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Non-linear poro-elastic coupling in real and artificial branches and its possible link to plants mechano-perception

. Cela suggère l'existence chez les plantes d'un transport rapide de l'information sur une longue distance. Cependant, la nature et le mécanisme de transport de ce signal ne sont pas connus.

. De façon surprenante, la flexion d'une telle poutre génère une surpression dont l'amplitude varie quadratiquement avec la déformation imposée. Pour comprendre l'origine de cette réponse non-linéaire, nous proposons un modèle simple basé sur l'idée qu'une poutre poreuse en flexion tend à comprimer sa section transverse afin de minimiser l'énergie élastique totale du système. Des expériences sur des branches réelles réalisées en collaboration avec l'INRA suggèrent la robustesse de ce mécanisme.

1 Introduction.

Since Darwin, scientists know that plants are able to respond to mechanical stimuli, a process called thigmomorphogenesis [START_REF] Jaffe | Thigmo responses in plants and funghi[END_REF][START_REF] Braam | In touch : plant responses to mechanical stimuli[END_REF][START_REF] Telewski | A unified hypothesis of mechanoperception in plants[END_REF]. This ability is crucial to the survival of plants, who are continuously exposed to mechanical perturbations such as wind, rain, contact with other plants and so on. For example, at the tree scale, the bending of a branch leads to a rapid change of growth not only locally but also far from the stimulated area suggesting the existence of a long-range signal through the plant [START_REF] Coutant | Biomechanical study of the effect of a controlled bending on tomato stem elongation : local strain sensing and spatial integration of the signal[END_REF]. The nature and the mechanism of propagation of this signal is not well known and different hypothesis have been proposed in the literature. One of these is that the signal propagation is purely mechanical [START_REF] Malone | Hydraulic signals[END_REF]8] : an hydraulic pulse could be generated in response to a local mechanical strain, and could propagate rapidly along the water conductive system of the plant. This hypothesis of a purely hydro-mechanical coupling has been recently investigated in the PIAF-INRA laboratory in Clermont-Ferrand, by Éric Badel, Hervé Cochard and Bruno Moulia [START_REF] Lopez | Bending strains generates high hydraulic pulses in trees[END_REF]. To this end, hydraulic pressure measurements have been made in plant stems or branches subjected to a rapid and controlled bending. Their main result is that the bending of a branch leads to an overpressure that spreads through the vascular system. These experiments are the first to evidence the existence and propagation of an hydraulic pressure wave in plants in response to a localised bending. It is tempting to assume that such hydraulic signals could play an important role in the long range signalling in plants mechano-perception. On the other hand, from a purely physical and mechanical point of view, these results point to interesting and non-trivial questions. What are the physical mechanisms responsible for the hydraulic pulse generation ? What set the amplitude of the pressure pulse, its speed of propagation and its damping rate ?

In physics and mechanics, poroelasticity is a natural framework to study the dynamics of a porous deformable solid saturated with a liquid [START_REF] Biot | General theory of three-dimensional consolidation[END_REF][START_REF] Wang | Theory of linear poroelasticity with applications to geomechanics and hydrogeology[END_REF]. From this point of view, one expects that the bending of a stem or a branch saturated with water induces a water flow. When an elastic beam is bent, some parts are stretched while others are compressed. These local changes of volume must be followed by water expulsion or suction. However, in the linear beam theory, both effect compensate exactly for a symmetrical beam and the total change of volume should be zero under pure bending. It is therefore not at all trivial that bending of a branch produces a non-zero mean pressure pulse as observed. While previous theoretical works have studied the linear behaviour of a poroleastic beam e.g. [START_REF] Cederbaum | Poroelastic structures[END_REF][START_REF] Skotheim | Dynamics of poroelastic filaments[END_REF], very few experimental studies have been performed [START_REF] Scherer | Bending a gel rod with an impermeable surface[END_REF]. Moreover, to our knowledge, no study has investigated the poroelastic dynamics of a beam composed of a soft cellular material in the large deformation regime.

2 Experiments on artificial branches.

Minimal ingredients for a biomimetic branch : From a mechanical point of view, a very simple picture of a tree branch is an elastic beam perforated with thin channels drilled in the longitudinal direction and filled with a viscous fluid. This original three-dimensional milli-fluidic device is made of a silicone elastomer (Polydimethylsiloxane) and elaborated using moulding techniques. The elastomer is soft, transparent and isotropic (Young modulus E ∼ 2 MPa). The size of the channels is d = 500 µm. Channels are filled with a viscous fluid (silicon oil or Ucon oil/water mixture) (see figure 1 for details). Experimental set-up : All the experiments presented here are performed in the situation of a closed system i.e. there is no exchange of fluid between the inside and the outside of the beam. For practical reasons, we work in the geometry of a cantilever beam : the pressure signal is recorded from one fixed end of the beam while deformation is imposed rapidly by the displacement of the other end of the beam (see figure 2.A). To ensure reproducibility, the displacement of the mobile part of the beam is performed with help of a linear actuator. A picture of the beam is taken afterward from which is extracted the mean curvature : C = ∆Θ/L where L is the length of the beam and ∆Θ is the angle difference between both extremities of the beam. The bending deformation is defined as the maximal longitudinal deformation induced by bending and is given by = (D/2) C where D is the diameter of the beam.

Main characteristics of the pressure signal when bending : A typical hydraulic pressure signal is presented on figure 2.B . We see on this figure that pressure reaches a non-zero value which is maintained stationary as long as bending is imposed. Second the transient regime over which the pressure sets up is well accounted for by the relaxation poro-elastic time of the beam. This is in qualitative agreement with the hypothesis of an hydraulic pulse generated by bending and is coherent with experiments performed on plants. Interestingly, we also find that the amplitude of the overpressure ∆P varies quadratically with the bending deformation (see figure 2.C). These features come up two questions we will now address : (1) Why bending creates an overpressure ? (2) Why the pressure response is non-linear whereas the material is still in its linear response regime ?

3 A simple elastic model for the pressure response to bending.

In contrast with the prediction of the linear elastic beam theory, the observed over-pressure shows that bending leads to a global change of volume in the system. A possible explanation is the following. When an elastic beam is bent, the longitudinal elastic deformations (extension and compression) increase with the distance to the neutral surface. Now, if the beam is composed of a porous media, the system can reduce the bending elastic energy by deforming its cross-section and gather the material closer to the neutral surface. This 'squeezing' of the cross-section is, in turn, associated with a global decrease of the pore area and gives rise to a decrease of the volume of the beam in response to bending (see figure 3).

(1) Minimisation of the total elastic energy. The total elastic energy is given by the sum of the elastic energy associated with bending in the longitudinal direction and squeezing in the transverse direction. The bending elastic energy of a beam of circular cross-section of diameter D, length L, effective Young modulus E, and bent at a constant curvature C, is given by [START_REF] Landau | Theorie de l'élasticité[END_REF] :

U bend = EV 32 D 2 C 2 (1) 
C -1 where = (D/2)C is the bending deformation defined in the experiment and V = πD 2 L/4 is the volume of the beam. When the section of the beam is squeezed by a factor δ, the moment of inertia of the beam is reduced (D → D -2δ) and the bending energy can be approximated as :

D-2δ

U bend (δ) ≈ EV 32 (D -2δ) 2 C 2 (2) 
We can see in this expression that a transverse compression δ > 0 decreases the bending energy. However, this transverse deformation has a cost in term of elastic energy that we need to estimate. By analogy with the elastic energy stored in a compressed bar [(1/2)EV (d / ) 2 ], we write the squeezing energy U squeeze associated to the deformation of the transverse deformation of the cross-section as :

U squeeze (δ) ≈ EV 2 2δ D 2 (3) 
where ⊥ = 2δ/D are the typical transverse deformation (Figure 3). The equilibrium value of δ is found by minimising the sum of the bending energy U bend and the squeezing energy U squeeze , that is : d dδ U bend + U squeeze = 0 . At the lowest order (2δ D), this gives :

2δ D ≈ D 2 C 2 16 or ⊥ ≈ 2 4 ( 4 
)
This analysis therefore shows that the transverse deformation of the beam cross-section ⊥ varies with the power 2 of the bending deformation . Now, in the 2D cross-section plane, we can write that the relative change of the pore area associated with this transverse compression writes :

∆A c /A c = -(1 -ν c ) ⊥ ≈ -(1 -ν c ) 2 /
4where A c is the pore area and ν c is a 2D surface area Poisson ratio characterising the change of pore area for a given 2D deformation. In the case of a 2D sheet containing holes, the prefactor (1 -ν c ) is of the order of unity [START_REF] Day | The elastic moduli of a sheet containing circular holes[END_REF]. In our parallel channel geometry, this pore area change is equal to the pore volume change :

∆A c /A c = ∆V c /V c
, where V c is the pore volume. Therefore :

∆V c V c ∼ - 2 4 (5) 
This simple model then predicts that bending a porous beam leads to a global volume change of the channel that is proportional to the square of the bending deformation. This non-ovalisationlinear effect comes from the flattening of the cross-section when the porous beam is bent, due to a competition between the longitudinal bending deformation and the transverse cross-section deformation. This effect is reminiscent of the ovalisation phenomenon observed in bent elastic tubes and first described by Brazier [START_REF] Brazier | On the flexure of thin cylindrical shells and other "thin" sections[END_REF]. When a tube of circular section is bent, its section flattens before collapsing at large deformation. We shall now take into account the presence of an incompressible fluid in the porosity of the beam to express the relation between the relative change of the total volume of the channels expected in an open system and the overpressure observed in a closed system.

(2) Relation between volume change with pressure change. In the situation where liquid can not be exchanged with the outside (what we have called a closed system), bending a porous beam at constant volume can be divided in two steps : in the first step, the beam is bent slowly up to C, and the fluid is let free to be drained out from the beam. In this case, a volume -∆V c < 0 is removed from the beam according to equation ( 5) while the pore pressure remains zero. In the second step, we maintain the bending curvature C constant and inject the volume of liquid ∆V c in order to recover the initial volume of the system (∆V c = 0). This injection of fluid is then associated to an increase of the pore pressure ∆P , which is the quantity we are looking for. The relation between ∆P and ∆V c is given by the "pore bulk modulus" B defined by : ∆P = -B∆V c /V c . which combined with equation [START_REF] Coutant | Biomechanical study of the effect of a controlled bending on tomato stem elongation : local strain sensing and spatial integration of the signal[END_REF] gives the relation between the bending deformation and the pressure response ∆P :

∆P ∼ B 2 4 (6) 
Our model therefore recovers the quadratic relation between the pressure and the bending deformation observed experimentally. In this model, the overpressure ∆P is essentially controlled by the pore bulk modulus B of the porous beam. The measured bulk modulus of the PDMS branch is B = 2.5 10 5 Pa. Equation ( 6) then predicts that a 10 % curvature deformation will generate an overpressure of order ∆P ∼ 10 3 Pa, in good agreement with the experiments (see figure 2.B).

Comparison between real and artificial branches.

In order to test the naive picture we used to design artificial branches, the same experiment has been performed on real branches. Even though experiments on real branches is much more difficult than on artificial branches because of the intrinsic variability of living systems, we observed the same quadratic pressure response to bending as for artificial branches (see figure 4). This suggests that we have captured with our naive model the basic features involved in the generation of the hydraulic pulse that was already observed in plants and that the mechanisms involved in the process are robust. Moreover, for a given geometry, the bulk modulus of a material B depends on the Young module E : B = E × f (φ) where f (φ) is a function of the geometry of the beam. Wood being much harder than the elastomer we used for the elaboration of the artificial branches (E wood ∼ GPa whereas E elastomer ∼ MPa) we expect that the amplitude of the steady overpressure measured in both systems scales like the young modulus of the material which is indeed the case.
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 12 Figure 1. (A) Moulding set-up. (B) Picture of a poroelastic beam
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 3 Figure 3. Ovalisation process : the elastic energy associated with the curvature of the beam (left) is decreased by the squeezing of the section of the beam (right)
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 4 Figure 4. Stationary overpressure normalised by the young modulus for artificial and real branches (hybrid poplar and green oak). Rescaling gives ∆P E = 0.06 × 2 for artificial branches and ∆P E = 0.02 × 2 for real branches.
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