

QTL mapping for wood chemical properties and saccharification potential in black

Background

DODIAL (*Populus nigra***)** Redouane El Malki1, Jean-Paul Charpentier1,2, Véronique Jorge1, Kévin Ader1,2, David Navarro3, Jean-Guy Berrin3, Jean-Charles Bastien1, Catherine Bastien1, <u>Vincent Segura1,*</u>

Lignocellulosic biomass from short-rotation coppice (SRC) poplar is a renewable resource of interest for producing second generation biofuels. However, current poplar varieties have not been breed for this purpose. In order to optimize their biomass conversion into simple sugars (saccharification), we need to gain understanding into the genetic architecture of wood chemical properties. In this context, several genetic studies have been carried out over the last 5 years in various poplar species. Genomic regions controlling lignin content and composition, and 5-and 6-C sugar contents from cellulose and hemicellulose have also been identified either through QTL mapping in biparental crosses (1, 2) or

Despite the established relationships between wood chemical properties and saccharification yield (5, 6), the impact of loci affecting chemical properties onto biofuel production has not been assessed. In willow, one study has reported several QTLs controlling saccharification yield but their relationships with wood chemical properties were not assessed (7). The present work aimed at specifically addressing this point by studying jointly the genetic variability of wood chemical properties and saccharification potential and

mapping the corresponding loci in a biparental cross of P niara.													
ssociation mapping in more complex crosses (3) or na ¹⁾ . <i>Methods</i>	<i>Table 1.</i> Descriptive phenotypes related from a <i>P. nigra</i> F1 ma	statis to tl appin	stics, ne ch g ped	NIR o emic igree	calibratio cal compo	n models osition and	and broad sacchai	d sen rificat	nse heri ion pot	tability ential	y esti of wo	mates od sa	s for 12 amples
Noar Infrared Enertrescony (NIID) bas been used as a		Calibration set (n=100)					NIR Predictions (n=479)						
	Trait		R²trai	R ² cv RMSEcv		RPDcv	Nb		Nb.				
igh throughput phenotyping technique for predicting 12	man	mean	(sd)	n	mean (sd)	mean (sd)	mean (sd)	Comp	Outliers	Lambd	mean	(sd)	H ² (se)
nenotypes related to the chemical properties and	Chemical properties		/							ų			
accharification potential of 4/9 P. nigra samples, from	Extractives content (%)	8.88	(2.74)	0.87	0.83 (0.01)	1.12 (0.03)	2.46 (0.07)	5	3	131	9.18	(2.33)	0.56 (0.05)
alibration models developed in a subset of 100 samples.	Lignin content (%)	25.11	(1.60)	0.86	0.83 (0.01)	0.63 (0.02)	2.42 (0.06)	5	10	505	25.35	(1.35)	0.56 (0.05)
rom these predicted values a genetic analysis was carried	Holocellulose content (%)	66.00	(2.49)	0.88	0.84 (0.01)	0.97 (0.03)	2.49 (0.08)	6	13	279	65.90	(2.44)	0.67 (0.04)
ut in order to evaluate their broad sense heritability	Saccharification Potential												
forwards we used a recently developed constic man (9) to	Soluble Sugars												
The wards, we used a recently developed genetic map (o) to	Total Sugars (µmol mg-1)	0.16	(0.08)	0.91	0.88 (0.01)	0.03 (0.001)	2.92 (0.09)	5	0	72	0.16	(0.06)	0.58 (0.05)
lentify loci that control the genetic variability of phenotypes	Glucose (µmol mg-1)	0.07	(0.02)	0.87	0.85 (0.01)	0.01 (0.0002)	2.60 (0.06)	4	0	46	0.08	(0.01)	0.54 (0.05)
elated to chemical properties and saccharification potential.	Proportion of Glucose	0.54	(0.14)	0.89	0.84 (0.01)	0.06 (0.002)	2.52 (0.10)	6		262	0.49	(0.13)	0.56 (0.05)
	Total Sugars (umol mg 1)			0 83	0 78 (0 01)	0.02 (0.001)	2 17 (0 07)	5	20	251	0.47	(0.06)	0 60 (0 04)
	Glucose (umol ma-1)	0.30	(0.00) (0.05)	0.86	0.70 (0.01)	0.03(0.001) 0.02(0.001)	2.17(0.07) 2 27 (0.09)	5	20	105	0.47	(0.00)	0.00(0.04) 0.67(0.04)
Roculto	Proportion of Glucose	0.55	(0.00)	0.89	0.85 (0.01)	0.03 (0.001)	2.63 (0.09)	5	1	80	0.53	(0.00)	0.56(0.05)
Nik spectra allowed the prediction of all	Hydrolyzed Sugars		(0100)						_			(0.00)	
phenotypes in the entire mapping population (Table	Total Sugars (µmol mg-1)	0.35	(0.06)	0.82	0.77 (0.02)	0.02 (0.001)	2.10 (0.07)	6	27	262	0.31	(0.05)	0.76 (0.03)
) Predicted values displayed a significant variation	Glucose (µmol mg-1)	0.20	(0.05)	0.87	0.83 (0.01)	0.02 (0.001)	2.41 (0.08)	6	9	67	0.18	(0.06)	0.54 (0.05)
within the menning negulation with fer instance	Proportion of Glucose	0.56	(0.07)	0.85	0.80 (0.01)	0.03 (0.001)	2.26 (0.07)	5	15	360	0.56	(0.06)	0.47 (0.05)
with the mapping population, with for instance	Figure 1. Schematic	renre	senta	ation	of the OT	Is detecte	ed on (a)	GS	I and (h) XIII f	or lia	nin co	ontent.

lignin and holocellulose contents ranging between 21 and 28 % and 51 and 73 %, respectively. Further genetic analysis revealed that a significant proportion of the phenotypic variability was controlled by genetics with medium (0.47) to high (0.76) broad sense heritabilities for all phenotypes (Table 1).

As a result, a total of 10 QTLs located on 6 linkage groups were detected (Table 2). In addition, two genomic regions involved in an epistatic interaction were identified (Table 2). These QTLs marginally explained between 2.2 and 16% of the phenotypic variance. Noticeably, one of them had opposite effects on lignin and solubilized sugars contents, and harbored genes from lignin and cellulose pathways (Figure 1a). Another QTL, identified in the present study for the proportion of hydrolyzed glucose, collocated on linkage group XIII with a QTL previously detected in hybrid poplar for 5and 6-C sugars (Figure 1b, 1). Conclusion

soluble sugars and proportion of glucose in hydrolyzed sugars, and alignement on P. trichocarpa

Table 2. QTLs associated with phenotypes related to the chemical composition and saccharification potential of wood samples from a *P. nigra* F1 mapping pedigree

Trait	LG	Effec t	Individua I p-value	Individua I R2	Global p-value	Global R2
Chemical properties						
Extractives content (%)	IV NA IV * NA	F M F * M	2.09E-03 9.96E-03 NA	3.6 2.7 NA	9.18E-04 1.20E-04 2.94E-03	13.2
Lignin content (%)	II XII	F&M F	1.66E-04 4.49E-05	7.4 6.6	1.45E-03 2.29E-04	11.3
Holocellulose content (%)	 * V	M F * M	9.09E-04 NA	6.5 NA	2.83E-04 1.20E-04	15.6
Saccharification Potential						
Soluble Sugars						
Total Sugars (µmol mg- 1)	1	Μ	1.63E-05	9.4	1.63E-05	9.4
Solubilized Sugars						
Total Sugars (µmol mg- 1)	II IX	F & M M	1.90E-04 1.58E-02	7.3 2.2	2.93E-04 1.55E-03	14.7
Proportion of Glucose		M	4.00E-04	9.8	1.07E-05	98
Hydrolvzed Sugars						0.0
Proportion of Glucose	XIII	F & M	2.36E-04	15.9	2.36E-04	15.9
within the FLITLIROL r	hroio	ct fun	ded by (SEO Inr	novation	

References

- 1. Novaes et al., 2009, New Phytol 182: 878-890
- 2. Yin *et al.*, 2010, PLoS One 5: e14021
- 3. Guerra *et al.*, 2013, New Phytol 197: 162-176
- 4. Wegrzyn et al., 2010, New Phytol

The present work shows that significant genetic variability exists in *P. nigra* for saccharification potential. As a result, several loci controlling this variability were detected, some of which being also detected for wood chemical properties. These QTLs deserve further investigation in order to decrease their confidence intervals for example by increasing the number of progenies or through association mapping in natural populations.

	P		Í
	\mathcal{F}		
A	G	PF	

188: 515-532

- Davison *et al.*, 2006, Appl Biochem Biotech 129-132: 427-435
- 6. Studer *et al.*, 2011, PNAS 108: 6300-6305
- 7. Brereton *et al.*, 2010, Bioenergy Research 3: 251-261
- 8. El Malki *et al.*, submitted to PLoS One

The present work was carried within the FUTUROL project funded by OSEO Innovation

Author Details

Acknowledgements

1 INRA, UR0588 Amélioration Génétique et Physiologie Forestières, Orléans, France 2 INRA, Plateau technique Génobois, Orléans, France 3 INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Marseille, France * segura@orleans.inra.fr