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Abstract

As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne 
thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, 
the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temper-
ature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared 
with surface minus air temperature (Ts–Ta) as a water stress indicator. As parameterization of the theoretical equations 
for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified 
procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. 
The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quan-
tile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and 
thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree 
water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the 
limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint 
was established, the different stress indicators were linearly correlated to the stem water potential among a tree sub-
set. Ts–Ta showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. 
Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping.

Key words: Drought, evapotranspiration, Malus × domestica Borkh., phenomics, remote sensing, surface temperature, 
temperate fruit species, vegetation index, water deficit index (WDI).

Introduction

According to current climate change models for the 21st century, 
increases in average temperatures are expected, with longer or 
more frequent episodes of extreme temperatures and drought, 
notably in the Mediterranean basin (IPCC, 2007; Giorgi and 
Lionello, 2008). Climate change will lead to a reconsideration of 

breeding programmes for many crops, and new traits will need 
to be taken into account. As water is a major factor in plant 
productivity, optimizing water use by improving plant water 
use efficiency and/or stress tolerance will become an increas-
ingly important issue for many crops (Hamdy et  al., 2003; 
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Condon et  al., 2004). Breeding programmes focused on these 
targets are currently being developed for the cereal crops that 
are of major importance for food purposes, such as wheat, rice, 
and maize (Braun et  al., 2010; Fischer et  al., 2011; Masuka 
et  al., 2012). Such studies are rarely performed for woody  
perennials, although some studies on genetic determinism of 
traits related to water use and drought tolerance improvement 
have been undertaken for forest trees [e.g. in Populus, Dillen et al. 
(2008) and Monclus et al. (2009); in Quercus, Brendel et al. (2008) 
and Roussel et al. (2009)]. Water use and/or drought sensitivity 
in fruit trees also need to be thoroughly studied because sustain-
ability of fruit production is highly dependent on the availability 
of water resources (Šircelj et al., 2007). However, for these spe-
cies, water resource research to date has focused on irrigation 
scheduling and crop management rather than on plant breeding 
for better use of water (Naor, 2006; Wang and Gartung, 2010).

Thermal infrared (TIR) remote sensing is increasingly being 
used to assess crop transpiration and water stress in annual 
crops and fruit crops (Berni et  al., 2009; Alchanatis et  al., 
2010; González-Dugo et al., 2012). As the temperature of any 
plant organ depends on the balance between incoming energy 
and energy loss, including the latent heat loss resulting from 
transpiration, measurement of leaf temperatures permits 
estimation of the flux of water loss and stomatal regulation 
(Jones et  al., 2009). Typically, an increase in the difference 
between the leaf surface temperature and the air temperature 
is interpreted as a sign of a decrease in transpiration flux, i.e. 
a decrease in the ratio of actual to potential transpiration. 
Nevertheless, as plant stomatal control can be more or less 
pronounced and can occur over the short term, the regula-
tion of water loss by stomatal closure and the importance of 
transpiration limitation under water deficits depend on plant 
species. Tardieu and Simonneau (1998) classified plant behav-
iours into two main categories, isohydric and anisohydric, 
based on stomatal regulation. Facing water deficits, isohydric 
plants efficiently reduce stomatal conductance (gsw) in the 
presence of decreasing soil water potential (Ψs) and/or drier 
atmospheric conditions, which contributes to saving water and 
maintaining a relatively constant midday leaf water poten-
tial (Ψl) regardless of drought conditions (McDowell et al., 
2008). In contrast, anisohydric plants allow the midday Ψl to 
decrease with both higher evaporative demand and lower Ψs 
while maintaining a stomatal aperture, which favours carbon 
acquisition (McDowell et al., 2008). As genetic variability of 
stomatal regulation can be expressed at the intraspecific level 
[e.g. in grapevine, Gaudillère et al. (2002); in apple, Massonnet 
et al. (2007)], TIR imagery appears to be a promising tech-
nique for phenotyping plant tolerance to water stress [in 
grapevine and rice, Jones et al. (2009); in potato, Prashar et al. 
(2013)]. More generally, phenotyping based on multi-spectral 
or hyper-spectral imagery shows promise as a non-invasive 
method of screening a wide range of individuals in a short 
period of time. This potentially high-throughput approach 
is compatible with next-generation sequencing technolo-
gies, which allow genome-wide and high-density genotyping 
(Berger et al., 2010; Fiorani and Schurr, 2013).

Numerous indices have been developed to assess crop water 
stress from canopy surface temperature (Ts) data acquired 

in signal or imagery mode, from aerial platforms (satellites, 
aircraft, and unmanned aerial vehicles) or sensors installed 
directly in fields to observe crop canopies (White et al., 2012). 
Ts minus air temperature (Ta) is a raw variable that is easy to 
extract from images, but it is sensitive to radiative conditions, 
wind speed, and vapour pressure deficit (Maes and Steppe, 
2012). Temporal comparisons of plant responses to drought 
based on this variable require that ambient conditions are con-
trolled (Berger et al., 2010) or remain mostly unchanged dur-
ing experiments (Idso et al., 1981). The crop water stress index 
(CWSI) is one of the most commonly used indices in field 
water stress studies and irrigation scheduling applications. 
It takes into account the ambient meteorological conditions, 
including the vapour pressure deficit, which also influences the 
canopy temperature. CWSI was empirically developed by Idso 
et al. (1981) and theoretically defined by Jackson et al. (1981). 
With this index, the upper and lower limits of the differences 
in the canopy and air temperatures can be used to estimate 
the minimum and maximum evaporation and represent dry 
and wet references, respectively. Based on the CWSI concept, 
Jones et al. (2009) developed the stomatal conductance index 
(Ig), which estimates stomatal conductance from the canopy 
temperature and some meteorological parameters, and these 
authors assessed the potential of TIR imaging to pheno-
type the response of crops to water constraints. However, the 
application of CWSI is limited to full-cover vegetation, and 
Ig requires measurements and calibrations (wet and dry refer-
ences) at the leaf level, which may depend on genotype and 
limits their applications for high-throughput phenotyping.

The presence of mixed soil–plant pixels is a recurring prob-
lem when thermal imagery is applied to phenotyping hetero-
geneous covers (Möller et al., 2007; Jones et al., 2009; Hackl 
et al., 2012). It is generally considered that using the vegeta-
tion surface temperature directly is risky, because the weight 
of mixed or soil pixels in porous plant cover can create a shift 
towards the soil surface temperature (Jackson et  al., 1981). 
Various image preprocessing methods based on filtering of 
RGB images can be applied to exclude mixed pixels. However, 
these methods are time-consuming and can also be subjective 
because they depend on the threshold chosen (Giuliani and 
Flore, 2000; Jones et al., 2002; Möller et al., 2007; Hackl et al., 
2012). An automated procedure that uses a watershed segmen-
tation analysis to select pure vegetation pixels in TIR images of 
palm trees has recently been proposed by Cohen et al. (2012). 
However, as shown by Hackl et al. (2012), distinguishing pure 
pixels of vegetation from mixed soil–plant pixels does not 
always improve the quality of the regression between canopy 
temperature and plant water status indicators such as the leaf 
water potential in maize for cover fractions above 60%.

To overcome these limitations, Moran et al. (1994) devel-
oped the Vegetation Index–Temperature (VIT) concept, which 
facilitates the application of CWSI to partial vegetation cover. 
The VIT concept is based on the trapezoidal shape formed by 
the relationship between the difference between the surface 
and air temperature (Ts–Ta) and a vegetation index (VI) that 
represents the crop cover fraction. The vertices of the trap-
ezoid correspond to (1) well-watered full-cover vegetation, 
(2) water-stressed full-cover vegetation, (3) saturated bare 
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soil, and (4) dry bare soil, as shown in Fig. 1. Theoretically, 
all variations of crop water stress for different vegetation 
cover should plot within this trapezoid, even if  linearity of 
the lateral boundaries constitutes a simplifying assumption 
(notably for low vegetation cover) (Maes and Steppe, 2012). 
For each point inside the trapezoid, the Water Deficit Index 
(WDI) can be calculated on the basis of the distances to the 
left and right boundaries, which are considered to be wet and 
dry references, respectively. By using this approach, the Ts–Ta 
of  a given plant is corrected from soil effects by VI according 
to the cover porosity. Like CWSI, WDI is related to the ratio 
of actual (ETact) to maximum (ETmax) evapotranspiration 
(WDI = 1 – ETact / ETmax) and it takes the VPD into account. 
The value of WDI that is normalized between the left and 
right boundaries ranges from 0 for a well-watered crop tran-
spiring at the maximum rate to 1 for a severely water-stressed, 
non-irrigated crop.

Theoretical calculation of the trapezoid envelope vertices 
requires information on numerous physical and meteorologi-
cal parameters and knowledge of the vegetation type (Moran 
et  al., 1996). Consequently, this method is not easy to use 
operationally because of difficulties in its parameterization 
(Vidal and Devaux-Ros, 1995; Clarke, 1997) and because 
some inputs can be sensitive to local conditions or to the 
crop structure (Heilman et al., 1996; Rana and Katerji, 1998). 
When using this approach for phenotyping, large variability in 
the plant architecture of the studied population may further 
complicate the parameterization of the theoretical equations. 
Moreover, the parameters’ values are generally typical values 
derived from the literature and not adapted to every type of 
crop or variety. The trapezoidal shape of the scatterplot can 
also be manually delineated based on VI and Ts–Ta pixel val-
ues (Vidal and Devaux-Ros, 1995; Clarke, 1997). However, 

to be relevant, this empirical approach requires that TIR and 
vegetation index images encompass the extreme Ts–Ta and 
VI values of dry/wet vegetation and soil. This requirement 
can be satisfied when working at a low spatial resolution with 
satellite images covering large areas, but a well-designed field 
set-up is necessary when imagery of higher spatial resolution 
(generally applied to smaller areas) is chosen, allowing each 
individual to be distinguished in phenotyping studies.

In this study, a statistical approach based on quantile regres-
sion is proposed to facilitate the delineation of the trapezoidal 
shape of the VIT scatterplot. This new approach is assumed 
to allow the application of WDI to field phenotyping of a tree 
population showing heterogeneous vegetation cover in response 
to water constraints. This statistical method as well as the theo-
retical method and the basic index, Ts–Ta, were tested on air-
borne multispectral images (RGB, near-infrared, and thermal 
infrared) of a population of 122 apple hybrids, characterized 
by their architectural variability (Segura et al., 2008). The sta-
tistical and theoretical methods were compared with respect 
to their ability to delineate the VIT scatterplot under different 
environmental conditions, and their ease of implementation in 
the context of high-throughput phenotyping. The sensitivity 
of the WDI to changes in wet and dry references was tested by 
varying the levels of quantile within the statistical approach. 
The different stress indicators were compared in order to assess 
(i) their sensitivity in response to soil drought and (ii) their rel-
evance to efficiently reflect the evolution of tree water status in 
comparison to the stem water potentials.

Materials and methods

Field experiments and meteorological measurements
The studied apple tree population consisted of progeny derived from 
a ‘Starkrimson’ × ‘Granny Smith’ cross and was characterized by 
strong variability in tree vigour, architectural traits (Segura et al., 
2008), biennial bearing (Guitton et al., 2012), hydraulic traits (Lauri 
et al., 2011), and stomatal and photosynthetic traits in response to 
vapour pressure deficit (Regnard et  al., 2009). In February 2007, 
four replicates of 122 hybrids and their two parents were grafted 
onto M9 rootstock and randomly distributed in an experimental 
field at the INRA Melgueil experimental station (in the southeast 
of France, N43°36, E03°58). The 520 trees were planted along 10 
rows oriented northwest–southeast, with an inter-row spacing of 5 
m and a 2 m spacing within the rows. A tall fescue (Festuca arundi-
nacea) cover, 2.5 m wide, was sown in April 2007 in the inter-rows 
to create grass alleys. The grass was regularly mowed, and its bor-
der approached the vertical projection of the largest tree canopies. 
Within the tree rows, the soil was chemically weeded in the spring to 
prevent adventitious plant development. The field plot was irrigated 
using a system of microsprayers located in the rows, with one 20 l h–1 
emitter per tree. A summer drought treatment was applied on two 
repetitions per genotype beginning on 8 July (corresponding to day 
of year, DOY, 189) to 5 rows out of 10, resulting in progressive water 
stress (WS) for these trees because the summer rainfall was very lim-
ited (Fig. 2). The five WS rows were alternated with five other rows 
of trees that were well watered (WW). Irrigation of the WW trees 
was scheduled on the basis of the soil water potential (ψs at 30 cm 
and 60 cm depths) measured in a representative area of the field. It 
was performed twice a week from DOY 131 to 203 using an amount 
of water corresponding to ~3 mm per day and then three times a 
week from DOY 204 onward with an amount of water correspond-
ing to ~6.5 mm per day (Fig. 2).

-20 -10 0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

Ts - Ta

V
eg

et
at

io
n 

In
de

x

1: Well-Watered 
Vegetation

2: Water-Stressed 
Vegetation

3: Saturated 
Bare Soil

4: Dry 
Bare Soil

A BC

Fig. 1. The hypothetical trapezoidal shape developed by Moran 
et al. (1994) resulting from the relationship between the plant surface 
temperature (Ts) minus the air temperature (Ta) and the vegetation index 
(NDVI or SAVI) used to represent the crop cover fraction. Vertices 1 to 4 
represent extreme states of vegetation development and the evaporation/
transpiration rate. For a given point C in the scatter plot, WDI is equal to 
the ratio between AC and AB. WDI values vary from 0 for well-watered 
conditions (fully transpiring vegetation) to 1 for water-stressed (no 
transpiration).
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The trees were left unpruned during the entire experiment. 
Control of pests and diseases, tree fertilization, and fruit thinning 
were performed by conventional means, consistent with professional 
practices, throughout the study. Automated soil resistivity profiling 
conducted in March 2009 showed that the soil of the trial plot (at 
depths of 0–50 cm and 50–100 cm) could be considered spatially 
homogeneous in terms of its water-holding capacity.

The environmental conditions were monitored using meteorologi-
cal sensors that recorded the global radiation (Rg), air temperature 
(Ta), air humidity (HR), air vapour pressure deficit (VPD), wind 
speed (u) and rainfall. These data were scanned every 30 s, aver-
aged over 10-min intervals, and stored using a Campbell Scientific 
CR10X data logger. During the airborne image acquisition, the data 
collected were averaged over 2 min intervals. Table 1 presents the val-
ues of Rg, Ta, HR, and u, averaged over the 12-min image acquisition 
periods during three flights, the corresponding VPD values, and the 
average values of ψs measured for six WW trees and six WS trees at 
30- and 60-cm depths just before the flights.

Image acquisitions
The image acquisition system consisted of an ultra-light aircraft 
equipped with two EOS 500D (Canon®, Tokyo, Japan) commercial 

digital cameras (15.1 Megapixel CMOS sensor) with 35-mm lenses 
and one FLIR B20HSV (FLIR Systems Inc., Wilsonville, USA) 
thermal infrared camera (320 × 240 matrix). The spectral sensitivity 
of the two digital cameras was measured in the laboratory with a 
monochromatic source 1.2 nm wide (Déliot et al., 2005). One camera 
acquired visible images in the red, green, and blue (RGB) bands. The 
second was modified according to Lebourgeois et al. (2008, 2012) to 
obtain images in the near-infrared band (NIR). The settings of the 
two cameras (aperture, F3.5; shutter speed, 1/2000; and sensitivity, 
ISO100) remained unchanged throughout the experiment, except 
on the first acquisition date (shutter speed of the NIR camera: 
1/2500). Images were acquired in raw format and, after correction 
of vignetting effects, digital numbers (DN) for each spectral band 
were retrieved by decoding the images, as described in Lebourgeois 
et al. (2008). For the TIR camera, the radiation detected over the 
spectral range of 7.5–13 µm was considered equivalent to the sur-
face temperature, assuming a target emissivity equal to unity. As the 
TIR images were acquired 2 h before solar noon with a narrow-angle 
lens (72 mm) and a vertical view, the effects of shadows and direc-
tional radiance were minimized (Jones et al., 2009). The TIR images 
acquired had a radiometric resolution of 0.1°C and an absolute pre-
cision of 2°C. All cameras pointed in the same vertical direction, 
and their shutters were synchronized to a single trigger.

Three flights were performed during the summer of 2011, on DOY 
172 (date 1, 17 days before the beginning of the drought treatment), 
203, and 223 (dates 2 and 3, and 14 and 34 days, respectively, after 
the beginning of the drought treatment). Consequently, on the first 
acquisition date, the WS trees had not yet been subjected to water 
constraint. The image acquisitions took place in the early phase of 
stomatal regulation, at approximately 10:00 GMT, early enough to 
prevent atmospheric disturbance caused by thermal wind that fre-
quently arises after this hour. The images were acquired at an eleva-
tion of 300 m and had a 3 cm resolution in RGB and NIR, and a 
resolution of 30 cm in TIR (40 cm for the third acquisition date). At 
this altitude, the orchard (100 × 60 m) was covered by 1 or 2 images.

Nine aluminium targets were distributed around the periphery and 
within the experimental field for image geolocation (Fig. 3). A differ-
ential Global Positioning System (DGPS) was used to determine the 
precise position of each target, which was easily located in the thermal 
images due to the low emissivity of aluminium. Ground surface tem-
peratures were acquired simultaneously for a cold target (Styrofoam: 
2 × 2 m), bare soil, and a hot target (dark plastic cover: 4 × 4 m) via 
airborne acquisition to correct for atmospheric effects on the airborne 
TIR images. Temperature measurements at the ground level in the field 

Fig. 2. Meteorological and water management data relative to the field phenotyping experiment during the 2011 summer season. Black arrows represent 
the airborne image acquisition dates (dates 1, 2, 3). Air temperature, VPD and wind speed are averaged for each day.

Table 1. Environmental conditions for each image acquisition 
datea

Variable Units Date 1 Date 2 Date 3

Solar time hh:mm 10:00 10:00 09:20
Rg W m–2 770.67 (3.27) 599.27 (102.85) 705.00 (0.00)
T°air °C 26.91 (0.19) 26.58 (0.33) 26.85 (0.49)
RH % 58.72 (0.75) 27.96 (0.33) 31.80 (1.86)
VPD kPa 1.47 (0.04) 2.51 (0.06) 2.41 (0.14)
u m s–1 1.99 (0.36) 1.73 (0.28) 0.78 (0.32)

Ψs WW MPa –0.022 (0.012) –0.046 (0.039) –0.024 (0.036)

Ψs WS MPa –0.031 (0.021) –0.078 (0.037) –0.130 (0.048)

a Atmospheric values are means (and SD) over intervals of 12 min, 
corresponding to three periods of flight over the experimental plot. 
ψs values are average measurements taken at soil depths of 30 and 
60 cm for six WW trees and six WS trees just before the flights.
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were performed using a Fluke 574 hand-held infrared thermometer 
(Fluke Corporation, Everett, USA) with a resolution of 0.1°C and a 
precision of 0.75°C.

Measurement of stem water potential
Stem water potential was chosen for use as a measure of the trees’ 
water status (Doltra et  al., 2007). Measurements of stem water 
potential (ψH stem) were performed using a pressure chamber 
(Model 3005 Soilmoisture Equipment Corp., Santa Barbara, USA) 
on 12 trees on dates 1 and 2 and on 20 trees on date 3. Shaded leaves 
located near the trunk were selected and confined in a plastic bag 
covered by aluminium foil for 2 h before the measurement to stop 
transpiration and eliminate any water potential gradient between the 
leaf, stem, and branches (Goldhamer and Fereres, 2001). Pressure 
chamber measurements began immediately after the airborne image 
acquisitions, and required 1–1.5 h to accomplish.

Spectral image preprocessing and vegetation index 
computation
The image preprocessing operations were performed with Erdas 
Imagine 9.3 software (Intergraph Corporation, Huntsville, USA). 
A vignetting correction was applied to the NIR images according 
to the method described by Lebourgeois et al. (2008). Geometric 
distortions in the RGB and NIR images were corrected using ortho-
rectification based on a second-order polynomial model and the 
geo-located aluminium targets as references. To correct the effects 

of  (i) differences in solar radiation on the different dates and (ii) a 
quicker shutter speed on date 1 for the NIR camera, a radiometric 
normalization based on invariant field targets was performed for 
dates 1 and 3 in each spectral band, with date 2 as a reference, so 
that the acquisitions would be comparable from one date to another.

After orthorectification based on both the RGB and NIR images 
and the geo-located aluminium targets, the TIR images were cor-
rected for atmospheric effects using ground surface temperatures 
acquired for the bare soil and hot and cold targets, as described previ-
ously. Ts–Ta images were obtained by subtracting the air temperature 
acquired simultaneously from each pixel value of the TIR images.

The normalized difference vegetation index (NDVI; Rouse et  al., 
1973) was used to estimate the crop cover fraction and was calculated 
as follows: NDVI = (NIR – R) / (NIR + R), where R and NIR are 
the digital values recorded by the cameras in the red and near-infrared 
bands, respectively. Bidirectional reflectance distribution heterogeneity 
was generally assumed to be effectively normalized through band ratio 
indices (Colwell, 1974). In our case, the images were acquired at 10:00 
GMT (high sun elevation), with a limited lens field of view (35 mm); 
thus, the calculated NDVI was assumed to limit most of these direc-
tional effects. As NIR and R corresponded to DN, the range of NDVI 
values obtained in this study did not correspond well to the typical val-
ues mentioned in the literature for NIR and R that correspond to reflec-
tance values. The spatial resolution of the NDVI images was degraded 
from 3 to 30 cm to match the TIR image resolution on dates 1 and 2 and 
from 3 to 40 cm to match the TIR image resolution on date 3.

For each of  the 520 trees, a zone of  interest larger than the 
crown, common to each of  the three dates and containing balanced 

A

B

C

D

WW row

Hot target

WS row

Aluminium targets

Cold target

Zone of interest
(pixels scatterplot) 60 cm radius buffer

(mean values)

Fig. 3. NDVI (A, C) and Ts–Ta (B, D) images of the apple orchard on date 2. Zones of interest, larger than individual tree canopies, were manually drawn 
and merged to compute the field study mask, with delineation based on NDVI images (C) and then applied to Ts–Ta images (D). For each individual tree, a 
60-cm-radius buffer (representative zone) was located at the tree centre.
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proportions of  ground and tree vegetation, was manually drawn to 
serve as a study mask (Fig. 3). This study mask was used to avoid 
the influence of  the distribution of  the scatterplot in the determina-
tion of  the left and right envelopes, using a statistical method to 
limit the weight of  dry grass or bare soil pixels for the inter-rows. 
After merging the 520 zones, the pixel values of  NDVI and Ts–Ta 
were extracted from the resulting mask of  the whole field plot and 
used to obtain the VIT scatterplot for each date. Representative 
NDVI and Ts–Ta values were also extracted for each individual tree 
from a circular buffer with a 60-cm radius around the centre of  the 
tree. Given the 30 or 40 cm resolution of  the images, each buffer 
contained 12–16 pixels. For each tree, mean NDVI and Ts–Ta were 
used to compute statistical and theoretical WDI values (hereafter 
referred to as WDI_qr and WDI_t, respectively) for each tree and 
each date.

Theoretical approach to WDI calculation
In the theoretical VIT approach developed by Moran et al. (1994), 
vertices of the trapezoid constitute four extreme states of vegeta-
tion cover and water status, as described previously (Fig. 1). WDI 
is computed as the ratio of distances AC/AB, where AC and AB 
correspond to [(Ts–Ta) – (Ts–Ta_min)] and [(Ts–Ta_max) – (Ts–Ta_min)], 
respectively. (Ts–Ta_min) and (Ts–Ta_max) represent the wet and dry 
references, respectively, of WDI. These temperature references 
depend on the NDVI value (Fig.  1). For each vertex, the (Ts–Ta)i 
value (the subscript i refers to vertices 1 to 4 in Fig. 1) is based on 
physical energy balance equations and can be computed as follows:

For well-watered dense vegetation:
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where ra is the aerodynamic resistance (s m–1), Rn is the net radiation 
(W m–2), G is the soil heat flux density (W m–2), Cv is the volumetric 
heat capacity of air (J °C–1 m–3), γ is the psychrometric constant (kPa 
°C–1), rcp and rcx are the canopy resistances to vapour transfer for fully 
transpiring and fully stressed cover, respectively (s m–1), VPD is the 
air vapour pressure deficit (kPa), and Δ is the slope of the saturated 
vapour pressure–temperature relationship (kPa °C–1). The parameters 
γ and Δ are computed from equations in the FAO 56 database.

For water-stressed dense vegetation:
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For water-saturated bare soil, where canopy resistance rc = 0:
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and for dry bare soil, where rc = ∞:
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The net radiation Rn was computed from the classical expression 
for the surface radiation budget:

 R R R Tn g a s= −( ) × + −1 4α εσ  (5)

In eqn 5, α is the surface albedo [assumed to be equal to 0.18, 
0.16, and 0.24 for vegetation, saturated bare soil, and dry bare soil, 
respectively, according to Bsaibes et al. (2009)], Rg is the incoming 
shortwave solar radiation (W m–2), Ra is the atmospheric radiation, 
computed as described by Brutsaert (1975) and equal to 0.83 for our 
conditions, ε is the surface emissivity (0.98, 0.95, and 0.92 for vegeta-
tion, saturated bare soil, and dry bare soil, respectively; Fuchs and 
Tanner, 1968; Mira et al., 2007), σ is the Stefan–Boltzmann constant 
(5.67 10–8 W m–2 K–4) and Ts is the radiative surface temperature (K). 
The soil heat flux density G was computed from Rn with G equal to 
0.15 × Rn for vegetation, 0.3 × Rn for saturated bare soil and 0.5 × 
Rn for dry bare soil (Idso et al., 1975).

The aerodynamic resistance ra in eqns 1 to 4 was computed as 
defined by Thom and Oliver (1977). The equation proposed by these 
authors is well suited to low-wind speed conditions (Jackson et al., 
1988) and was therefore adopted for use in this study because the 
measured wind speed u was always less than 2 m s–1 during the image 
acquisitions (see Table 1):
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In eqn 6, z is the anemometer height (3.2 m), u is the wind speed 
(m s–1), d is the zero-plane displacement (e.g. for apple trees, 2.49 m; 
Mihailović et al., 2010), z0 is the roughness parameter (e.g. for apple 
trees, 0.24 m; Mihailović et al., 2010), and h is the maximum vegeta-
tion height (3.5 m). The values rcp and rcx depend on stomatal closure 
and can be determined from the stomatal resistance (rs) and the maxi-
mum leaf area index (LAI): rc = rs / LAI (Moran et al., 1994). A value 
of 4 was assumed for the maximum LAI. The minimum stomatal 
resistance in the WW condition (rcp) was taken to be 38 s m–1 [cv. 
Granny Smith in Liu et al. (2012)] and the maximum value was taken 
to be 1171 s m–1 in the WS condition (rcx) (team data, unpublished).

Statistical approach to WDI calculation
Quantile regression is a method for describing the relations between 
variables for all portions of a probability distribution (Koenker and 
Bassett, 1978). This method was used in this study in order to eas-
ily define wet and dry references of the trapezoid envelope of Ts–Ta 
vs NDVI for each acquisition date. The left and right boundaries 
(oblique lines 1–3 and 2–4 corresponding to the wet and dry refer-
ences, respectively, as shown in Fig. 1) were obtained by calculating 
the quantile regression of Ts–Ta as a function of NDVI. We applied 
six quantile levels for the left (0.1, 0.5, 1, 2, 3, and 4%) and right (99.9, 
99.5, 99, 98, 97, and 96%) boundaries, thereby delimiting 99.8, 99, 98, 
96, 94, and 92% of the scatterplot. The horizontal upper and lower 
limits of the scatterplot were determined from the maximum and 
minimum observed values of NDVI. WDI values were calculated 
for each pair of left and right boundaries obtained from the differ-
ent quantiles and designated as WDI_n (n representing the interval 
percentage). The calculations were carried out using the quantreg 
software package (R Development Core Team 2008), developed by 
Koenker (2008).

Statistical analysis
Analyses were performed for 464 trees, i.e. for 116 genotypes repli-
cated four times. Six genotypes, for which one of the four replicates 
died, were not taken into account. All the experimental data were 
analysed with the R software v.2.13.2. After normality and homo-
scedasticity tests, analyses of variance (ANOVA) were performed to 
test (i) the effect of WDI computation method on responses of WW 
and WS trees, (ii) the drought effect at each date for NDVI and the 
different water stress indicators, and (iii) the date effect on WW and 
WS trees for the same variables. The quality of the linear regres-
sions between Ts–Ta, WDI_qr and WDI_t and the plant stem water 
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potential was assessed using the coefficient of determination (R2) for 
each date and all dates confounded.

Results

VIT trapezoid envelope computation

Plots of NDVI versus Ts–Ta for the three dates are presented 
in Fig. 4 for each pixel of the study mask (VIT scatterplot: 
grey points). The theoretical method was applied to deline-
ate the VIT scatterplot for the three image acquisition dates 
(Fig. 4 A, C, and E, respectively). The left boundary correctly 
delineated the scatterplot (grey points) for dates 1 and 2 only 
(Fig. 4A and C). In contrast, the left boundary overlapped the 
scatterplot for date 3 (Fig. 4E), excluding approximately one 
quarter of the scatterplot. The right boundary delineated the 
right part of the scatterplot satisfactorily for date 3 (Fig. 4E) 
but overlapped it for dates 1 and 2 (Fig. 4A and C). The theo-
retical left and/or right boundaries did not satisfactorily delin-
eate the scatterplot for any of the acquisition dates. However, 
for dates 1 and 2, the majority of the points representing the 
average values of NDVI and Ts–Ta per tree (white and black 
circles) were included in the trapezoid. In contrast, for date 3, 
a number of the average values of NDVI and Ts–Ta for the 
WW trees were located outside the left border of the theoreti-
cal envelope, leading to out-of-range WDI values (see below).

With the statistical method (Fig. 4B, D, and F), various 
trapezoid limits were obtained depending on the quantile 
levels used. Lines delimiting the left and right boundaries 
overlapped the scatterplot slightly, increasingly as the per-
centage of  the scatterplot used in the quantile regression 
decreased. However, for each date, the computed boundaries 
delimited all the average values of  NDVI and Ts–Ta per tree. 
The left boundaries obtained with the different quantile lev-
els used in the regression converged at the upper left part of 
the scatterplot (corresponding to vertex 1; see Fig. 1) while 
the right boundaries diverged at the upper right part of  the 
scatterplot for each date (vertex 2, Fig. 1). The values for the 
WW trees were mostly located in the upper left part of  the 
scatterplot, near the convergence point (Fig. 4B, D, and F). 
In contrast, the values for the WS trees were located in the 
upper right half  of  the scatterplot, near the different right 
boundaries whose divergences could affect the WDI values 
of  the WS trees. When different water regimes were estab-
lished, on dates 2 and 3, data points corresponding to WW 
and WS trees appeared clearly separated.

Influence of left and right boundaries

Influence of the trapezoid boundaries, obtained using the sta-
tistical method, on WDI distribution and mean values was 
studied for each date for the WW and WS trees using box-
plots (Fig. 5A, C, and E; and Fig. 5B, D, and F, respectively). 
Regardless of the unsatisfactory results obtained using theo-
retical trapezoid delineation, the WDI_t values obtained were 
also included in these comparisons.

The ranges of tree WDI values obtained by the theoretical 
method (WDI_t) were larger than the ranges obtained from 

the different quantile regressions for date 1 (Fig. 5A and B) 
and were comparable to the ranges of WDI_92 values for 
dates 2 and 3 (Fig. 5C, D, E, and F). The means of WDI_t 
values were significantly higher than those of the different 
WDI_qr values for dates 1 and 2, whatever the water regime 
(Fig. 5A, B, C, and D), and lower for date 3 (Fig. 5E and F). 
The low and even negative values of WDI_t obtained in WW 
trees for date 3 can be explained by the overlapping of the left 
theoretical boundary on a portion of the points correspond-
ing to the WW trees (Fig. 4E). The mean WDI_t presented 
inconsistent values regardless of the water treatment applied: 
the mean values obtained on date 1 for the WW and WS trees 
(0.55 and 0.57), before water stress, were unexpectedly greater 
than that for the WS trees (0.38) on date 3 (when water stress 
was well established).

The range of statistical WDI values computed from the dif-
ferent quantile regression (WDI_qr) for each date decreased 
as the percentage of the scatterplot taken into account 
increased, for both the WW and the WS trees. When only 
the mean WDI_qr value of each quantile was considered, no 
significant differences were observed for the WW trees for any 
of the three dates (Fig.  5A, C, and E) or for WS trees for 
the well-watered conditions on date 1 (Fig. 5B). In contrast, 
on dates 2 and 3, the mean WDI_qr values of the WS trees 
decreased significantly when the percentage of the scatterplot 
increased (Fig.  4D and F). It remained nevertheless higher 
than in WW trees.

Influence of environmental conditions: drought and 
date effects

The effects of irrigation regime and observation date on WW 
and WS trees are presented in Table 2, considering different 
phenotypic variables. As these effects were similar on all the 
WDI_qr values, only the WDI_qr computed for the maxi-
mum and minimum quantile used are presented.

The drought effect was tested considering the different 
experiment dates separately. For date 1 (DOY 172), where 
irrigation regime in WW and WS tree was not differentiated 
(see ψs in Table 1), no significant differences were observed 
for any of the variables. The effect of drought was significant 
only for date 3 for NDVI with lower value for WS trees. The 
drought effect was significant (P ≤ 0.001) for dates 2 and 3, 
with an increase in the values of each variable related to water 
status, Ts–Ta, WDI_qr, and WDI_t.

The date effect is analysed thereafter for WW and WS trees 
separately (Table 2). For NDVI, a date effect was observed, 
with a significant increase of mean values from date 1 to 
date 3, whatever the water regime. The temporal increase of 
NDVI values between these dates was slightly less in WS trees 
(+0.024) than in WW trees (+0.039). Concerning Ts–Ta, the 
mean value observed for date 1 for WW trees (about 6°C) 
was more elevated than those observed on the same trees for 
dates 2 and 3 (nearing 0°, Table 2). Ts–Ta mean values of WS 
trees for dates 2 and 3, where WS trees were submitted to 
soil drought, presented similar and non-significantly different 
values with date 1 (around 6°C), where WS trees were still 
irrigated.
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A significant date effect was observed for the different 
WDI computation methods (Table  2). For WW trees, sig-
nificant variations were observed, the lowest WDI values 
being observed for date 2 (0.22). For WS trees, a significant 
increase of  mean WDI_qr was observed on dates 2 and 3 
compared to date 1. For WDI_92, mean value was slightly 
but significantly higher for date 2 than for date 3 (0.65 and 
0.62, respectively) while the WDI_99.8 mean values were 

equal for dates 2 and 3. WDI_t also presented a date effect 
for WW and WS trees. As stated previously in Fig. 4, this 
variable showed meaningless variations. Mean WDI_t 
decreased significantly in the WW trees, from date 1 to date 
3, while it was significantly higher for date 2 in the WS trees. 
Mean WDI_t value of  WS trees for date 3 was significantly 
lower than the value obtained for date 1, where WS trees 
were still well-irrigated.
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Fig. 4. Envelopes of VIT trapezoids obtained using the theoretical approach (A, C, and E) and quantile regression (B, D, and F) for the three flights over 
the field plot on dates 1 (A, B), 2 (C, D), and 3 (E, F). Grey points represent pixel values inside the study mask for NDVI (y-axis) and Ts–Ta (x-axis). Black 
and white circles represent the average y/x values for individual WW and WS trees, respectively.
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Image-based stress indicators versus stem water 
potential (ψH stem)

Linear regressions of ψH stem against Ts–Ta, WDI_qr, and 
WDI_t were established for a subset of 12 trees for date 1 (all 

well watered), six WW and six WS trees for date 2, and 10 
WW and 10 WS trees for date 3 (Fig. 6). For date 1 (Fig. 6A 
to D), Ts–Ta, WDI_qr, and WDI_t were not correlated with 
ψH stem, whose range of variation was very limited (–0.70 
to –1.35 MPa) because WS trees were not yet submitted to 
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Fig. 5. Distribution of WDI values (116 genotypes × 2 replicates) for the theoretical (theo) and statistical (quantile regression using 92–99.8% of scatter 
plot) methods for the three dates: dates 1 (A, B), 2 (C, D), and 3 (E, F), and for the two irrigation regimes, WW and WS. Each box plot shows the median 
value, the 1st and 3rd quartiles, and the 1st and 9th deciles. Mean values of WDI are represented by closed black circles inside box plots. For each 
irrigation regime and each date, lower-case letters identify mean WDI values that are significantly different from each other (NK test; α = 0.05).

Table 2. ANOVA testing the soil drought and date effects for WW and WS trees on NDVI, Ts–Ta, WDI_92, WDI_99.8, and WDI_t variables*

NDVI Ts–Ta WDI_92 WDI_99.8 WDI_t

Date 1 WW 0.072 (0.023)c 6.05 (1.87)a 0.36 (0.11)a 0.34 (0.07)a 0.55 (0.13)a

WS 0.074 (0.025)C 6.08 (1.84) 0.37 (0.09)C 0.34 (0.06)B 0.57 (0.11)B

Drought effect ns ns ns ns ns
Date 2 WW 0.090 (0.022)b 0.38 (1.00)b 0.22 (0.07)c 0.22 (0.05)c 0.27 (0.08)b

WS 0.087 (0.027)B 6.01 (1.67) 0.65 (0.09)A 0.52 (0.07)A 0.75 (0.10)A

Drought effect ns *** *** *** ***
Date 3 WW 0.111 (0.024)a –0.37 (0.92)c 0.25 (0.08)b 0.27 (0.04)b 0.00 (0.07)c

WS 0.098 (0.031)A 5.81 (1.54) 0.62 (0.09)B 0.52 (0.05)A 0.38 (0.10)C

Drought effect *** *** *** *** ***

Date effect WW *** *** *** *** ***
WS *** ns *** *** ***

* Values are means (and SD) for the water regimes for each date. Significant P-values are represented as follows: * for P ≤ 0.05, ** for P ≤ 
0.01 and *** for P ≤ 0.001; ns, not significant. According to the post-hoc Student-Newman-Keuls test (α = 0.05) different letters indicate when 
significant differences exist between dates for each variable, lower-case and upper-case letters being relative to WW and WS trees, respectively.
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water stress. Linear regressions between ψH stem and Ts–Ta 
showed significant negative correlations once water con-
straint was established on the WS population (for dates 2 and 
3; Fig. 6E and I). Similarly, on the same dates, WDI_qr and 
WDI_t were significantly correlated with ψH stem (Fig. 6F, G, 
and H and Fig. 6J, K, and L) regardless of the computation 
method considered. For date 2 (Fig. 6E to H), i.e. for condi-
tions of moderate water constraint, the R2 values correspond-
ing to the regressions between ψH stem values and those of 
image-based indicators were significant (P ≤ 0.01) and ranged 
between 0.56 and 0.61. For date 3 (Fig. 6I to L), i.e. for con-
ditions of more severe water constraint, leading to a larger 
range of ψH stem values, R2 was 0.76 for Ts–Ta, 0.79 for 
WDI_92 and WDI_99.8, and 0.80 for WDI_t. All these cor-
relations were highly significant (P ≤ 0.001). When the data 
set was considered all dates confounded, linear regression 
between ψH stem and Ts–Ta showed less significant correla-
tion (Fig. 6M; P ≤ 0.01; R2 = 0.19) than regression between 

ψH stem, and WDI_qr (Fig. 6N–O; P ≤ 0.001; R2 = 0.52 to 
0.57) while correlation between ψH stem, and WDI_t was no 
more significant (Fig. 6P; R2 = 0.06).

Discussion

Remotely sensed images were acquired for different dates 
and irrigation regimes at an altitude of 300 m, and the whole 
orchard trial was covered by one or two TIR images with a 30- 
to 40-cm pixel size. This intermediate image resolution made 
it possible to phenotype the whole experimental plot using a 
series of snapshots and to work at the tree level, with individu-
als distinguishable from each other (Berni et al., 2009).

Limits of Ts–Ta as a water stress indicator

The canopy surface temperature considered for each tree was 
an average of numerous leaf temperatures, located within a 
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representative canopy central zone, thus buffering the effects 
of leaf angular distribution (Jones et al., 2009). Indeed it is 
often preferable to use thermal measurement of the canopy 
surface instead of particular leaves (Maes and Steppe, 2012).

When the experiment dates were considered separately, the 
mean Ts–Ta values of WS trees compared to those of WW 
trees were consistent with the irrigation regime applied and 
showed a significantly higher canopy temperature when water 
was withheld. Differences between mean Ts–Ta of  WW and 
WS trees were consistent with the diminution of soil water 
potential ψs, thus enabling discrimination between water-
constrained and well-irrigated trees.

Nevertheless, as described in the literature (Maes and 
Steppe, 2012), our results also highlighted difficulties in the 
interpretation of Ts–Ta variations across time. Indeed, sur-
face temperatures for date 1 were higher than those observed 
later, particularly in WW trees. This probably resulted from 
the lower evaporative demand for date 1 (VPD = 1.47 kPa) 
compared to dates 2 and 3 (VPD = 2.51 and 2.41 kPa, respec-
tively), while Ts–Ta was lower for dates 2 and 3 in WW trees, 
as a likely consequence of higher transpiration rates. As the 
effect of soil drought was opposite, with a 6°C temperature 
rise in WS compared to WW trees for dates 2 and 3, both 
effects could compensate, explaining why Ts–Ta revealed no 
significant differences between dates in the WS treatment. As 
a consequence, this sole stress indicator is not reliable for tem-
poral analysis of soil drought response.

Another point described in the literature concerns the pro-
portion of soil viewed through the vegetation which can be 
a source of error in interpretation of Ts–Ta (Jackson et al., 
1981; Moran et  al., 1994). Tree values of Ts–Ta were aver-
aged inside a buffer zone of 60 cm radius. Presence of soil and 
mixed pixels inside this buffer zone, due to genotypic differ-
ences in vegetation cover fraction and structure, can create a 
bias in estimation of water status for the smallest trees or in 
those whose architecture is porous. As the raw Ts–Ta variable 
is not corrected from soil temperature, this can be a source of 
error in phenotypic analyses (White et al., 2012).

Limits of the WDI theoretical approach

In our conditions, applying the theoretical method for delin-
eating the VIT scatterplot did not yield satisfactory results. 
For the three dates of the experiment, the theoretical enve-
lopes overlapped either the left or the right border of the 
VIT scatterplot. Computation of WDI_t produced values 
that were underestimated and out of the expected range for 
date 3. Although a theoretical approach enabled relative com-
parisons of WS and WW trees for a given date, comparisons 
between dates yielded contradictory results.

These difficulties may be explained by heavy model imple-
mentation and numerous sources of error caused by esti-
mation of some parameters, especially in the context of 
high-throughput phenotyping. The energy transfer between 
soil and vegetation can differ between the full-cover fraction 
of a field crop and the partial-cover vegetation of an orchard. 
Heilman et al. (1996) suggested that a large variation in the 
soil energy balance (vertices 3 and 4, Fig. 1) can result from its 

sensitivity to the wind speed u, the aerodynamic resistance ra, 
and the surface temperature Ts when crops are trellised and/
or organized in rows. This is typically the case in an orchard 
or a vineyard (Galleguillos et  al., 2011). Moreover, the net 
radiation Rn, which depends on the albedo a and emissivity 
ε, is sensitive to the surface composition and row orientation 
(Van de Griend and Owe, 1993; Zarco-Tejada et al., 2005). 
Another limit to the application of the theoretical determi-
nation of WDI for the purpose of phenotyping is the archi-
tectural variability of the vegetation cover at the individual 
plant level. Indeed, the trees differed in height (1.5 to 3.5 
m) and in vegetation density (0 < NDVI < 0.18). One way 
to improve the theoretical energy balance model for a het-
erogeneous population would be to parameterize this model 
for the most contrasted genotypes in response to water con-
straints. Nevertheless, implementing the theoretical model 
would require a previous identification of extreme genotypes 
of the population before phenotyping and measurements of 
the canopy physical characteristics (the aerodynamic and sto-
matal resistance, ra and rs, the height, h, the net radiation, Rn, 
and the soil heat flux, G).

Contribution of the statistical approach

Quantile regression enabled scatterplot delineation at each of 
the three dates of experimentation. Our results showed that 
the quantile percentage of the scatterplot used to define the 
left and right boundaries influenced the WDI values. A reduc-
tion in the scatterplot percentage resulted in an increase in the 
range of variation of WDI values and a significant increase in 
the mean WDI values for trees submitted to water constraints 
(Table 2). These variations can mainly be attributed to diver-
gence of the right limits at the upper right side of the scatter-
plot. Like WDI_t and Ts–Ta, WDI_qr enabled differentiation 
between WW and WS trees when a contrasting irrigation 
regime was applied at a given date (dates 2 and 3), whatever 
the quantile applied. Moreover, use of WDI_qr as a stress 
indicator in WS trees produced mean tree values that were 
consistent with evolution of ψs for the three dates (Table 1) 
compared to values of WDI_t and Ts–Ta.

Assessing the WDI_qr values in more depth would require 
the determination of the actual to maximal evapotranspira-
tion ratio for each tree of the population in the orchard, which 
seems unrealistic. Nevertheless, the statistical method used to 
delineate the VIT trapezoid yielded typical WDI values for 
the trees, in the range of 0 to 1, at least for the quantile panel 
tested. Moreover, quantile regression was relatively easier to 
implement in regard to the theoretical method.

Water stress indicator and sensitivity to environmental 
conditions

For apple trees, ψH stem constitutes a robust estimator of plant 
water status (Naor 2006; Doltra et al., 2007). In our case, on 
dates 2 and 3, which presented contrasting hydric conditions, 
the stem water potential was well correlated with the differ-
ent water stress indicators (Ts–Ta, WDI_92, WDI_99.8, and 
WDI_t). However as described in the previous section, Ts–Ta 

 by guest on February 28, 2015
http://jxb.oxfordjournals.org/

D
ow

nloaded from
 

http://jxb.oxfordjournals.org/


5440 | Virlet et al.

and WDI_t values were inconsistent with soil drought for some 
dates. This resulted in a poor correlation of these indicators 
with stem water potential when all dates were confounded 
(Fig. 6). Concerning WDI_qr, although variation in the quan-
tile levels could impact its values, the quality of the relationship 
between ψH stem and WDI_qr was little affected, considering 
dates 2 and 3 separately. For a temporal comparison WDI_qr 
thus appeared as the most robust index as shown by the highest 
correlation with ψH stem in comparison to Ts–Ta and WDI_t.

Stable WDI_qr values computed for the WS trees for 
dates 2 and 3 were not fully consistent with the variations of  
ψH stem, which indicated increasing water stress in the WS 
trees between these two dates, and revealed a possible under-
estimation of the water stress by WDI_qr at date 3. One pos-
sible explanation is the time of image acquisition, which was 
slightly earlier in the day on date 3 (9:20 GMT) than on date 
2 (10:00 GMT), i.e. at an earlier phase of daily stomatal regu-
lation for date 3, while subsequent measurement of the stem 
water potential reflected the daily minimum ψH stem in both 
cases. Another possibility is that the development of the fruit 
sink strength increasingly stimulated photosynthetic activity 
and carbon acquisition, allowing a concomitant continuation 
of transpiration and a decrease in ψH stem; low midday stem 
water potentials in apple trees, decreasing with increasing crop 
loads, have been shown by Naor et al. (2008). This can cre-
ate an upper limit on the highest WDI values observed, even 
after water stress was established. A  third possibility is the 
influence of a lower soil water potential ψs at date 3 than at 
date 2 (see Table 1), producing a shift in ψH stem toward more 
negative values. These three hypotheses are non-exclusive.

Conclusion

This study confirmed that thermal infrared imagery con-
tributes interestingly to the phenotyping of crop response 
to water stress. Based on multispectral images acquired, the 
VIT concept constitutes a relevant approach that takes the 
environmental conditions and vegetation cover fraction into 
account. Moreover it allows a characterization of the water 
status of a whole tree population with heterogeneous archi-
tectural traits and an irregular cover fraction. To avoid the 
difficulties of parameterization of the theoretical WDI model 
and allow more operational phenotyping, a simplified statisti-
cal approach based on quantile regression has been proposed 
to delineate the boundaries of the VIT scatterplot needed for 
WDI computation. Regardless of the percentage of the scat-
terplot used (from 92 to 99.8%) to delineate the VIT trap-
ezoid, the resulting WDI_qr was well correlated to the stem 
water potential.

Unlike with a WDI theoretical approach or Ts–Ta, a WDI 
statistical approach produced values consistent with tempo-
ral variations of  water status. The range of  WDI_qr values 
(0.20 to 0.65) indicates its sensitivity to water constraint, 
and a next step will be exploring the genetic variability of 
this response within the tree population. Further investiga-
tions will also attempt to evaluate the daily dynamics of 
stomatal regulation of  the 122 hybrids in response to water 

constraints through yielding successive images during the 
same day and assessing the potential of  a WDI statistical 
approach at this time scale. This analysis could contribute 
to discriminating the genotypic stomatal behaviours (isohy-
dric vs anisohydric). Thanks to its relatively simple imple-
mentation, the quantile regression approach shows promise 
as an efficient tool for thermal imagery and use in pheno-
typing studies.
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