(u) completed;

8: else
9: if i > 1 and h(αi−1(u)) = h(αi(u)) then

10: we set αi+1(u) to be a child of αi(u);
11: else
12: we set αi+1(u) to be a child of αi(u) or any vertex other than αi(u) with the same

height as αi(u);

13: i← i+ 1;

14: until α(u) is completed.

Furthermore, all possible reconciliations can be constructed in this manner.

Proof. As stated above, this is merely an enumeration of all possibilities. At every time-step, the
path may contain at most one TL to any branch at the same height. If it already has a TL in the
current time-step (line 9), it must descend to a child edge (line 10); otherwise αi+1(u) can be a
TL, SL or ∅ event (line 12). Once it reaches the height of its final vertex (line 4), it must either
have one final TL event (line 7) or simply finish, if it is already in the correct branch (line 5).

Given any reconciliation α, it is clear that α satisfies the conditions given in Lemma 4. The
algorithm given above does not exclude any possible path between α1(u) and α`(u), so α can be
constructed in this way.

This complete characterisation of all possible reconciliations allows us to efficiently count their
number using a bottom-up approach. We first define a notion which makes it easier to envision
the image of an edge of G.

Definition 8 For a reconciliation α and a vertex u ∈ V (G), we say x ∈ V (S′) is the representative
vertex of α(u) at height h if h(x) = h + 1 and for some i ∈ {1, 2, . . . , |α(u)| − 1} we have
αi(u) = xp, αi+1(u) = x.

The representative vertex determines the behaviour of α(u) at height h. The path corresponding
to e(u) must pass through the parent vertex and parent edge of the representative vertex. It is
easy to see that α(u) must have exactly one representative vertex at every height (where it exists).
We emphasise for the sake of clarity that the representative vertex of α(u) at height h does not
itself have height h, but height h + 1; this is necessary because it also determines the first edge
that α(u) occupies after height h.

Lemma 6 If h(α1(u)) = h1 and h(α`(u)) = h2 ≥ h1, then there are

h2−1∏
h=h1

(h+ 2) =
(h2 + 1)!

(h1 + 1)!

possibilities for completing α(u).

12 Yao-ban Chan et al.

Proof. As no two speciation events can occur simultaneously, there are h + 1 different vertices
with height h in S′. Now, at each height h ∈ {h1, h1 + 1, . . . , h2− 1}, we choose the representative
vertex of α(u) at height h. This representative vertex is itself at height h + 1 and can be placed
at any of the h+ 2 different vertices present at this height.

Once all representative vertices are chosen, at each height h there are two possibilities. The
first is that α(u) already contains two different vertices of height h, in which case the first vertex
must be a TL event and no further vertices of height h can be added. The second is that α(u)
contains one vertex of height h, which is preceded immediately by a vertex of smaller height and
followed by a vertex of greater height (since it is impossible for a single vertex to appear twice
in α(u)). Again, no further vertices of height h can be added. So once the representative vertices
have been chosen, no further vertices can be added to α(u) and so α(u) is determined uniquely.
The result follows immediately.

Theorem 4 Let u ∈ V (G), x ∈ V (S′), and let f(u, x) denote the number of reconciliations between
Gu and S′ where α(u) = (x). If u ∈ L(G), then f(u, x) = 1 if x ∈ L(S) and s(u) = s(x), and 0
otherwise. If u 6∈ L(G), then

f(u, x) = 2(1− Λ(x))
∑
x1,x2,

h(x1),h(x2)>h(x)

(
(h(x1) + 1)!(h(x2) + 1)!

(h(x) + 2)!2
f(ul, x1)f(ur, x2)

)

+(2h(x) + 1)
∑
x1,x2,

h(x1),h(x2)≥h(x)

(
(h(x1) + 1)!(h(x2) + 1)!

(h(x) + 1)!2
f(ul, x1)f(ur, x2)

)
.

Proof. If u ∈ L(G), the initial conditions are obvious. Now suppose u 6∈ L(G). Since α`(u) = x,
we know that u is either an S event at x or a D or T event on e(x).

The first term corresponds to the case that u is an S event. Since it is a speciation, x cannot
be an artificial vertex, which accounts for the factor of 1 − Λ(x), and the children of x must be
mapped to elements with strictly greater height. We let α`(ul) = x1 and α`(ur) = x2. Now we can
either allocate α1(ul) = xl and α1(ur) = xr or vice versa, which accounts for the preceding factor
of 2. The fractional term in the sum is the number of possibilities for completing α(ul) and α(ur),
given by Lemma 6 — for example, if α1(ul) = xl and α`(ul) = x1, we have h1 = h(xl) = h(x) + 1
and h2 = h(x1) in the Lemma. The remainder of the summand is the number of possibilities for
allocating the subtrees Gul

and Gur
respectively to S′.

The second term corresponds to the case that u is a D or T event. In this case, its children
must be mapped to elements with height at least h(x). Again we let α`(ul) = x1 and α`(ur) = x2.
Now if u is a D event, we must allocate α1(ul) = α1(ur) = x (1 possibility). If u is a T event, we
can either allocate α1(ul) = x and α1(ur) to be a different vertex of S′ with h(α1(ur)) = h(x)
(h(x) possibilities) or vice versa (another h(x) possibilities). This gives the prefactor of 2h(x) + 1.
As before, the fraction in the sum counts the number of possibilities for completing α(ul) and
α(ur), and the remainder of the summand counts the number of possibilities for allocating the
child subtrees.

The total number of possible reconciliations between G and S′ is given by
∑
x∈V (S′) f(r(G), x),

and we compute this value by calculating f(u, x) for all x and u, again considering vertices of G
in post-order.

A surprising result is easily derived from this theorem.

Corollary 1 The number of reconciliations between G and S′ is independent of the labels of L(G).

Proof. We show this by induction on the number of vertices in G. If |V (G)| = 1, there is always
exactly one possible reconciliation (since the species in S are unique). Otherwise, any change of
labels of L(G) does not change f((r(G))l, x) and f((r(G))r, x) for any x ∈ V (S′) by induction,
and by Theorem 4, f(r(G), x) is also unchanged for any x.

Exploring the space of gene/species reconciliations with transfers 13

x2

x2y ()p

(a) The reconciliation will not be
canonical if y and (x2)p are artificial
and there is a TL event at height h(y)

x 2

yx

x 1

(b) The reconciliation will not be
canonical if x and y are artificial and
x1 and x2 are placed lower in S′

Fig. 3 Notations used in Lemma 7 and Theorem 5.

4.2 Counting canonical reconciliations

In this section we extend the results of the previous section to count canonical reconciliations.
Firstly, we count the possible ways of completing paths so that no TL event can be moved down-
wards through two artificial vertices.

Lemma 7 Let q(x1, x2) be the number of ways of allocating α(u) from α1(u) = x1 up to αi(u) = x2
for some i, where x2 is the representative vertex of α(u) at some height, so that no TL event can
be moved downwards. Then

q(x1, x2) =

1− Λ(x1)Λ((x2)p)I(x1 6= (x2)p) if h(x2) = h(x1) + 1,

∑
y,h(y)=h(x2)−1

q(x1, y) [1− Λ(y)Λ((x2)p)I(y 6= (x2)p)] otherwise.
(2)

Proof. Firstly, we must have h(x2) > h(x1). In particular, we cannot have h(x2) = h(x1) as α(u)
cannot have a representative vertex at height h(x1)− 1 by definition.

If h(x2) = h(x1) + 1, then the path up to x2 is (x1, x2) if x1 = (x2)p and (x1, (x2)p, x2)
otherwise. The only way in which this partial path can contravene the definition of a canonical
reconciliation is if α1(u) = x1 is a TL event (i.e. x1 6= (x2)p) which can be moved downwards.
This will happen if both x1 and (x2)p are artificial vertices, as the event will be moved through
them. This gives the first case of (2).

If h(x2) > h(x1) + 1, we consider all possible choices of the representative vertex at height
h(x2)− 2, which we denote by y. This vertex can be chosen freely, unless it implies the existence
of a TL event at height h(y) (i.e. y 6= (x2)p) which can be moved downwards (i.e. y and (x2)p
are artificial). See Figure 3(a) for a depiction of this situation. This, combined with the fact that
paths are completely determined by their representative vertices, gives the second case of (2).

Lemma 8 Let p(x1, x2) be the number of possibilities for completing α(u), given α1(u) = x1 and
α`(u) = x2, so that no TL event can be moved downwards. Then

p(x1, x2) =

1 if h(x1) = h(x2),

∑
y,h(y)=h(x2)

q(x1, y) otherwise.

Proof. If h(x1) = h(x2), then the only possibility is that α(u) = (x1) if x1 = x2 and α(u) = (x1, x2)
otherwise (i.e. x1 is a TL event). Otherwise, we let y be the representative vertex of α(u) at
height h(x2) − 1. This vertex can be chosen freely, as any TL event at height h(y) can never

14 Yao-ban Chan et al.

be moved downwards because the path ends at that height. Again combining with the fact that
paths are completely (and uniquely) determined by their representative vertices gives the desired
equation.

In order to accurately count canonical reconciliations, we must also disregard reconciliations
which have D or T events that can be moved downwards. In order to do this, we must be able to
control whether the first event in a path is a TL event, which would prevent the event corresponding
to the vertex at the start of the path from being moved downwards.

Lemma 9 Let p′(x1, x2) be the number of ways of allocating α(u) under the same conditions as
in Lemma 8, with the added condition that α1(u) must not be a TL event. Then the formulae of
Lemmas 7 and 8 apply, with p and q replaced by p′ and (say) q′ respectively, except for the initial
conditions, which are replaced by:

q′(x1, x2) = I(x1 = (x2)p) if h(x2) = h(x1) + 1 (for Lemma 7),

p′(x1, x2) = I(x1 = x2) if h(x1) = h(x2) (for Lemma 8).

Proof. The only place in which the added condition can occur is at the very start of the path,
which is covered by the initial conditions in the Lemmas. We require that α1(u) not be a TL event,
and so x1 = (x2)p in Lemma 7, and x1 = x2 in Lemma 8.

We are finally ready to express a recurrence for the number of canonical reconciliations.

Theorem 5 Let f ′(u, x) denote the number of canonical reconciliations between Gu and S′ where
α(u) = (x). If u ∈ L(G), then f ′(u, x) = 1 if x ∈ L(S) and s(u) = s(x), and 0 otherwise. If
u 6∈ L(G), then

f ′(u, x) = (1− Λ(x))
∑
x1,x2

h(x1),h(x2)>h(x)

[p(xl, x1)p(xr, x2) + p(xr, x1)p(xl, x2)] f ′(ul, x1)f ′(ur, x2)

+
∑
x1,x2

h(x1),h(x2)≥h(x)

p(x, x1)p(x, x2)f ′(ul, x1)f ′(ur, x2)

−
∑
x1,x2

h(x1),h(x2)>h(x)

Λ(x)p′(x, x1)p′(x, x2)f ′(ul, x1)f ′(ur, x2) (3)

+
∑

x1,x2,y
h(x1),h(x2)≥h(x),
y 6=x,h(y)=h(x)

[p(x, x1)p(y, x2) + p(y, x1)p(x, x2)] f ′(ul, x1)f ′(ur, x2)

−
∑

x1,x2,y
h(x1),h(x2)>h(x),
y 6=x,h(y)=h(x)

Λ(x)Λ(y) [p′(x, x1)p′(y, x2) + p′(y, x1)p′(x, x2)] f ′(ul, x1)f ′(ur, x2).

Proof. The case for u ∈ L(G) is again obvious, so we assume u 6∈ L(G). There are three cases:

– u is an S event at x. This is covered by the first line of (3). Firstly x must not be artificial.
We let x1 = α`(ul) and x2 = α`(ur). These must have height strictly greater than h(x). There
are two possibilities, that either α1(ul) = xl and α1(ur) = xr or vice versa. Once these are
assigned, the number of ways to complete the paths is given by the term in square brackets,
and the number of ways to complete the subtrees is given by the remaining terms. Note that
all S events are canonical.

– u is a D event at e(x). This is covered by the second and third lines of (3). As in the first case,
we let x1 = α`(ul) and x2 = α`(ur), and these must have height greater than or equal to h(x).
We now must have α1(ul) = α1(ur) = x. The second line counts the possibilities for allocating
the paths and the subtrees.

Exploring the space of gene/species reconciliations with transfers 15

However, there is a possibility that this event is able to be moved downwards through an
artificial vertex, i.e. it is a non-canonical D event. This will happen if both x1 and x2 have
height strictly greater than h(x), x is artificial, and neither α(ul) nor α(ur) start with a TL
event. In particular, if x is artificial then neither α(ul) nor α(ur) can start with an SL event.
This gives rise to the third line of (3).

– u is a T event at e(x). This is covered by the fourth and fifth lines of (3). We again let
x1 = α`(ul) and x2 = α`(ur). We also let y be the target of the transfer, so y 6= x but
h(y) = h(x). Now, there are again two cases, where α1(ul) = x and α1(ur) = y or vice versa.
The possibilities for completing the paths and the subtrees are given in the fourth line.
Again there is a possibility that this event and its target may be able to be moved downwards
through two artificial vertices. This will happen if both x1 and x2 have height strictly greater
than h(x), x and y are artificial, and neither α(ul) and α(ur) start with a TL event. (See Figure
3(b) for a depiction of this case.) This is expressed in the fifth line.

The number of possible canonical reconciliations between G and S′ is
∑
x∈V (S′) f

′(r(G), x).
We compute this number recursively using the order previously described.

4.3 Operators

As before, we define operators which can transform any reconciliation into any other. A key
observation here is that there are three parts of a reconciliation which can, in some sense, be
considered separately from each other:

1. the locations of the (images of the) vertices of G in S′ (determined by α`(u) for u ∈ V (G));
2. the event types (S, D or T) associated to the vertices of G (determined by α1(ul) and α1(ur)

for internal vertices u of G); and
3. the images of the edges of G in S′ (determined by the remaining values of α).

Informally, the choice of each of these parts does not constrain the choice of parts below it in the
list:

1. the locations of the vertices of G in S′ can be chosen freely, as long as they are height-consistent;
2. given the locations, the event types can be chosen freely, as long as each vertex represents an

S, T or D event;
3. given the locations and event types, the images of the edges of G in S′ can be chosen freely

and independently from each other.

Therefore we define three classes of operators which each affect one of these parts of the reconcilia-
tion. The UP/DOWN operators change the location of the vertices by moving them up and down
in S′, the OUT operators change event types by changing the immediate out-edges of the events,
and the PATH operators change the images of the edges by changing representative vertices. The
UP/DOWN operators are the analogs of the uNMC and dNMC operators for the no-TL model;
the remaining operators are chosen so that all parts of the reconciliation can be controlled in a
natural way. We note that certainly these are not the only operators which can be taken, but they
are a natural extension of the no-TL model, and also retain the useful property that they are local
operators only.

Before giving formal definitions of these operators, we define a reduction function which removes
consecutive TL events in a time-step, should they appear.

Definition 9 Let γ be a sequence of vertices of S′, sorted by height (from smallest to largest).
We define ρ(γ) as the sequence obtained by doing the following, for each height h for which γ
contains (consecutive) vertices x1, . . . , xn with height h:

– if x1 = xn, replace x1, . . . , xn by x1;
– if n ≥ 3 and x1 6= xn, replace x1, . . . , xn by x1, xn;

16 Yao-ban Chan et al.

x yp p xp yp

yx yx

(a) PATHu,y sets y as a representative vertex of α(u) by the addition of TL events

(b) PATH operators can give rise to multiple TL events in a time-step, which must be reduced

Fig. 4 Examples of the PATH operator. The path induced by the new representative vertex is marked in the
diagrams on the left.

– otherwise, do nothing.

The PATH operators (inspired by the BFACF algorithm in combinatorics [4,6]) modify the
image of an edge of G without affecting the locations or event types of the vertices of G, or any
other edge. They do this by changing the representative vertex of the path at a given height to
any other vertex at the same height by adding TL events (which may then be reduced).

Definition 10 Let α be a reconciliation and u ∈ V (G). If x is the representative vertex of α(u)
at height h, then for any vertex y 6= x in V (S′) with h(y) = h(x), we define PATHu,y(α) as the
mapping where:

PATHu,y(α)(u) = ρ(α1(u), . . . , xp, yp, y, x, . . . , α`(u)),

PATHu,y(α)(v) = α(v) for v 6= u.

Observe that y is now the representative vertex of PATHu,y(α)(u) at height h. See Figure 4
for an illustration of this operator.

In future definitions, we use the ‘·’ operator as a concatenation of sequences (in this case of
vertices of S′). Single elements are equivalent to a sequence containing only that element.

The OUT operators modify the immediate out-edges of an internal vertex u of G, namely
α1(ul) and α1(ur). Naturally this changes the paths α(ul) and α(ur), but it leaves the location of
the vertices of G in S′ unchanged. Figure 5 provides examples illustrating the following definition
of these operators.

Definition 11 Let α be a reconciliation and u an internal vertex of G. Then:

– If u is mapped to an S event, we define OUTu(α) as the mapping where:

OUTu(α)(ul) = ρ(α1(ur) · α(ul)),

OUTu(α)(ur) = ρ(α1(ul) · α(ur)),

OUTu(α)(v) = α(v) for v 6= ul, ur.

This switches the children of u, adding a TL at the beginning of both α(ul) and α(ur) back to
their original starting branches. u remains an S event.

– If u is mapped to a D event, for any vertex y 6= α1(ul) with h(y) = h(α1(ul)), we define
OUT lu,y(α) as the mapping where:

OUT lu,y(α)(ul) = ρ(y · α(ul)),

OUT lu,y(α)(v) = α(v) for v 6= ul.

This changes the left child of u to a transfer to the branch e(y) (so u is changed from a D to
a T), and adds a TL event at the beginning of α(ul) back to its original starting branch. The
operator OUT ru,y is defined similarly.

Exploring the space of gene/species reconciliations with transfers 17

OUT (on S event)

OUT (on D event)

OUT (on T event)

Fig. 5 Examples of the OUT operators.

– If u is mapped to a T event so that ul (respectively ur) is the transferred branch, we define
OUTu,y identically to OUT lu,y (resp. OUT ru,y) in the case where u is a D event. This changes
the target of the transfer (possibly to the branch of u), so u either stays a T event or changes
from a T to a D.

To aid with the definition of the final class of operators, we make a preliminary definition which
mirrors that of a reconciliation in the no-TL model.

Definition 12 Let α be a reconciliation. We define the vertex mapping ᾱ of α to be a mapping
V (G)→ V (S) ∪ E(S′) where:

– if u is mapped to an S event, ᾱ(u) = α`(u);
– if u is mapped to a D or T event, ᾱ(u) = e(α`(u)).

The vertex mapping of a reconciliation corresponds exactly to the format of a reconciliation for
the no-TL model. We note that the vertex mapping determines the value of α`(u) and the height
of α1(u) for all u ∈ V (G). By Lemma 4, any mapping ᾱ where ᾱ(u) allows ᾱ(ul) and ᾱ(ur) is a
valid vertex mapping (i.e. is the vertex mapping of a valid reconciliation).

The UP and DOWN operators move images of the vertices of G to immediate ancestors and
descendants in S′. In this way, they are the analogs of the uNMC and dNMC operators in the no-
TL case. By necessity, they potentially also change the type of the vertex and the paths adjacent
to it. Figure 6 provides examples illustrating the following definition of these operators.

Definition 13 Let α be a reconciliation and u an internal vertex of G. Then we define the UP
and DOWN operators as follows. In all cases, if the value of the changed reconciliation is not
given for a vertex v, it is assumed to be equal to α(v).

– If u is mapped to an S event,

UPu(α)(ul) = ρ(α`(u) · α(ul)), UPu(α)(ur) = ρ(α`(u) · α(ur)),

DOWN l
u(α)(u) = ρ(α(u) · (α`(u))l),

DOWNr
u(α)(u) = ρ(α(u) · (α`(u))r).

The UPu operator moves u into a D event in its parent edge and adds an SL event to the
beginning of both α(ul) and α(ur). The DOWN l

u and DOWNr
u operators move u into a T

event in its left and right child edges respectively and add an SL event to the end of α(u).
– If u is mapped to a D or T event, UPu can be applied if ᾱ(up) allows (α`(u))p. Define α′ =
PATHu,α`(u)(α). Note that α`(u) is a representative vertex of α′(u) and that α′`−1(u) =
(α`(u))p is not a TL event.
– If (α`(u))p is an artificial vertex,

UPu(α)(u) = ρ(α′1(u), . . . , α′`−1(u)),

UPu(α)(ul) = ρ((α′1(ul))p · α′(ul)), UPu(α)(ur) = ρ((α′1(ur))p · α′(ur)).

18 Yao-ban Chan et al.

This moves u upwards through an artificial vertex (adding ∅ or SL events at the beginning
of both α(ul) and α(ur)), but does not change its event type. If u = r(G), then take
UPu(α)(u) = ((α(u))p) instead.

UP (from S)

DOWN (from S)

UP (through artificial vertex)

UP (to non-artificial vertex)

DOWN (through artificial vertex)

DOWN (to non-artificial vertex)

Fig. 6 Examples of the UP and DOWN operators. The operators move the filled vertex.

– If (α`(u))p is not an artificial vertex,

UPu(α)(u) = ρ(α′1(u), . . . , α′`−1(u)),

UPu(α)(ul) = ρ((α′`−1(u))l · α′(ul)), UPu(α)(ur) = ρ((α′`−1(u))r · α′(ur)).

This moves u upwards into an S event at its parent vertex, potentially adding TL events at
the start of each of its child edges to transfer them back to their original starting branches.
If u = r(G), then take UPu(α)(u) = ((α(u))p) instead.

– If u is mapped to a D or T event, DOWNu can be applied if α`(u) allows both ᾱ(ul) and
ᾱ(ur). Define α′ = PATHul,(α1(ul))lPATHur,(α1(ur))l(α), so that neither α′1(ul) or α′1(ur) is a
TL event.
– If α`(u) is an artificial vertex,

DOWNu(α)(u) = ρ(α′(u) · (α′`(u))l),

DOWNu(α)(ul) = ρ(α′2(ul), . . . , α
′
`(ul)), DOWNu(α)(ur) = ρ(α′2(ur), . . . , α

′
`(ur)).

This moves u downwards through an artificial vertex (adding a ∅ event at the end of α(u)),
but does not change its event type.

Exploring the space of gene/species reconciliations with transfers 19

– If α`(u) is not an artificial vertex,

DOWNu(α)(ul) = ρ((α′`(u))l, α
′
2(ul), . . . , α

′
`(ul)),

DOWNu(α)(ur) = ρ((α′`(u))r, α
′
2(ur), . . . , α

′
`(ur)).

This moves u downwards into an S event at its child vertex (which is non-artificial by
assumption). Its child edges will potentially start with TL events to transfer them to their
original second branches.

The preliminary PATH operators appearing within the UP and DOWN operators in the case
that u is a D or a T event ensure that these latter operators can always be applied disregarding
TL events, by forcing there to be no TL events in between the event and its nearest vertex of S′

in the appropriate direction (above or below).
We note that the PATH and OUT operators do not change the vertex mapping of their

operand, and UPu and DOWNu only change the vertex mapping at u, to an ancestor or a de-
scendant. In particular, the UPu operator moves the vertex mapping of u to the lowest possible
element of S′ (i.e. an element which is not an artificial vertex) above it, and the DOWNu moves
the vertex mapping of u to the highest possible element of S′ below it.

Lemma 10 The UP , DOWN , OUT and PATH operators produce valid reconciliations.

Proof. This is a straightforward but repetitive matter of comparing the definitions of the operators
to the definition of a valid reconciliation, given in Definition 15. In each case we must ensure that
every element of every path satisfies the definition of one of the events.

As an example, we show that if u is mapped to an S event, then α′ = UPu(α) is a valid
reconciliation. Since only α′1(ul) and α′1(ur) have changed from α, there are only three elements
that we need to check:

– α′`(u): since α′1(ul) = α′1(ur) = α′`(u), α′`(u) satisfies the conditions of a D event.
– α′1(ul): Since α`(u) is an S event, α1(ul) is a child of α`(u), and so α′1(ul) satisfies the conditions

of an SL event (we know that it is a non-artificial vertex).
– α′1(ur): likewise, α1(ur) is a child of α`(u) and so α′1(ur) satisfies the conditions of an SL event.

Since all the elements of α′ which are changed from α are still valid events, it is a valid reconcili-
ation.

Theorem 6 Let α and β be two reconciliations. By repeated applications of PATH, OUT , UP
and DOWN operators, α can be transformed into β.

Proof. Firstly, we use UP and DOWN operators to transform α into a reconciliation α′ where
ᾱ′ = β̄. Starting from α, we apply UPu operators to each internal vertex u of G in pre-order until
we reach a reconciliation γ where γ̄(u) = e(r(S′)). This is always possible because when we move
u, by construction the parent of u is already mapped to e(r(S′)), which allows itself. By a similar
reasoning, we can apply a sequence of UP operators to β to reach γ′, where γ̄′ = γ̄. But the effect
of any UPu operator on the vertex mapping can be reversed by some DOWNu operator, so we
take this second sequence of UP operators and apply the corresponding DOWN operators to γ.
This gives us a reconciliation α′ where ᾱ′ = β̄.

Next, we use OUT operators to transform α′ into α′′, where α′′1(u) = β1(u) and α′′` (u) = β`(u)
for all u ∈ V (G). Since ᾱ′ = β̄, the latter condition is already satisfied. There are two possibilities
at each internal vertex:

– u is mapped to S events by both α′ and β. Then either α′1(ul) = β1(ul) and α′1(ur) = β1(ur),
in which case nothing needs to be done, or α′1(ul) = β1(ur) and α′1(ur) = β1(ul), in which case
we apply a single OUTu operator.

– u is mapped to D or T events by α′ and β. We apply an OUTu,α′
`(u)

operator to transform
α′`(u) into a D event if it is not already one, and then an OUTu,y operator to transform it into
an event with the same out-edges as β(u) if this is not already the case. For example, if α′`(u)
is a T event transferring its left branch, and β(u) is a T event transferring its right branch, we
apply the operators OUTu,α′

`(u)
followed by OUT ru,β1(ur)

.

20 Yao-ban Chan et al.

Call the resulting reconciliation α′′. By construction, α′′1(ul) = β1(ul) and α′′1(ur) = β1(ur) for
each internal vertex u, so α′′ has the required property.

Finally, we use PATH operators to transform α′′(u) into β(u) for each vertex u ∈ V (G). By
construction, α′′1(u) = β1(u) and α′′` (u) = β`(u). Now, at each height h = h(α′′1(u)), . . . , h(α′′` (u))−
1, we apply the PATHu,x operator, where x is the representative vertex of β(u) at height h. From
the definition of this operator, the resulting path has the same representative vertex at each
height as β(u), and by the reasoning in the proof of Lemma 6, a path is uniquely defined by its
representative vertices. Therefore the resulting path is β(u). When we have transformed all the
paths in this way, the resulting reconciliation is β and so the theorem is proved.

The reasoning in the proof gives the following corollary.

Corollary 2 Let α and β be two reconciliations with ᾱ = β̄. Then α can be transformed into β
using only PATH and OUT operators.

It is not as straightforward as the no-TL model to see that the set of operators we use here is
minimal. Certainly, the UP and DOWN operators are necessary in order transform any reconcili-
ation into any other. But it is possible to construct scenarios where the effect of a particular OUT
operator can be replicated by a series of UP , DOWN and PATH operators, and likewise certain
PATH operators can be replaced by a series of UP , DOWN and OUT operators. However, it is
equally possible to construct simple reconciliations (see Figure 7) which cannot be reached from
others without OUT operators, and likewise with PATH operators. As such, we do require all of
these operators to reach every possible reconciliation.

OUT

PATH

Fig. 7 Examples of OUT and PATH operators which cannot be replaced by (a series of) operators of different
type. Note that these are complete reconciliations, not local views.

As before, the operators we define induce a distance measure naturally between two reconcil-
iations, defined as the smallest number of operators needed to transform one reconciliation into
the other:

Definition 14 Let α and β be two reconciliations. We define d(α, β) to be the smallest number
of UP , DOWN , PATH and OUT operators needed to convert α to β.

Unfortunately, how to determine this distance is still an open problem. In Appendix C we
show how to determine the minimum number of UP and DOWN operators required to transform
one reconciliation into another. These operators correspond directly to the uNMC and dNMC
operators in the no-TL model, and indeed our result is proved in a similar fashion. However,
this number may be strictly smaller than the number of UP and DOWN operators used in the
minimal-length sequence of all operators.

Because the UP and DOWN operators change the type of a vertex when moving through
a non-artificial vertex, and the new type is fixed, it is possible to have an operator whose effect
cannot be reversed by a single operator (see Figure 8). Therefore the distance defined in Definition
14 is not a metric. Note however that the distance measure induced by UP and DOWN operators
treated in Appendix C is indeed a metric.

Exploring the space of gene/species reconciliations with transfers 21

Fig. 8 An example of an UP operator which cannot be reversed by a single operator (the corresponding DOWN
operator changes the vertex into a T).

5 Conclusion

In this paper, we have presented an algorithm to count the number of all possible reconcilia-
tions between a gene tree and a dated species tree. Moreover, we have defined a set of operators
which allow us to transform any DTL reconciliation between a given pair of trees into any other
reconciliation of the same pair. This operator set enables us to explore the space of all possi-
ble reconciliations between these two trees, and to define a distance measure between two such
reconciliations.

Being able to characterise the space of all possible reconciliations is critical in the study and
inference of reconciliations. Up to now, theoretical work related to reconciliation inference has
often been undermined by an absence of formal definition of the valid reconciliation space, apart
from ad-hoc definitions of this space as the set of reconciliations explored by a given reconciliation
algorithm. For example, in a recent paper [13], some of the authors proved the importance of
filtering reconciliations in order to obtain a reliable subset of evolutionary events. The best strategy
they found to compute the event supports used to filter reconciliations relied on observed event
frequencies in Near-optimal Parsimonious Reconciliations (NPRs). Since no definition of the space
of the reconciliations close to optimality exists currently, a sample of NPRs was obtained by
computing MPRs for different cost vectors. This approach is costly in terms of time, and the choice
of altered costs also impacts the final result. The theoretical framework provided here allows us
to formally define the set of near-optimal reconciliations as the subset of the reconciliation space
having a cost below a given threshold. Since we are now able to define the set of near-optimal
reconciliations in a formal way, we will now be able to design algorithms to compute them efficiently
[19].

Being able to explore the space of all possible reconciliations is also crucial. For example,
the operator set that we have defined in this paper can be used to explore the neighborhood of
MPRs to obtain a representative set of NPRs efficiently. More generally, our operators provide
the missing tool to design Bayesian reconciliation methods based on Monte Carlo sampling. Such
methods have already proved their efficacy in phylogenomics where, for instance, they can handle
complex models for which a maximum likelihood approach becomes intractable [12]. This paves
the way toward reconciliation methods based on more complex gene evolution models, e.g. models
with a loss penalty that depends on the number of remaining copies of the gene — as biologically
expected.

This work is also an important step towards comparison of reconciliations. Being able to
compute a distance between two reconciliations would, among other things, allow us to study
the diversity of equally parsimonious reconciliations on the same species tree-gene tree pair, in
order to cluster and eventually summarise them through a consensus reconciliation. It would also
help to better assess the accuracy of reconciliation software through simulation, by allowing a
fine-grained comparison of simulated reconciliations against inferred ones. Whether or not the
computation of the proposed distance measure is a NP-hard problem when TL events are allowed
(see Definition 14) is still an open problem that we intend to explore in a follow-up paper.

Acknowledgements

This work was partially funded by the French Agence Nationale de la Recherche Investissements
d’avenir / Bioinformatique (ANR-10-BINF-01-02, Ancestrome).

22 Yao-ban Chan et al.

This publication is contribution no. 2014-XXX of the Institut des Sciences de l’Evolution de
Montpellier (ISEM, UMR 5554).

References

1. Abby, S., Tannier, E., Gouy, M., Daubin, V.: Detecting lateral gene transfers by statistical reconciliation of
phylogenetic forests. BMC Bioinformatics 11(1), 324 (2010)

2. Abby, S.S., Tannier, E., Gouy, M., Daubin, V.: Lateral gene transfer as a support for the tree of life. Proceedings
of the National Academy of Sciences 109(13), 4962–4967 (2012)

3. Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and
reconciliation analysis. Proceedings of the National Academy of Sciences of the United States of America
106(14), 5714–5719 (2009)

4. Berg, B., Foerster, D.: Random paths and random surfaces on a digital computer. Physics Letters B 106(4),
323–326 (1981)

5. Boussau, B., Szöllősi, G.J., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genome-scale coestimation of species
and gene trees. Genome Research 23(2), 323–330 (2013)

6. Aragao de Carvalho, C., Caracciolo, S., Fröhlich, J.: Polymers and g|ϕ|4 theory in four dimensions. Nuclear
Physics B 215(2), 209–248 (1983)

7. Doyon, J., Berry, V., Scornavacca, C., Ranwez, V.: DTLS-trees: proving the parsimony model for reconciling
gene and species trees (2013). In preparation

8. Doyon, J., Chauve, C., Hamel, S.: Space of gene/species trees reconciliations and parsimonious models. Journal
of Computational Biology 16(10), 1399–1418 (2009)

9. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm
for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Proceedings of
the 2010 international conference on Comparative genomics, RECOMB-CG’10, pp. 93–108. Springer-Verlag,
Berlin, Heidelberg (2011). URL http://dl.acm.org/citation.cfm?id=1927857.1927866

10. Goodman, M., Czelusniak, J., Moore, G.W., Herrera, R.A., Matsuda, G.: Fitting the gene lineage into its
species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool.
28, 132–163 (1979)

11. van der Heijden, R., Snel, B., van Noort, V., Huynen, M.: Orthology prediction at scalable resolution by
phylogenetic tree analysis. BMC Bioinformatics 8(1), 83 (2007)

12. Lartillot, N., Philippe, H.: A bayesian mixture model for across-site heterogeneities in the amino-acid replace-
ment process. Molecular biology and evolution 21(6), 1095–1109 (2004)

13. Nguyen, T.H., Ranwez, V., Berry, V., Scornavacca, C.: Support measures to estimate the reliability of evolu-
tionary events predicted by reconciliation methods (2013). Accepted at PLOS ONE

14. Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and
areas. Syst. Biol. 43, 58–77 (1994)

15. Rasmussen, M.D., Kellis, M.: A Bayesian Approach for Fast and Accurate Gene Tree Recon-
struction. Molecular Biology and Evolution 28(1), 273–290 (2010). URL papers://c574a988-
041f-48f0-a387-1407660e65a3/Paper/p3804 papers2://publication/uuid/F8EE29D6-AD8B-4D48-
B909-D42B119141B0 papers2://publication/uuid/8708F7F2-A362-40D9-91D8-D5E6D829AAD0
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20660489&retmode=ref&cmd=prlinks
papers2://publication/doi/10.1093/molbev/msq189

16. Scornavacca, C., Paprotny, W., Berry, V., Ranwez, V.: Representing a set of reconciliations in a compact way.
Journal of Bioinformatics and Computational Biology 11 (2013)

17. Storm, C.E.V., Sonnhammer, E.L.L.: Automated ortholog inference from phylogenetic trees and calculation of
orthology reliability. Bioinformatics 18(1), 92–99 (2002)

18. Szöllősi, G.J., Rosikiewicz, W., Boussau, B., Tannier, E., Daubin, V.: Efficient exploration of the space of
reconciled gene trees. Systematic Biology 62(6), 901–912 (2013)

19. To, T.H., Ranwez, V., Jacox, E., Scornavacca, C.: Better event supports using all suboptimal reconciliations
(In prep)

20. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers.
IEEE/ACM TCBB 8(2), 517–535 (2011). DOI http://doi.ieeecomputersociety.org/10.1109/TCBB.2010.14

A — A reconciliation counting example

We illustrate Theorem 1 by counting the number of reconciliations between the trees shown in Figure 1. It is trivial
to calculate R(l, z) for l ∈ L(G), so we do not illustrate this. In Figure 9(a), we calculate R(v, z) for all elements
z of S′; when this number is non-zero, it is written in the tree at z next to a symbol indicating the type of event
that v is mapped to — in accordance with convention we use circles, squares and triangles for S, D and T events
respectively. For example, R(v, x) = 1, and if v is mapped to x it must be an S event. Because vl and vr are both
leaves, R(v, z) is at most 1 for any z. In Figure 9(b), we do likewise with R(w, z) for all elements z of S′.

In Figure 9(c), we calculate R(u, z) for all elements z of S′ in the same fashion. Here, if u can be mapped as
two different events in the same branch, we separate the cases (for clarity) even though they are added together in

Exploring the space of gene/species reconciliations with transfers 23

1 1

1 1
1
1

x

y

A B C
(a) All possible placements for vertex
v. Each placement has 1 possibility

1 1
1

1

1
x

y

A B C
(b) All possible placements for vertex
w. Each placement has 1 possibility

212
1

8 88
8
30

2

x

y

A B C
(c) All possible placements for vertex
u. The number of possibilities is indi-
cated

Fig. 9 Counting the number of reconciliations between the trees in Figure 1.

R(u, z). For example, suppose z = e(y). Here, if u is mapped to z as a T event, then the branch containing v must
be the transferred branch. From Figure 9(a), there are 2 possible images for v that are allowed by z but not below
it, and for each of these images (called, say, z′) R(v, z′) = 1. Likewise, from Figure 9(b) there are 4 possible images
for w that are below z, and each of these images again have R(w, z′) = 1. Thus there are 8 possibilities for u to be
mapped to z as a T event. It can be determined likewise that there are also 8 possibilities for u to be mapped to z
as a D event, and so R(u, z) = 16.

The total number of reconciliations is found by summing all the possibilities in all branches of Figure 9(c),
which gives a total of 70 reconciliations.

B — Reconciliation definitions

In this section, we reproduce (for completeness) the formal definitions of a DTL reconciliation and a canonical
reconciliation in [16].

Definition 15 (Definition 1, [16]) Consider a gene tree G, a dated species tree S such that L(G) ⊆ L(S), and
its subdivision S′. Let α be a function that maps each node u of G onto an ordered sequence of nodes of S′, denoted
α(u) = (α1(u), α2(u), . . . , α`(u)). The function α is said to be a reconciliation between G and S′ if and only if
exactly one of the following events occurs for each couple of nodes u of G and αi(u) of S′ (denoting αi(u) by x′

below):

a) if x′ is the last node of α(u), one of the cases below is true:
1. u ∈ L(G), x′ ∈ L(S′) and s(x′) = s(u); (C event)
2. {α1(ul), α1(ur)} = {x′l, x

′
r}; (S event)

3. α1(ul) = x′ and α1(ur) = x′; (D event)
4. α1(ul) = x′, and α1(ur) is any node other than x′ having height h(x′)
or α1(ur) = x′, and α1(ul) is any node other than x′ having height h(x′); (T event)

b) otherwise, one of the cases below is true:
5. x′ is an artificial node and αi+1(u) is its only child; (∅ event)
6. x′ is not artificial and αi+1(u) ∈ {x′l, x

′
r}; (SL event)

7. αi+1(u) is any node other than x′ having height h(x′). (TL event)

Definition 16 (Definition 2, [16]) Consider a gene tree G, a dated species tree S such that L(G) ⊆ L(S), and
its subdivision S′. A reconciliation α between G and S′ is said to be canonical if and only if:

1. for each node u of G and index 1 ≤ i ≤ |α(u)|, the node αi(u) satisfies one of the following conditions:
(a) αi(u) is a C/S/∅/SL event;
(b) αi(u) is a D/T event such that at least one of α1(u) and α1(ur) is not a ∅ event;
(c) αi(u) is a TL event such that αi(u) is a non-artificial node of S′ or αi+1(u) is not a ∅ event.

2. α1(r(G)) is not a ∅ event.

24 Yao-ban Chan et al.

C — Distance measure induced by UP and DOWN operators

Definition 17 Let α and β be two reconciliations. We define dv(α, β) to be the smallest number of UP and
DOWN operators needed to transform α into β (combined with any number of PATH and OUT operators).

It is possible that dv(α, β) may in fact be less than the number of UP and DOWN operators in the overall
shortest sequence of operators. We note that it is certainly a lower bound for this number.

Definition 18 Let α and β be two reconciliations. The midpoint mapping γ̂ of α and β is a mapping V (G) →
V (S) ∪ E(S′) where, for all u ∈ V (G), γ̂(u) is above both ᾱ(u) and β̄(u), and if u is an internal vertex, γ̂(u)
allows γ̂(ul) and γ̂(ur). Furthermore, there exists no reconciliation γ′ with a vertex mapping γ̄′ which satisfies
these properties and where γ̄′(u) ≤ γ̂(u) for all u ∈ V (G) and the inequality is strict in at least one case.

By definition, the midpoint mapping is a valid vertex mapping, so there exists at least one reconciliation with
vertex mapping equal to γ̂.

Definition 19 Let α and β be two reconciliations. The midpoint γ of α and β is a reconciliation with vertex
mapping γ̄ = γ̂. This specifies γ`(u) for all u ∈ V (G). For each internal vertex u of G, we then choose:

– if γ̂(u) ∈ V (S), then γ1(ul) = (γ`(u))l and γ1(ur) = (γ`(u))r;
– if γ̂(u) ∈ E(S′), then γ1(ul) = γ1(ur) = γ`(u) (a D event),

and take γ1(r(G)) = γ`(r(G)). We take the remaining values of γ(u) as specified in the proof of Lemma 4.

Theorem 7 Let α and β be two reconciliations with midpoint γ. Let dvu(α, γ) be the number of edges and non-
artificial vertices that lie between ᾱ(u) and γ̄(u). Then

dv(α, β) = dv(α, γ) + dv(γ, β) =
∑

u∈V (G)

dvu(α, γ) +
∑

u∈V (G)

dvu(β, γ).

Proof. The reasoning used in the first three paragraphs of the proof of Theorem 3 can be used again here, replacing
“reconciliation” by “vertex mapping”, to show that for any vertex u, in any sequence of reconciliations transforming
α to β, at least one must have a vertex mapping which maps u to γ̄(u).

Because an UPu operator will only move the vertex mapping of u to its nearest non-artificial ancestor, it is
clear that we require at least dvu(α, γ) such operators to reach a reconciliation with a vertex mapping which maps
u to γ̄(u). Likewise, we require at least dvu(β, γ) DOWNu operators to go from this reconciliation to one with a
vertex mapping which maps u to β̄(u). Therefore we have

dv(α, β) ≥
∑

u∈V (G)

dvu(α, γ) +
∑

u∈V (G)

dvu(β, γ).

It remains to show that there is a valid sequence of operators with this many UP and DOWN operators which
transforms α to β. Consider the sequence which starts from α and applies UP operators to each internal vertex u
of G in pre-order until it is mapped (via the vertex mapping) to γ̄(u). This is always possible because γ̄ is a valid
vertex mapping and so γ̄(u) allows γ̄(ul) and γ̄(ur). By Corollary 2, we can apply only PATH and OUT operators
to transform the resulting reconciliation into γ. This requires exactly

∑
u∈V (G) d

v
u(α, γ) UP operators.

Now we can apply a similar procedure to γ, applying DOWN operators in post-order (choosing DOWN l

and DOWNr appropriately) until each vertex u is mapped (via the vertex mapping) to β̄(u). As before, this is
always possible, and we then apply PATH and OUT operators to transform the resulting reconciliation into β. This
requires exactly

∑
u∈V (G) d

v
u(β, γ) DOWN operators, and so the sequence we describe is the required sequence.

