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A damping phenomenon in viscoelastic fluids 
 
X. Frank, N.Dietrich and Huai Z. Li 
 
Abstract– Flow fields behind a sphere settling in polymeric fluids are investigated using 
aParticle Image Velocimetry (PIV) technique. Complex features including both a negative 
wakeand a surrounding cone are quantified. In particular, an oscillation zone, which takes 
place behindthe negative wake, is identified for the first time. A physical understanding of 
various phenomenainvolved in the wake is gained. The damping phenomenon can be 
attributed to the viscoelasticproperties and the surrounding cone stems from a propagation 
frontof lateral viscoelastic waveemitted by the settling sphere. The oscillationfrequency and 
open angle of the surrounding coneare theoretically related to a viscoelastic Mach number. 
Satisfactory agreement with experimentsis observed. 
 
Introduction. –The classical description of themechanical properties of fluids and materials at 
macro-scopic scale is usually based on two distinct behaviors:the viscous fluid [1] and the 
elastic solid [2]. However,most natural materials are viscoelastic and exhibit both.For example, 
Maxwell was among the pioneers to com-bine both basic concepts for the description of real 
ma-terials, such as the respective contribution of liquid andsolid according to applied stresses 
[3]. A central pa-rameter to be considered is then the relative time scalebetween deformation 
duration and materials’ relaxationtime. When imposed deformations are long enough toallow 
stresses to relax, materials display simple viscousproperties. Otherwise, the application of 
deformationsis shorter than stresses’ relaxation, materials behave asan elastic solid [4]. Since 
the early linear model ofMaxwell [3], viscoelastic fluids arose many intriguing ques-tions. 
Moreover, the viscoelastic character of fluids playsthe main role in such diverse fields as human 
tissues andpolymers [5], swimming microorganisms [6,7], volcaniceruption [8], decompression 
sickness [9], besides numerousindustrial applications [10].Among peculiar phenomena due to 
the viscoelastic-ity, the negative wake behind a settling sphere was ob-served for the first time 
by Hassager [11]. As the main flow pattern around a sphere settling in a purely 
viscousNewtonian fluid is downward in the neighborhood of thesettling axis, the flow behind 
a sphere settling in a vis-coelastic fluid can be surprisingly upward to form a so-called negative 
wake [12]. More recently, a global viewof such a wake was obtained by PIV measurements 
inthe case of polymer solutions [13], suspensions [14] andgels [15]. In all cases, the negative 
wake is largely ex-tended backward and is surrounded by a conical downwardflow zone. The 
question of the physical origin of the nega-tive wake gave rise to a controversial debate 
[12,16,17], themain role being successively attributed to various rheologi-cal features. 
Recently, a lattice Boltzmann model, coupledwith a simple linear rheological model, was able 
to repro-duce the main features of the flow [18], including the sur-rounding downward cone. 
This work clearly demonstratedthat the negative wake stems from the fluid’s viscoelastic-ity, 
as it appears when the Deborah number, which is theratio between materials’ relaxation time 
and deformationduration, reaches a thresholdDe≥2. When the nega-tive wake does exist, the 
opening angle of the surroundingdownward cone decreases with increasing sphere 
settlingvelocity, as observed in our previous experiments [13].However, the long-range 
behavior in the negativewake remains unexplored yet. Such a point is crucial inmany 
applications, as long-range interactions are respon-sible for bubble coalescences in chemical 
and biological reactors [19] and eruption violence in volcanoes [8], and lead to the structuration 
of particle suspensions in viscoelastic fluids [20]. The present work aims at capturing a better 
understanding of the flow pattern far away from the settling sphere. 
 



 
 

 
 
Experiments. – To investigate flow fields around a solid sphere settling in viscoelastic fluids, 
polyacrylamide (PAAm, AN 905 SH, SNF Floeger, France) solutions of three different 
concentrations, 0.25%, 0.5% and 1% (wt), were used. For a broad range of shear rates ( ˙γ = 
0.01 to 500 s−1), the Carreau model η−η∞ η0−η∞ = [1 + (λγ˙)2] (n−1)/2 fits well the non-
Newtonian viscosity η and a powerlaw model N1 = m [ ˙γ] n fits satisfactorily the first normal 
stress difference N1. Rheological parameters are summarized in table 1. Spheres of various 
diameters (5 to 20 mm) and materials (steel, glass and ceramic) were employed to reach a wide 
range of settling velocities in three square columns of various dimensions: 0.18 m large and 1 
m high, 0.12 m large and 0.70 m high and 0.06 m large and 0.50 m high. Instantaneous velocity 



fields around a settling sphere were measured using a PIV (Dantec Dynamics, Denmark) device 
with the help of fluorescent seeding particles with a mean diameter of 15 μm. Numerous 
experimental investigations through both the PIV and drag coefficient in this work demonstrate 
that a ratio superior to 10 between the column size and the diameter of settling spheres is 
required to ensure negligible effects of the column walls. This is relevant compared to the 
reported results in the literature such as [21]. The experiments presented in this work were then 
based on an optimal compromise between the following factors: the measurement accuracy and 
measuring windows of the PIV; fluid’s nature; column size; spheres’ diameter and related flow 
fields. This approach was also validated and tested with flow around a gas bubble of different 
shapes rising in viscous Newtonian fluids with a maximum error of 4.7% [22]. The PIV device 
allowed also the determination of the instantaneous velocity of a sphere at different positions 
in the column as well as its terminal settling velocity vs. Due to the relatively high value of the 
viscosity of fluids used, it was observed that the acceleration of a sphere was quickly absorbed 
by the fluids and the terminal settling regime was then reached after a travel of 0.1 m from the 
release point. 
 
The flow fields around a sphere in the tested fluids have very peculiar features: the flow in the 
front of the sphere is very similar to that in the Newtonian case; in the central wake, the motion 
of the fluid is surprisingly upward in the opposite direction of the settling sphere; finally, a 
hollow cone of downward flow surrounds this negative wake. This conical downward flow 
zone begins on the sides of the sphere, and is largely extended backward (fig. 1(A), (B)). On 
the contrary, in the case of a Newtonian viscous fluid, the flow in the central wake is downward 
everywhere, as shown by a lattice Boltzmann simulation (fig. 1(C)) and experiments [14,23]. 
As the window size of the PIV is limited, we capture the long-range wake behind the settling 
sphere by continuously monitoring the flow fields after the leave of the sphere in an Eulerian 
framework. Besides the negative wake, another phenomenon not reported so far is observed: 
after the negative wake behind the sphere, a stagnant zone followed by another downward flow, 
and then again a stagnant zone followed by a new negative wake, and so on (fig. 2). This 
alternating pattern collapses progressively with increasing distance from the sphere. 
 



 
 
The alternating pattern at the rear of the sphere can therefore be represented as a damped 
oscillation. To understand the physical origin of such an oscillator, a more quantitative approach 
is required. Clearly, only the axial component z of the velocity fields is relevant to characterize 
such an oscillator. According to an Eulerian description of the velocity fields, the temporary 
evolution of the z component is recorded in a fixed point behind the sphere’s settling axis. The 
velocity variation exhibits a regular oscillation whose amplitude decreases with time and 
reaches zero as the settling sphere leaves away progressively from the measuring point (fig. 3). 
Obviously, observed damped oscillations are satisfactorily fitted by a linear Kelvin-Voigt 
model that is represented by a purely viscous damper and a purely elastic spring in parallel as 
shown (fig. 3). This implies that for the investigated range of viscoelastic fluids, a linear model 
can satisfactorily describe the damping phenomenon in the wake. 
 
 
Discussion. – As shown in our earlier numerical experiments, the negative wake exists only in 
viscoelastic fluids [18]. An interpretation of such oscillations could be based on the 
consideration of fluid elasticity. Let us consider a local fluid strain as γ ≈ δ rs , where rs is the 
sphere radius and δ a local fluid displacement. The resulting short-time viscoelastic stress can 
be deduced as ≈ Gγ ≈ G δ rs , where G is the fluid’s elastic modulus, and the volume force is ≈ 
G δ rs2 . Assuming that ρ is the fluid density, the inertial force is ≈ ρ d2δ dt2 and the local force 
balance leads to the following simple harmonic equation: d2δ dt2 + G ρrs 2 δ = 0. (1) A proper 
pulsation ω0 = G ρrs2 can be deduced from eq. (1). Moreover, a shear wave propagation 
velocity c = G ρ can easily be identified within this expression. The simplest dimensionless 
number that can be deduced from a wave propagation velocity is the well-known Mach number, 
which compares c and the translating source velocity vs, M = vs c = vs ω0rs . (2) 
 



 
Recently, shear waves were identified around a sphere settling in a viscoelastic fluid and sphere 
oscillations were attributed to reflection of such waves on column walls [24]. By means of both 
the PIV and the settling velocity to ensure a negligible effect of the column’s wall, wave 
reflections on walls can be excluded as a major parameter in the presented damping results. 
Thus, oscillations in the wake can be identified as an intrinsic manifestation of fluid 
viscoelasticity. Shear waves are normally expected to propagate from the settling sphere 
towards column walls; however the fluid is viscous enough and the column width sufficiently 
large to dissipate a significant amount of mechanical energy in possible reflected waves. The 
downward hollow cone could find the physical origin in the propagation of such elastic shear 
waves. If such an assumption is justified, the opening angle θ should depend only upon M. To 
check this point, we perform Lattice Boltzmann (LB) numerical simulations [25–27]. In our 
previous work, a simple LB model, associated with a linear viscoelastic model for the fluid 
properties, is able to predict the apparition of a negative wake and a surrounding cone [18] as 
with a non-linear constitutive rheological model including shear-thinning behavior [13,28]. 
Along with the successful description of the damping velocity by the linear model (fig. 3), it is 
reasonable to argue that the main features of the fluid behaviour could be captured by a linear 
Maxwell equation. With a limited number of parameters, this approach aims at gaining the main 
contribution of elastic properties that seem to govern the damping phenomenon. This facilitates 
to some extent a straightforward comparison with experimental damping results that display 



linear behavior, ∂τ ve i,j ∂t + 1 De τ ve i,j − 1 Reγ˙ i,j� = 0. (3) The Deborah number is defined 
as De = trvs ds , where tr is the fluid relaxation time, which should be distinguished from the 
characteristic time λ used in the Carreau model, The Reynolds number is defined as Re = ρdsvs 
η , where η is the fluid viscosity, τ ve i,j , is the viscoelastic stress tensor, γ˙ i,j is the shear rate 
tensor and i, j are tensor indices. Our previous works reveal that both the Deborah number and 
the Reynolds number contribute to the negative wake in viscoelastic fluids. Instead of only the 
Deborah number, we make then use of a combination of both of them which is nothing but the 
Mach number easily deduced as M = √DeRe. As η = trG, this expression and the one from eq. 
(2) are clearly identical. Details of this model can be found in the original paper [18]. If the 
conical downward flow stems from the elastic wave propagation, its opening angle depends 
upon M and should not depend upon the Re-De couple when M is fixed. To adress such a point, 
two simulation sets with two fixed values of M2 = DeRe were carried out. Within each set, De 
is varied, the condition De > 2 being satisfied in order to give rise to a negative wake, and Re 
is easily deduced as Re = M2/De. Flow fields from the LB simulation (fig. 4(B)) exhibit both a 
negative wake and a surrounding cone, which compare favorably with PIV experiments (fig. 
1(A)). 

 
 
Numerical simulations reveal that θ depends only upon M (fig. 4(A)) and corroborate the 
hypothesis that the surrounding cone is a viscoelastic wave front emitted by the settling sphere. 
Experimental values of M range from ≈ 0.3 to ≈ 3, and conical shockwaves are expected in 
flow fields only for M > 1. A conical shockwave opening angle can then be deduced from a 
Mach number, using the relationship sin (θ/2) = 1/M when M > 1. However, no qualitative 
difference appears in experimental results when the threshold occurs from M < 1 to M > 1. This 
confirms that a shockwave origin can be excluded. The hollow cone emerges from the 
propagation of elastic shear waves towards column walls, but cannot be identified as a 
shockwave. Shear rate at the surface of a sphere slowly translating in a fluid is not 
homogeneous. In the purely viscous fluid case, the maximum value of shear rate is mainly 
located at equatorial zones, according to the wellknown potential flow theory. According to our 
experimental PIV measurements and the LB simulation, this flow pattern around the sphere’s 
equatorial zone is quite similar between viscoelastic and Newtonian fluids. We can argue then 
that shear waves are essentially emitted from the sphere’s equatorial zone. The fluid is sheared 



in vertical direction, and, consequently, transversal shear waves propagate in horizontal 
direction, orthogonally to its vertical translating axis. As the source is translating during wave 
emission, the wave front forms a conical shape, whose opening angle depends upon wave 
propagation velocity c and sphere settling velocity vs through the viscoelastic Mach number 
M. If we consider a Δt time interval, the settling distance during such an interval is vsΔt and 
the wave propagation distance is cΔt. We can identify vsΔt as the cone height and cΔt as the 
cone radius. The angle θ can be easily computed as tan θ 2  = 1 M . (4) According to our earlier 
experimental investigations, the opening angle of the cone θ depends upon the sphere’s settling 
velocity, the cone is widely opened (θ ≈ 180◦) for a slow settling sphere, and θ decreases as the 
sphere velocity increases [13]. Such results could be easily explained following eq. (4) as the 
viscoelastic Mach number M increases with the sphere’s velocity vs. Using eq. (2), a value of 
M can be deduced from experiments. Then, experimental results can be satisfactorily described 
by this theory (fig. 5). As illustrated in fig. 5, experimental data and LB simulations are in good 
agreement with the prediction of eq. (4). The opening angle value is close to θ ≈ 180◦ for low 
values of M, and decreases with increasing M. It is worth distinguishing the lateral wave 
propagation from elastic shock transverse waves [29] or sonic boom [30]. In spite of an 
agreement when M > 2, the surrounding cone simply does not exist for M < 1 according to the 
shockwave theory. On the contrary, the lateral wave propagation theory describes satisfactorily 
the whole investigated range of M, in particular for M < 1. As a consequence, a better 
understanding is gained for the complex wake behind a sphere settling in viscoelastic fluids. 
Spheres translating in these fluids induce a shear, whose propagation towards column walls 
provokes a hollow cone. As viscoelastic stresses created by the shear relax progressively in 
fluids, a damping phenomenon takes place in the wake through a slowly dissipated viscoelastic 
oscillation. There is no direct causal relationship between damped oscillations in the wake and 
the hollow cone.  



 
 
While both the damped oscillations in the wake and hollow cone emerge from the fluids’ 
elasticity, a reliable correlation can be drawn between these phenomena. Concretely, the 
damped oscillations and the hollow cone are both related to the elastic shear wave velocity c = 
G ρ , through the proper pulsation ω0 on the one hand, and the viscoelastic Mach number M on 
the other hand. We have tried to assess quantitatively a possible analytical relationship between 
the damping frequency and experimental rheological data such as the relaxation modulus issued 
from a rheometer. The main difficulty arises from the length-scale–dependent rheology of 
polymer solutions that has yet to be fully described [31]. In a recent work reporting micro-
macro-discrepancies in nonlinear rheology [32], it is recognised that the Lagrangian unsteady 
forcing experienced by material elements in response to the moving colloidal probe for active 
microrheology induces spatial inhomogeneity of the strain rate. The resulting microrheology 
reflecting the bulk microstructure differs qualitatively and quantitatively from the macroscopic 
rheology. The damping frequency is determined by local solicitations at microscale exerted by 
a solid sphere, similar to a colloidal probe employed in characterizing microrheology. However, 
our experimental data concerning the relaxation modulus is a macroscopic parameter, measured 
by means of a standard geometry like Couette’s on the rheometer in an integral manner for the 
whole measuring sample. A modulus G at microscale would be required to allow a possible 
scaling as the rheological properties are sensitive to the length scales that determine both 
network structure and filament orientation of polymers in solution. Conclusion. – In summary, 



we throw new insight into the long-range wake behind a sphere settling in viscoelastic fluids. 
Both negative wake, in which the fluid flows upward contrary to the settling sphere, and its 
surrounding cone taking place around the negative wake, were amply demonstrated. In 
particular, we identify for the first time a zone just behind the negative wake in which 
oscillations appear. A linear dissipative oscillator model fits well the vertical component of 
fluid velocity in this new zone. Clearly, we show that oscillations in the wake can be attributed 
to the viscoelasticity of the fluid, and deduce then a viscoelastic Mach number. Furthermore, 
we demonstrate that the surrounding cone arises from the lateral propagation of a shear wave 
with respect to the settling axis, the sphere being the translating source. The experiments 
validate this proposal. These results could provide a benchmark solution for both academic and 
industrial studies where viscoelastic fluids are involved. 
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