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! DNS coupled with Lagrangian Particle Tracking in a HIT box are performed.
! Statistically steady concentration fluctuations are forced by a mean gradient.
! Substrate uptake rate distributions are deduced using a Monod model.
! The metabolic reaction rates at equilibrium are set by the average concentration.
! Reduced growth rate and overflow metabolism are related to imperfect micro-mixing.
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a b s t r a c t

The consequences of substrate concentration heterogeneities at the cell level, on the behavior of

microbial populations have been identified some years ago. However, subgrid effects are rarely

considered in bioreactor modelling. In this paper, this central issue is investigated with Direct Numerical

Simulations (DNS) coupled with Lagrangian particle tracking and scalar field calculations in the case of

statistically steady homogeneous and isotropic turbulence. From these calculations, the exact distribu-

tion of substrate uptake rates of a microorganism population is calculated and compared, favorably, to

analytical solutions. A metabolic model considering anabolism, oxidative catabolism and dissimilation is

invoked to quantify the consequences in terms of overall reaction rates at the population scale. It is

shown that imperfect mixing reduces the growth rate and increases the by-product formation while

leaving the total uptake rate unchanged. This work provides a rational explanation, based on physical

consideration, for the loss in biomass productivity and the increase of by-product formation in

imperfectly mixed bioreactors.

1. Introduction

The existence of macromixing issues in industrial fermentors

has been identified for years (Hansford, 1966; Bylund et al., 1998;

Oosterhuis and Kossen, 1984; Enfors et al., 2001). These are related

to the competition between momentum transfer, gas–liquid mass

transfer and biological reaction at the reactor scale. The conse-

quences are the formation of concentration gradients at the

reactor scale and the cell exposure to concentration fluctuations.

Numerous experimental works have also been devoted to the

consequences of small scale mixing problems in lab-scale bio-

reactors (Amanullah et al., 2001; Hewitt et al., 2000; Dunlop and

Ye, 1990). They revealed that cell populations are sensitive to the

mixing rate in a well macromixed bioreactor (Garcia et al., 2009).

Following the classification method proposed by Bourne (2003)

these experiments refer to mesomixing. For many years identify-

ing the effects of possible mixing issues in bioreactors has been

extremely tedious for many practical reasons. The concentration

field experienced by the cells was, from an experimental point of

view, out-of-reach since the biological information was obtained

at the population scale. Owing to recent microbiological techni-

ques (such as flow cytometry) it is now possible to collect

biological data at the cell scale and to use the cell as a reporter
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that records and reveals the local environment encountered by the

cell (Delvigne et al., 2009). Yet it is not easy to distinguish between

the natural heterogeneity and that induced by a heterogeneous

environment. The fact that the biological population state actually

depends on the history of the cultivation is also a complicating

factor. In particular, one key point in biological process is the mass

transfer from the liquid to the biological phase, called assimilation

or uptake. From a biological point of view, assimilation has been

studied by Koch and Wang (1982), Ferenci (1996), Natarajan and

Srienc (1999), Natarajan and Srienc (2000), Lin et al. (2001),

Chassagnole et al. (2002), among others. One important conclu-

sion concerns the ability of cells to modify their assimilation

capacity in response to the concentration fluctuations they

undergo. In practice, it is extremely difficult to draw out conclu-

sions and to perform quantitative comparison between various

biological experiments because the actual degree of mixing at the

cell scale is generally not known. Anyway, the fact that a hetero-

geneous concentration field has an influence on the cell popula-

tion is now clear (KaSZ et al., 2014). Garcia et al. (2009) showed

that GFP (Green Fluorescent Protein) reporting strains sensitive to

oxygen limitation were illuminated whilst cultivated in an agitated

bioreactor with the DO (Dissolved Oxygen) maintained above 20%

of the saturation concentration (far above the affinity constant for

oxygen). It confirms that the mean concentration measured by a

probe (macroscopically) may not reflect the actual concentration

field experienced by the cells.

As an alternative to the experimental studies, numerical

simulation has a certain number of potential advantages. In

particular, Direct Numerical Simulation (DNS) allows the calcula-

tion of the instantaneous local velocity and scalar concentration

field dynamics without making reference to a turbulence model.

The Lagrangian tracking of particles results in the calculation of

individual trajectories and histories which can be recorded (Lapin

et al., 2004, 2006; Delafosse et al., 2009). Thus, the fate of each

particle is known. Another major interest is to allow the calcula-

tion in well defined, steady and repeatable conditions. Although

this technique is relatively popular in the fluid mechanics com-

munity (Boivin et al., 1998; Yeung, 1998; Taulbee et al., 1999; Reade

and Collins, 2000) very little work has been done in the field of

biochemical engineering. Coupled to the resolution of a concen-

tration field, the Lagrangian tracking of particles was used to study

the interaction between turbulence and chemotaxis (Taylor and

Stocker, 2012).

The objective of the present work is to use this technique along

with a simplified metabolic model to investigate the consequences

of concentration heterogeneities below the resolved scale on the

overall reaction rates exhibited by a population of cells. The

resolved scale corresponds to the spatial resolution of the hydro-

dynamic model used to compute the velocity and concentration

fields inside the bioreactor. The uptake rate distributions are

computed numerically from the concentration distribution and

the prescription of a substrate assimilation law. Numerical results

are successfully validated against analytical solutions. A metabolic

model is invoked for each specific uptake rate and a volume

averaging is used to establish the overall reaction rates. This work

can be regarded either as an attempt to explain what happens in a

heterogeneous bioreactor or as a first step in the formulation of a

closure model for the biological reaction. All calculations are

performed considering that all cells are identical and that assim-

ilation is controlled by an enzymatic reaction so that the uptake

rate is modeled by a Michaelis–Menten law:

qS ¼ qS;max

S

kSþS
ð1Þ

where qS;max is the maximum specific uptake rate (in molS g
&1
X

h&1), S is the substrate concentration at the cell position and kS is

the affinity for the substrate of an individual microorganism. It is

different from an apparent affinity constant KS which depends

on macroscopic properties as explained in a previous paper

(Linkès et al., 2012). The reduced variable kS=〈S〉 is used to perform

parametric studies that cover the whole range of possible situa-

tions: from nutrient excess to severe limitation.

The first part of the paper is dedicated to a brief analysis of

mixing and biological reaction times at various scales. Then a

description of the DNS tool along with the calculation of the

uptake rate distribution are proposed. The second part presents

the main features of a simplified metabolic model including

overflow metabolism as well as the analytical development lead-

ing to the calculation of the overall reaction rates. It will be shown

that the overall substrate consumption rate is hardly affected by

the degree of homogeneity whereas both the specific growth rate

and the by-product formation are highly dependent on the actual

substrate concentration distribution in the volume of fluid

considered.

2. Mixing and reaction time scales in a bioreactor

2.1. Biological reaction time scales

In order to estimate the biological reaction time scales, we

consider a simple unstructured kinetic model. The reaction rates

for growth and uptake are given by the following equations:

rX ¼ dX

dt
¼ μmax

S

KSþS
X; ð2Þ

rS ¼
dS

dt
¼ &qmax

S

KSþS
X: ð3Þ

where μmax is the maximum specific growth rate and X is the cell

concentration. For each reaction, a time scale, τC , can be defined as

dC

dt
¼ C

τC
ð4Þ

which further leads to the following expressions of the bioreaction

time scale for growth and substrate uptake respectively:

τX ¼ KSþS

μmaxS
; ð5Þ

τS ¼
KSþS

μmaxX
' S

μmaxX
: ð6Þ

It is clear from there that the two characteristic times obey

different rules: the time scale for growth is independent of the

cell density whereas the time scale for substrate consumption is

inversely proportional to the cell density. The time scale for

growth is only dependent on the strain considered. Most industrial

strains grow at a specific rate between 0.1 and 1 h&1. The time

scale associated (1–10 h) is systematically longer than all other

characteristic times in a bioreactor (macromixing or gas–liquid

mass transfer). Using this time scale to analyze mixing issues in

bioreactor would lead to the conclusion that there can be no

competition between mixing and biological reaction at any scale.

This is in contradiction with many experimental observations

reported above. In fact, the pertinent time scale when dealing

with a competition between mixing and reaction in a bioreactor is

the time scale related to substrate consumption. This characteristic

time depends on the amount of cells that actually consume the

substrate. It gets smaller as the number of cell increases, which

clearly makes sense. Increasing the cell density pushes the

biological reactor towards a more severe competition between

mixing and substrate uptake. Considering typical value for the

maximum specific uptake rate ð2 gS g& 1
X

h&1Þ, a cell density



between 10 g L&1 and 50 g L&1 and a residual concentration

between 10 mg L&1 and 50 mg L&1 leads to characteristic assim-

ilation times ranging from 0.1 to 7.5 s. These values will further be

used and compared with the mixing time at various scales.

2.2. Mixing time scales

The characteristic times scales of mixing have been identified

and discussed extensively by Baldyga and Bourne (2003). The time

and length scales related to macro, meso and micromixing are

summarized in Table 1. As an illustration, the calculations of

mixing times in a 3L and 20 m3 reactor from the data published

by Larsson et al. (1996), Xu et al. (1999) and Vràbel et al. (2001)

were performed. In Table 1, mixing times are calculated using a

value of 1.3 kWm&3 for ϵV which corresponds to a typical value in

industrial bioreactors. Since mixing time depends on the turbulent

kinetic energy dissipation rate which is not spatially homogeneous

in a large reactor, all mixing times in the industrial bioreactor were

estimated using two typical values: the volume average value ϵV
and the value near the injection point often located in the upper

part of the reactor below the surface (5% of ϵV) (Delafosse, 2008).
Baldyga and Bourne (2003) explained that mixing competes

with the reaction as soon as the mixing time is greater than a

tenth of the reaction time. From the comparison of mixing times at

various scale and biological reaction time (for substrate uptake)

one can conclude that

! Whatever the conditions tE and tD are actually smaller than a

tenth of the smallest assimilation time (0.1 s). Mixing at the

microscale (below the Kolmogorov scale) is not a limiting step

in bioprocesses. (Note that this information will further be used

to compute the uptake rate at the particle from the concentra-

tion stored at the node of the DNS grid).
! There is a possible interaction between macromixing (13 s) and

substrate assimilation in an industrial bioreactor. This interac-

tion results in the formation of large scale gradients in the

bioreactor as reported by Larsson et al. (1996).
! The time scale of mesomixing in an industrial bioreactor is

above 0.2 s which is similar to the characteristic time for

substrate uptake [0.1–7.5 s]. There is also a real possibility for

a mesomixing effect. Moreover, in real systems, the high

viscosity of the sirup poured into the reactor probably leads

to even higher mixing times. At the labscale, mesomixing is not

likely to compete with substrate uptake, unless the experi-

mental device is specifically designed for that as in the work of

Amanullah et al. (2001).

These theoretical considerations along with the experimental

evidences reported by various authors cited above lead to a

Table 1

Time (in seconds) and length scales of mixing in two bioreactors (lab-scale 3L, industrial scale 20 m3) equipped with a Rushton turbine. Average power input

ϵV ¼ 1:3 kW m&3 in both cases. tC, macromixing time; tS, mesomixing time; tE, micromixing time due to engulfment; tD, micromixing time due to diffusion; Λ, Taylor macro

scale; ηk, Kolmogorov scale; ηB , Batchelor scale.

Mechanisms Time scale Length scale Labscale Industrial

Macromixing
tC ¼

V

1:8 NQP
N D3

V
1
3 0.8 13

Mesomixing
tS ¼ 2

Λ2

ϵ

! "1=3

Λ¼w; Λ¼ 1
2

k3=2

ϵ

0.03 0.2a/0.55b

Micromixing (engulfment)
tE ¼ 17

ν

ϵ

# $1=2

ηK ¼ ν3

ϵ

! "1=4 0.015 0.015a/0.07b

Micromixing (diffusion)
tD ¼ 2

ν

ϵ

# $1=2
arcsinhð0:05 ScÞ

ηB ¼
ν D2

m

ϵ

!1=4 0.008 0.008a/0.026b

a Based on the average energy dissipation rate.
b Based on a twentieth of the average energy dissipation rate (far from the impeller).

Fig. 1. Multiscale modelling methodology: integration of small scale concentration heterogeneities in the calculation of the biological reaction rates.



modelling issue which is presented hereafter and constitutes the

core of the present paper. When mixing competes with the

reaction at a given time scale, a concentration distribution occurs

below the corresponding length scale. Typically, if reaction com-

petes with macromixing, the whole reactor can no longer be

considered as homogeneous and a compartimentation into smal-

ler zones is necessary. Similarly, if mesomixing competes with

assimilation, the spatial resolution of the hydrodynamic model

should be increased so that it falls below the integral length scale

of concentration fluctuations, Λ. In usual Computational Fluid

Dynamic simulations, using the Reynolds Averaged Navier–Stokes

equations, the grid size is much larger than Λ and it is necessary to

model the effect of subgrid heterogeneity in order to provide a

closure model for the (biological) reaction term. This multi-scale

modelling methodology is illustrated in Fig. 1.

In the field of chemical reactor engineering, the terminology

micro-mixing is used to depict this situation where the character-

istic time for mixing is similar or lower than the characteristic

reaction time. In this case, the reaction rate is influenced by the

dynamics of the mixing process itself. If the relationship between

the reaction rate and the concentration is not linear, the actual

average reaction rate differs from the reaction rate based on the

average concentration. The apparent reaction rate 〈RðSÞ〉 is conse-

quently influenced by the dynamics of mixing:

Rð〈S〉Þa 〈RðSÞ〉 ð7Þ

where 〈:〉 represents a spatial averaging over a volume of control

on which mass balances are written. This volume of control is set

by the hydrodynamic model used to describe the fluid motion

inside the reactor. Therefore, it depends on the spatial resolution

of the hydrodynamic model, which can either be the whole

reactor, a portion of the reactor (compartment model approach)

or a mesh cell (Computational Fluid Dynamics approach). A basic

assumption is that concentrations are homogeneous within each

volume of control. This implies that the reaction rates are

calculated from the averaged concentrations. The present work

addresses the following question: what are the consequences of

concentration heterogeneities below the resolved scale on the

calculation of the biological reaction rates?

3. Modelling the uptake rate distribution

3.1. DNS coupled with Lagrangian tracking of biological phase

The configuration is a homogeneous isotropic turbulent flow.

All the fluctuations of the carrier fluid phase and substrate are

solved by Direct Numerical Simulation (DNS). This technique

ensures that all scales of the turbulence and of the substrate

concentration are fully resolved. The computational domain is a

3D box, of length L, with periodic boundary conditions for the fluid

velocity and pressure. Statistically turbulent steady flow is

obtained with a stochastic spectral forcing proposed by Eswaran

and Pope (1988).

The Navier–Stokes equations are coupled with an equation for

substrate concentration. The substrate is treated as a passive scalar

and the modification of the substrate concentration field by

the biological phase is not taken into account. The fluctuations

of substrate concentration are produced by an imposed mean

gradient of concentration, ζ. Thus the dissipation of substrate

concentration by diffusional process is balanced by the production

due to the imposed mean gradient. Pandya and Mashayek (2003)

and Couzinet et al. (2008) used such an approach for studying

non-isothermal particle-laden turbulent flows.

The biological phase is assumed to be composed of spherical

microorganisms of diameter of about 1 μm. Then the Stokes

number of the suspension is very small so that the microorgan-

isms can be tracked as fluid elements. So the individual trajectories

of a large number of microorganisms (200,000) are easily com-

puted from the fluid velocities. For each microorganism n, the

assimilation rate, ΦðSÞn, is given by the Monod law (1) using the

local concentration of the substrate SðnÞ at the exact particle

location. This concentration is calculated using an accurate inter-

polation scheme from the Eulerian grid where the substrate

concentration and velocity are known.

Such a configuration allows to study the interaction of a

biological population with a statistically steady heterogeneous

substrate concentration field. The state of each microorganism is

only defined by the value of kS and the maximum specific uptake

rate, qS;max, which are assumed constants. Then there is no

adaptation of kS and/or qS;max to the fluctuations of concentration.

For the present study, several DNS coupled with the Lagrangian

tracking of microorganisms have been performed. We have con-

sidered two Reynolds number ReL¼68 and ReL¼110, two reference

concentrations: S0 ¼ 0:15 kgS m
&3 and 1 kgS m

&3, two imposed

gradient: ζ ¼ 1 kgS m
&4 and 5 kgS m

&4, and three affinity con-

stants kS ¼ 10&3 kgS m
&3, 10&1 kgS m

&3 and 102 kgS m
&3.

Beyond these practical values it must be noticed that the relevant

parameters are the ratio kS=〈S〉 and the reference concentration S0.

The local turbulent energy dissipation rates are ϵ¼ 0:0163 m2 s&3

and ϵ¼ 0:15 m2 s&3 for ReL¼68 and ReL¼110 respectively. Thus

the local energy dissipation rates considered here correspond

to those observed far from the impeller in a stirred tank

where the mean specific power input are ϵV ¼ 0:26 kW m&3 and

ϵV ¼ 3 kW m&3.

3.2. PDF of substrate concentration seen by microorganisms

The goal of this section is to derive a theoretical distribution of

the substrate concentration. In the frame of the assumptions

described in previous section, the substrate concentration is

decomposed as

S¼ S0þsgþs0 ð8Þ

with sg the contribution from the imposed gradient, S0 the

reference concentration and s0 the fluctuating concentration.

Assuming that the fluctuating part follows a Gaussian distribution

and that the microorganisms are uniformly randomly distributed

in the domain, the distributions of each variable of (8) write

PðsÞ ¼ δðs&S0Þ; ð9Þ

Pðs0Þ ¼ 1
ffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffi

〈s02〉
p exp &1

2

s02

〈s02〉

! "

; ð10Þ

PðsgÞ ¼
1
ζL

if &ζL
2rsgrζL

2

0 otherwise

(

: ð11Þ

These three contributions are shown in Fig. 2. We emphasize that

the three distributions are independent because, by construction,

s0 and sg are not correlated. The distribution of the substrate

concentration is a combination of the three individual distribu-

tions. More specifically, it is defined as the convolution of the three

distributions and yields to PSðSÞ ¼ PðsÞnPðs0ÞnPðsgÞ. From (9) to (11)

and through the convolution, the substrate concentration distri-

bution writes

PSðSÞ ¼
1

2ζL
erf

S&S0þζL=2
ffiffiffiffiffiffiffiffiffiffiffi

2〈s02〉
p

!"

&erf
S&S0&ζL=2

ffiffiffiffiffiffiffiffiffiffiffi

2〈s02〉
p

!#

ð12Þ

where erfðxÞ is the error function defined by

erfðxÞ ¼ 2
ffiffiffiffi

π
p

Z x

0
et

2=2 dt: ð13Þ



The distribution functions PS are shown in Fig. 3 for two concen-

tration gradients. Note that the scale of the horizontal axis is

different for the two panels and that the minimum value is not

zero. In both cases, the reference concentration of substrate

S0 ¼ 1:0 kgS m
&3. It can be observed that, as expected, the width

of the concentration distribution increases with the mean gradi-

ent. Even if some small differences are present we observe that the

theoretical modelling of the substrate concentration distribution is

in correct agreement with the DNS results for two mean concen-

tration gradients.

We can conclude that the analytical distribution for the total

substrate concentration presented in Eq. (12) is a general form that

depends on the imposed gradient, the length of the domain, the

mean imposed concentration and the substrate concentration

variance. The latter is dependent on the Reynolds number so that

the effect of mixing is implicitly included in the distribution.

3.3. Derivation of the mass flux distribution

From the distribution of substrate concentration it is now

possible to derive the distribution of the uptake rate q̂ for the

biological suspension. As for the DNS we assume that the Monod

law (1) is valid. Then the normalized uptake rate q̂ writes

q̂ ¼ qS
qS;max

¼ S

SþkS
: ð14Þ

We emphasize that the following methodology is applicable to

another assimilation model. As the mass flux directly depends on

the substrate concentration a theoretical solution exists for the

determination of the mass flux distribution. Assuming that the

assimilation rate is given in terms of substrate concentration by a

function R(S), the distribution of the mass flux writes

Pq̂ ðq̂Þ ¼
1

R0½R&1ðSÞ+
PSðR&1ðSÞÞ: ð15Þ

where on the right-hand-side the distribution function PS is given

by (12). Also in (15), R0 is the first derivative of the function R. The

inverse function R&1 is thus given by R&1ðxÞ ¼ kSx=ð1&xÞ if xa1.

By definition of Monod assimilation model, the curve x¼1 is the

asymptote of q̂ so that the previous inverse function is defined for

all q̂. Then in the case of Monod assimilation law, the distribution

function for the non-dimensionalized mass flux becomes

Pq̂ ðq̂Þ ¼
kS

ð1& q̂Þ2
PS

kSq̂

1& q̂

! "

: ð16Þ

For model assessment we first compare our theoretical deriva-

tion with DNS results in cases where the substrate concentration

distribution obeys a Gaussian distribution. In other words, the

Fig. 2. Theoretical decomposition of the substrate concentration as a reference

concentration (top), a gradient contribution (middle) and a Gaussian fluctuation

(bottom).
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gradient contribution is not taken into account in the uptake rate

calculation. Then, and according to previous considerations, the

following equation is found for the mass flux distribution:

Pq̂ ðq̂Þ ¼
kS

ð1& q̂Þ2
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π〈s02〉
p , exp

k2S
2〈s02〉

q̂

1& q̂
&S0
kS

! "2
" #

: ð17Þ

The results are presented in Fig. 4 for the case with

S0 ¼ 0:15 kgS m
&3 and for several values of the affinity constant.

Here again and for sake of readability the scale of the horizontal

axis is different for each graph. The calculated distribution and

the analytical evolution for the uptake rate distribution are in

very good accordance. The obtained distributions seem nearly

Gaussian. Nevertheless asymmetric evolutions are observed at

both extremities of the distribution. These graphs illustrates the

fact that, in the same environment, the actual mass flux distribu-

tion depends on the affinity constant of the cells. The flux is almost

maximum for all cells if kS5S0 (top panel), around a thousandth

of this maximum if kSbS0 (bottom panel) and the most significant

differences among the population will be obtained in the case

kS ' S0 (middle panel).

Then, we consider the general case where the substrate

gradient affects the mass flux distribution. The corresponding

substrate concentration distribution PS(S) is given by (12). Using

Monod assimilation model, the mass flux distribution is now given

by

Pq̂ ðq̂Þ ¼
ks

ð1& q̂Þ2
1

2ζL

, erf

kS q̂
1& q̂

&S0þζL=2
ffiffiffiffiffiffiffiffiffiffiffi

2〈s02〉
p

0

@

1

A

2

4 &erf

kS q̂
1& q̂

&S0&ζL=2
ffiffiffiffiffiffiffiffiffiffiffi

2〈s02〉
p

0

@

1

A

3

5: ð18Þ

The analytical and calculated distributions for three different

affinity constants are shown in Fig. 5. In all cases the two
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distributions are in a close agreement. The mass flux distribution

on the top graph is very narrow which indicates that the hetero-

geneity of the concentration field has almost no consequences on

the mass flux distribution as soon as S0bkS. This corresponds to a

first asymptotic behavior: for any particle, q̂C1 when S=kS goes to

zero. In this case, which can therefore be referred as non-limiting

conditions, the uptake capacity of all cells is saturated. On the

bottom graph, it is observed that the mass flux distribution has the

same shape as the substrate concentration distribution (see Fig. 3).

This is due to the linear relationship between the flux and the

concentration for S5kS. This constitutes another asymptotic

behavior: q̂CS=kS is verified for large kS=S, i.e, when the substrate

concentration is limiting. Thus when the relationship between the

uptake rate and the concentration is linear (at high and low S=kS).

The mass flux distribution is easily obtained from the concentra-

tion distribution. In the midrange, the flux distribution is not easily

predictable because the different parameters (substrate concen-

tration variance, affinity constant, mean substrate concentration,

and gradient contribution) directly affect the mass flux

distribution. If the mean concentration and the affinity constant

are of the same order of magnitude, the symmetry of the

concentration distribution is lost when one moves to the mass

flux distribution. The mass flux distribution does not resemble the

substrate concentration distribution and it is then essential to take

into account the concentration gradient. It is noteworthy that

many biological processes are operated under a substrate limita-

tion, meaning that S=kSC1.

The effect of the magnitude of the gradient on the mass flux

distribution is presented in Figs. 6 and 7. The mean concentration

is S0 ¼ 1 kgS m
&3 resulting in larger ratios S=kS than in the

situation depicted in Fig. 5, the mass flux distributions are

consequently much narrower. As expected, increasing the magni-

tude of the gradient results in wider mass flux distributions. This is

true for all situations but once again, the most interesting case is

presented in the middle graph. The parameters are such that the

mean concentration is ten times larger than the affinity constant.

So the average mass flux based on the mean concentration would

be around 10/11 of its maximum value. Note that all distributions
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are effectively centered on the mean value that would be calcu-

lated from the mean concentration. Yet, the width of the mass flux

distributions is larger in Fig. 7 where the gradient is five time that

in Fig. 6. All these results indicate that the consequences of

substrate heterogeneities are effective on the mass flux distribu-

tion as soon as one enters the range S=kSo10 and that they are

most significant in the case S=kS ' 1. Moreover increasing the

magnitude of the concentration gradient increases the heteroge-

neity of the substrate concentration fields which in turn results in

wider mass flux distributions.

Through an analytical approach, the local concentration

heterogeneities seen by the individual microorganisms of a given

population (characterized by the affinity constant kS) can be

integrated at the population scale in order to produce a mass flux

distribution. This result is obtained when an assimilation law is

prescribed at the microorganism scale and when assimilation itself

does not influence the substrate concentration field. Now the

consequences in terms of microbial productions can be examined

through the consideration of a basic metabolic model.

4. Metabolic model

4.1. Metabolic model

The metabolic model is adapted from that published by Xu

et al. (1999) for Escherichia coli in batch or fed-batch cultivations

under fully aerobic conditions. It is based on a limited number of

key internal processes (or reactions) as well as mass and energy

balances:

! Anabolism

SþYSEATP⟶
qana

YSXX ð19Þ

! Oxidative catabolism

SþYSOO2⟶
qoxy

Yo
SEATP ð20Þ

! Fermentary catabolism

S⟶
qferm

YSPPþY f
SEATP ð21Þ

! Dissimilation

SþATP⟶
qover

YSBP ð22Þ

! Maintenance

ATP⟶
qmain

0 ð23Þ

where qα are the specific rates of intracellular reactions in

molS g
&1
X h&1, and Yij are the stoichiometric coefficients in

molj mol&1
i . The upper script stands for oxidative or fermentary

catabolism.

In the case of facultative aerobes, energy can be obtained from

an oxidative pathway or by fermentation when oxygen is absent or

in default. The two metabolic pathways do not have the same

energetic yield and fermentary catabolism leads to the formation

of a product P. It is assumed that overflow metabolism leads to the

excretion of another by-product named BP (for BioPolymer). The

production of new cellular material (anabolism), the withdrawal of

carbon in excess (dissimilation or overflow metabolism) and

maintenance are energy consuming.

The specific reaction rates, ri, expressed in ½gi g&1
X h&1+, are

given by the following set of equations:

rX ¼ qana:YSX :MX ð24Þ

rO2 ¼ &qoxy:YSO:MO2 ð25Þ

rS ¼ &ðqanaþqoxyþqfermþqoverÞ:MS ð26Þ

rP ¼ qferm:YSP :MP ð27Þ

rBP ¼ qover :YSBP :MBP ð28Þ

where Mi are the molar masses of the different species. Table 2

gathers the different parameters of the metabolic model.

4.2. Calculation of the metabolic fluxes – hypothesis

In order to get the production or consumption term in the

conservation equation of a given species, the intracellular rates

have to be calculated for each value of the uptake rate considering

the actual distribution experienced by the microbial population.

Before that, some simplification are made.

1. No accumulation: assuming that neither energy nor mass

accumulate inside the microorganisms the following conserva-

tion equation for energy (namely ATP) over the cell can be

written as

qoxyY
o
SEþqfermY

f
SE&qanaYSE&qover&qmain ¼ 0: ð29Þ

A conservation equation for the substrate can be obtained by

equating the total specific molar flux through the cell mem-

brane qS ½molS:g
&1
X :h&1+ to the sum of all intracellular substrate

consumption rates:

qS ¼ qanaþqoxyþqoverþqferm: ð30Þ

2. Preferential catabolism: the bacteria are supposed to favor the

production of energy through the oxidative pathway and they

only make use of the fermentation pathway when the amount

of energy produced by oxidation does not fulfill the energetic

demand.

3. Overflow metabolism: the excretion of carbon in excess is

triggered when the rate of substrate assimilation is greater

than the rate of consumption due to anabolism and catabolism.

The amount of energy consumed by the dissimilation is

supposed to be negligible which results in the elimination of

qover in (29).

4. Maintenance: the energetic cost of maintenance is supposed to

be negligible which also leads to a simplification of (29).

5. Oxygen consumption rate: in the metabolic model, the oxygen

consumption rate is a function of the local dissolved oxygen

concentration in the liquid phase. In the following, it is

Table 2

Parameter values of the metabolic model of Escherichia coli.

Name Symbol Value Unit

Anabolism (ATP) YSE 12.05 ½molATP mol
&1
S +

Anabolism (biomass) YXSMX 136.6 ½gX mol&1
S +

Oxidative catabolism (oxygen) YSO 6.0 ½molO2 mol&1
S +

Oxidative catabolism (ATP) YSE
o 20.0 ½molATP mol

&1
S +

Fermentary catabolism (product) YSP 6.0 ½molP mol&1
S +

Fermentary catabolism (ATP) YSE
f 3.0 ½molATP mol&1

S +
Dissimilation (biopolymer) YSBP 1.0 ½molBP mol

&1
S +



assumed that the dissolved oxygen concentration is homoge-

neous down to the particle scale and non-limiting, such that

only oxidative catabolism is active. This simplification allows a

direct calculation of all metabolic fluxes, since the mass balance

for the substrate can be simplified as follows:

qS ¼ qanaþqoxyþqover ; ð31Þ

and the energy balance now reduces to

qanaYSE ¼ qoxyY
o
SE : ð32Þ

We note that it would be also possible to proceed to the

resolution of the metabolic model in case of oxygen limitation.

In the context of this work it would necessitate a joint

distribution function for the substrate and oxygen mass fluxes.

Since this information is not available at the moment, oxygen

non-limiting conditions are assumed.

6. Relation between fluxes and internal reaction rates: dividing

Eq. (31) by qS;max form the non-dimensional variable q̂, see

Eq. (14), for which we have derived the theoretical distribu-

tion (18). The normalized internal reaction rates that appear on

the right side of Eq. (31) will therefore depend on both the

concentration distribution and the type of microorganisms

considered (identified by the value of kS).

4.3. Metabolic fluxes at equilibrium

In the original model of Xu et al. (1999), the overflow metabo-

lism starts under fully aerobic conditions when the rate of oxygen

consumption required for glucose oxidation exceeds the max-

imum respiration rate. In that case, the uptaken substrate flux

exceeds the maximum oxidative capacity of the cell. In the present

work, a slightly different approach is used. It is assumed here that

overflow metabolism is triggered when the instantaneous sub-

strate uptake rate exceeds the rate of substrate utilization through

anabolism and oxidative catabolism pathways. Since statistically

steady simulations are performed, the averaged concentration S0 is

constant. Although the population of cells is transported in a

heterogeneous medium it is reasonable to consider that each cell

functioning is adapted to the averaged concentration. The cell

abilities in terms of anabolism and catabolism are assumed to be

at equilibrium with the average concentration. Equivalently, it

means that the characteristic time of cell metabolism adaptation is

much larger than the characteristic time of concentration fluctua-

tions along the cell trajectory. In other words, the metabolism is

balanced (without overflow) when the assimilation rate equals the

utilization rate corresponding to the mean concentration S0. In any

other case a cell can be considered as out of equilibrium: receiving

a substrate flux that does not matches its needs (Morchain et al.,

2014). In the following, this equilibrium state is marked by the

superscript “0”. In the state of equilibrium, the assimilation rate

exactly meets the sum of utilization rates through the anabolic and

oxidative catabolic pathways. Using non-dimensional variables,

this leads to

q̂
0 ¼ S0

kSþS0
¼ q̂

0
anaþ q̂

0
oxy: ð33Þ

The simplified energy balance presented in the previous section

gives

q̂oxy ¼
YSE

Yo
SE

q̂ana ¼ α q̂ana; ð34Þ

which is also valid in the balanced growth state, therefore we get

q̂
0
ana ¼

1

1þα
q̂
0
; ð35Þ

q̂
0
oxy ¼

α

1þα
q̂
0
: ð36Þ

4.4. Metabolic fluxes out of equilibrium

The determination of the actual metabolism in the general case

is based on the comparison between the normalized uptake rate q̂

and the normalized utilization rate at equilibrium q̂
0
.

On the one hand, microorganisms receiving a substrate flux q̂

smaller than q̂
0
are facing a nutrient limitation. As explained in the

previous paragraph, all cells are accustomed to an average flux q̂
0

meaning that the cell factory would be able to metabolize larger

amounts of substrate. As a consequence the totality of the

substrate assimilated is directed to the anabolic and oxidative

catabolic pathways. Eqs. (35) and (36) remain valid since the

proportionality between qoxy and qana is maintained. The only

difference is that the superscript “0” falls indicating that the actual

reaction rates are sub-optimal.

q̂ana ¼
1

1þα
q̂; ð37Þ

q̂oxy ¼
α

1þα
q̂: ð38Þ

On the other hand, the sub-population exposed to substrate

concentrations larger than S0 internalize a substrate flux q̂ larger

than q̂
0
and they have to cope with an excess of nutrient. The

anabolic and catabolic capacities of those cells are saturated and

therefore equal the equilibrium values:

q̂ana ¼
1

1þα
q̂
0
; ð39Þ

q̂oxy ¼
α

1þα
q̂
0
: ð40Þ

The amount of substrate directed in the anabolic and oxidative

catabolic pathways are thus upperbounded by the values at

equilibrium. These are related to the average concentration and

constitute local maxima for the substrate utilization rate. As a

consequence, the difference between the effective uptake rate and

the utilization rate represents an extra-assimilation which has to

be diverted into by-products since accumulation is not allowed in

the metabolic model.

The number of moles of by-product formed depends on the

stoichiometry of the reaction converting internal substrate into

by-products. For the sake of convenience it will be assumed here

that the stoichiometric coefficient YSBP is equal to unity, this also

implies MS ¼MBP and we will analyze the results in terms of q̂over

defined as

q̂over ¼
qover
qS;max

¼ q̂& q̂
0
: ð41Þ

4.5. Population averaged bioreaction rates

By definition the mean substrate consumption rate (averaged

over the population of microorganisms) is the first moment of the

uptake rate distribution Pq̂ (q̂). In a practical way, we calculate

the normalized value of the mean substrate consumption rate

(the mean divided by qS;maxÞ:

〈q̂〉¼
Z 1

0
q̂ Pq̂ ðq̂Þ dq̂: ð42Þ

It is shown on the top panel of Fig. 8 that, in any situation

investigated numerically, the mean substrate consumption rate is

very close to that computed from the mean concentration S0, so

we have 〈q̂〉¼ q̂
0
. In fact, some small differences between 〈q̂〉 and

q̂
0
, are found, as shown in the bottom panel of figure. These are



due to the nonlinearity of (1), but they represent, in the worst case,

less than one percent. This is a very important result which shows

that, despite the presence of concentration heterogeneities and

the non-linearity of the relationship q¼ f ðSÞ, the mean concentra-

tion value is relevant to compute the overall substrate consump-

tion rate.

However, it was shown previously that, in a heterogeneous

medium, some cells are exposed to a nutrient limitation while

some others are simultaneously facing an excess of nutrient. Thus,

in our approach it is admitted that some cells can internalize more

substrate than the whole population does on average. Never-

theless, the global substrate consumption is not affected. Recall

that in standard approaches ignoring small scale heterogeneities,

the uptake rate of the entire population is uniquely defined from

the mean concentration.

The population averaged or mean specific growth rate is related

to the mean anabolic rate through (24). This leads to the following

expression for the mean normalized specific growth rate:

〈μ̂〉¼ 〈μ〉

μmax

¼
Z 1

0
q̂anaðq̂ÞPq̂ ðq̂Þ dq̂: ð43Þ

The relative specific growth rate 〈μ̂〉 can be compared to the

relative specific growth rate 〈μ̂0
〉 that would be obtained if the

same flux was assimilated by each particle in the box (perfectly

mixed assumption). The latter can be expressed as

〈μ̂0
〉¼

Z 1

0

q̂
0

1þα
Pq̂ ðq̂Þ dq̂ ¼ 1

1þα
q̂
0
: ð44Þ

The integration interval of (43) must be split into two subintervals

because the definition of ^qana ðq̂Þ depends on the value of q̂ with

respect to q̂
0
:

〈μ̂〉

〈μ̂0
〉¼ 1þα

q̂
0

Z q̂
0

0

q̂

1þα
Pq̂ ðq̂Þ dq̂

"

þ
Z

q̂
0

1
Pq̂ ðq̂Þ

q̂
0

1þα
dq̂

#

: ð45Þ

The first term on the right-hand-side corresponds to the growth

limited by the incoming flux (physical limitation) and the second

term corresponds the growth limited by the cell capacities

(biological limitation). Recall that the mean anabolic flux is the

same for all cells and defined by S0. The ratio 〈μ̂〉=〈μ̂0
〉 therefore

quantifies the specific growth rate reduction due to imperfect

mixing.

4.6. By-product formation

Following the same approach, the mean normalized production

rate of by-product due to overflow metabolism is obtained

through

〈q̂over〉¼
1

q̂
0

Z 1

q̂
0

q̂& q̂
0

# $

Pðq̂Þ dq̂: ð46Þ

It corresponds to the ratio between the mean by-product forma-

tion rate and the mean substrate consumption rate. It can also be

interpreted as the fraction of the total substrate influx that is

diverted towards overflow metabolism. Normalized distribution of

the normalized flux q̂ is measured in numerical simulations.

As already explained, simulations are performed with the same

averaged concentration S0 for various type of microorganisms

distinguished by their own affinity constant kS. Different values

of kS were investigated, which implies that the values of q̂
0
were

also different.

5. Results and discussion

In this first part of the results, calculations are performed with

an averaged concentration S0 ¼ 0:15 kgS m
&3, a concentration

gradient ζ ¼ 1 kgS m
&4 and a Reynolds number of 110. These

parameters determine the substrate concentration field. A value

of kS ¼ 0:1 kgS m
&3 is chosen to calculate the associated uptake

rate distribution which is presented in upper panel of Fig. 9. The

mean value 〈q̂〉¼ q̂
0

is equal to 0.6 under these conditions.

Subsequently, Eqs. (33)– (41) are used to quantify the internal

metabolic rates for any possible value of q̂. Results are presented in

the lower panel of Fig. 9. It can be observed that the rates of

anabolism and oxidative catabolism are proportional, both

increasing with q̂, as long as q̂r q̂
0
. Beyond this limit, the rates

of anabolism and oxidative catabolism remain constants while the

rate of overflow metabolism progressively increases.

It can be noticed that these calculations only depend on the

value of q̂ and q̂
0
that defines the limit between limited growth

and over-flow metabolism. These calculations can be conducted a

priori using any predictive metabolic model.

The overall consequences in terms of specific growth rate and

by-product formation for the entire population actually result

from the combination of the two graphs presented in Fig. 9. The

exact mathematical expression was given in Eqs. (45) and (46).

From these graphs, it is clear that if one considers two concentra-

tion fields characterized by the same average concentration, the

mean rates computed from the aforementioned equations will be

dependent on the exact shape of the substrate concentration

distribution. Moreover, if one considers the same concentration

field but different affinity constants for the substrate, apparent

reaction rates will also be impacted. The quantification of these

aspects is treated in the following paragraphs.

Fig. 10 presents the normalized specific growth rate and the

fraction of the incoming substrate flux diverted into by-product for

different values of the ratio S0=kS. The calculations of integrals

corresponding to were performed using the same scalar field for
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different values of kS. On the right-part of the graphs, the affinity

constant for the substrate is much smaller than the average

concentration, the uptake capacity is saturated, the uptake rate

is maximum and consequently the presence of concentration

gradient has almost no effect on the mean population growth rate

(which is indeed equal to μmax). In fact, the distribution Pðq̂Þ is also
very narrow and since q̂

0
-1, no by-product is formed. On the left-

part of the graphs, the distribution of S results in a distribution of

Pðq̂Þ such that q̂
0
51 so the whole population is growing at

μoμmax. Among this population some individuals are facing

limiting conditions, those for which q̂o q̂
0
, some other individuals

have to cope with an excess of substrate q̂4 q̂
0
. Thus, we

concomitantly observe a reduced growth rate and a by-product

formation at the population scale. In this zone of severe limitation,

it is found that the specific growth rate reduction becomes

independent of the ratio S=kS. This asymptotic behavior at very

low values of the parameter 〈S〉=kS can be related to the linear

relationship between S and qS. First of all, recall that the variable

1& 〈μ̂〉=〈μ̂0
〉 represents the growth rate reduction with respect to

the maximum value that would be obtained under perfectly mixed

conditions. Then, considering Eq. (45), one observes that the

reduction of the growth rate is due to the left-part of the mass

flux distribution (that below q̂
0
). Thus it depends on the sole shape

of the uptake rate distribution.

Secondly, it was shown that the concentration distribution is

nearly Gaussian and that the mass flux distribution is very similar

to the concentration distribution at low S=kS. This explains why an

asymptotic behavior is observed.

As already explained, it is expected that both the magnitude of

the gradient and the energy dissipation rate (related to the

Reynolds number) determine the asymptotic value since they

have a major effect on the width of the mass flux distribution. In

Fig. 11, the specific growth rate reduction is presented as a

function of the ratio 〈S〉=kS for the different flow configurations

(resulting in different concentration distributions). For all flow

configurations, the same trend is observed: a growth rate reduc-

tion is present for small values of the ratio S0=kS (i.e. under

substrate limiting conditions). The magnitude of this pheno-

menon depends on the heterogeneity of the substrate concentra-

tion field. The simulation with Re¼110, ζ ¼ 0:1 kgS m
&4, and

S0 ¼ 1:0 kgS m
&3, represented by the black-filled bullet !, leads

to a narrow distribution and consequently, there is almost no drop

in the specific growth rate. Increasing the magnitude of the

concentration gradient while preserving the same average con-

centration and velocity fields (○) produces a more heterogeneous

concentration field. As a result, the fraction of cells facing sub-

optimal concentrations increases and the actual specific growth

rate is lower than what it would be in a perfectly mixed environ-

ment. In the end, simulations ▴ and ▿ share the same concentra-

tion gradient, ζ ¼ 1:0 kgS m
&4, and the same mean concentration,

S0 ¼ 0:15 kgS m
&3, but differ by the Reynolds number. Both

simulations produce wide distributions because of small average

concentration combined with a strong gradient and the specific

growth rate reduction, when it takes place, is more pronounced.

The influence of the Reynolds number on the specific growth rate

reduction seems moderate, probably because the two Reynolds

number are not sufficiently different. However, in the stationary

simulation performed here, a higher Reynolds number leads to

higher concentration fluctuations which means a wider distribu-

tion. The fact that the growth rate reduction increases with the

Reynolds number is therefore consistent.

These results can be analyzed from an experimental point of

view also. A general observation is that a specific growth rate

reduction of less than a few percent is probably impossible to
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detect through experimental measurements. The consequences of

imperfect micromixing can be appreciated following a vertical line

at constant S0=kS starting from the top of the graph. If the mixing

is intense, no growth rate reduction takes places. As the concen-

tration heterogeneities appear a growth rate reduction and a by

product formation occur but they may be undetectable experi-

mentally. Then the effects become more pronounced and a

reduction of 10% can be achieved in some cases. It is essential to

note that, in practice, one would measure the same average

substrate concentration but different specific growth rates

(affected by the actual micromixing efficiency). In order to fit

these data, with a Monod law, it would be necessary to adjust μmax

or kS or both. This is another clear evidence that from a purely

physical point of view, micromixing can influence the identifica-

tion of biological constants (Linkès et al., 2012).

Fig. 12 shows the rate of by-product formation with respect to

〈S〉=kS for the different flow configuration simulated. It can be seen

that using the proposed model, some by-product is formed as

soon as the mean substrate concentration becomes smaller than

10kS. In the region of moderate limitation 〈S〉=kS ' 1, overflow

metabolism can represent around 5% of the total carbon flux. This

may not be sufficient to be detected, in particular if this by-

product can be further re-assimilated (Enfors et al., 2001), but it

can explain the observed diminution of the specific growth rate

and the increase of the conversion yield of substrate into biomass

in imperfectly mixed bioreactors (George et al., 1998).

The main observations are that the heterogeneity of the

substrate concentration field is responsible for a decrease in the

apparent specific growth rate and an increase in the by-product

formation. These conclusions can only be drawn through the use

of a metabolic model in conjunction with the knowledge of the

substrate uptake rate distribution. The two elements are equally

important: it is remarkable that using a metabolic model while

assuming homogeneity in the computational domain, i.e. without

considering the actual distribution would lead to erroneous

results: the specific growth rate would be overestimated and the

amount of by-product formed underestimated. Similarly, account-

ing for a heterogeneous concentration field without considering a

metabolic response would not produce the desired effects.

6. Conclusion

Direct numerical simulation combined with Lagrangian particle

tracking and scalar field calculations in a statistically steady

homogeneous and isotropic turbulence were conducted. In the

present work neither the cell adaptation to the concentration

fluctuations nor the modification of the concentration field due to

the cell assimilation were considered. So the consequences of

concentration field heterogeneities on the calculation of apparent

biokinetic rates were investigated from a purely physical point of

view. Through an analytic approach, the local heterogeneities seen

by the individual microorganisms of a given population (charac-

terized by the affinity constant kS) can be integrated at the popu-

lation scale in order to produce a mass flux distribution. These

analytical developments were used to validate the numerical

simulations. Using a metabolic model to compute the internal

reaction rates and integrating over the entire population of

particles (cells) reveals that substrate heterogeneities, or imperfect

micromixing, lead to a reduction of the mean specific growth rate,

an increase of by-products formation whereas the overall sub-

strate consumption rate remains unchanged. In most modelling

approaches of bioreactors, including CFD simulations, the assump-

tion that distribution of the concentration is uniform in a compu-

tational mesh is generally made. The present work provides a

quantification of the errors induced when the aforementioned

assumption is not valid. Beyond the necessary reference to a

metabolic model, the use of a subgrid model to account for the

substrate concentration distribution below the resolved scale is

certainly a major way for improving the reliability of a bioreactor

model.
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