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Introduction 

 
The development and use of sustainable biofuels from 

renewable resources, such as lignocellulosic biomass, has 

become a priority in order to tackle the increasing demand for 

energy, together with the concerns about the negative effects of 

greenhouse gas emissions. Realizing this potential will require 

the simultaneous development of high yielding biomass 

production systems and bioconversion technologies that 

efficiently convert biomass into usable forms of energy, such as 

bioethanol (Ragauskas et al., 2006; Rubin, 2008). 

With a conservative average yield of ~10 dry Mg ha
-1

 year
-1

 

of lignocellulosic biomass, short-rotation coppice poplar has a 

strong potential as a bioenergy feedstock (Ragauskas et al., 

2006; Sannigrahi et al., 2010). Nevertheless, current poplar 

varieties have not been bred for this purpose, and thus a 

significant improvement in quantity and quality of biomass 

production is expected to be achieved by integrating biorefinery 

related selection criteria into poplar breeding programs. Biofuel 

yield results from both the amount of biomass to be converted 

into biofuel, and from the efficiency of the conversion. Wood 

chemical properties have been shown to significantly affect 

biomass saccharification, i.e. its conversion into simple 

fermentable sugars (Davison et al., 2006; Studer et al., 2011). It 

is thus crucial to understand better the genetic architecture of 

wood chemical properties. IR spectroscopy is relevant for this 

purpose because it allows a high-throughput indirect 

characterization of the physical and chemical properties of the 

samples of interest, the number of which is typically very large in 

breeding programs. It has successfully been applied to predict 

lignin content (Zhou et al., 2011) and lignin monomer 

composition (Robinson and Mansfield, 2009) in hybrid poplars.  

In the context of biofuels, calibrations for the saccharification of 

various biomasses have recently been reported (Sills and Gosset, 

2012a; 2012b), highlighting the potential interest of this 

technique for screening the saccharification potential of biomass 

samples in breeding programs. 

In this context, we have recently started to use IR 

spectroscopy for predicting poplar biomass chemical properties 

and saccharification potential. With the aim of defining a 

relevant way of collecting IR spectra, the present study reports 

calibration models for 4 different conditions of spectra 

acquisition, including mid-infrared (MIR) vs. near-infrared (NIR). 

 

Material and methods 

  
The samples used in the present study consisted of 479 

wood powders (50 µm – 1 mm) that came from the milling of 

~50 cm 1-year-old stems from a F1 mapping population tested in 

the nursery of INRA Orleans. A calibration set comprising 100 

samples was selected from preliminary NIR spectra (8000-4000 

cm
-1

) collected in rotating cups with a spectrum 400 Perkin 

Elmer spectrophotometer. These samples were selected to be 

representative of the NIR spectral variability using the Kennard-

Stone algorithm (Kennard and Stone, 1969). 

Four different conditions of acquisition of spectra were 

tested on this calibration set: (i) NIR (8000-4000 cm
-1

) spectra 

averaged over 64 scans collected with a rotating system in a 

quartz cup (min 10 g of wood powder); (ii) NIR (8000-4000 cm
-1

) 

spectra averaged over 3 independent collections of scans in a 

glass vial (min 2 g of wood powder); (iii) NIR (8000-4000 cm
-1

) 

spectra from a single collection of scans in a glass vial (min 2 g of 

wood powder); and (iv) MIR (1800-900 cm
-1

) spectra from a 

single collection of scans (several mg of wood powder). 

The 100 samples from the calibration set were also 

phenotyped for 12 quantitative traits related to their chemical 
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composition and saccharification potential (Table 1). For 

chemical composition, the amount of extractives and total 

(soluble and insoluble) lignins was assessed following standard 

protocols, and the amount of holocellulose (cellulose and 

hemicellulose) was deduced by difference, considering that the 

sum of these tree components was equal to 1 (Carrier et al., 

2011). For saccharification potential, the amount of sugars and 

glucose was measured before and after enzymatic hydrolysis by 

a set of enzymes extracted and purified from the ascomycete 

fungus Trichoderma reesei using an automated assay (Navarro et 

al., 2010). From these measured phenotypes, new phenotypes 

were calculated in order to get a better insight into the factors 

affecting saccharification potential (Table 1). 

Prior to the calibration, the spectra were statistically pre-

treated in order to improve the signal quality. Statistical pre-

treatments consisted of normalization and/or derivation, 

yielding 8 modes for each acquisition condition: “raw”, no pre-

treatment; “norm”, normalization (centering and scaling); “der 

1”, first derivative using a 37 points Savitzky-Golay filter; “der 2”, 

second derivative using a 61 points Savitzky-Golay filter; 

“norm_der1”, normalization followed by first derivative; 

“norm_der2”, normalization followed by second derivative; 

“der1_norm”, first derivative followed by normalization; 

“der2_norm”, second derivative followed by normalization. For 

each mode of each acquisition condition and each phenotype, 

the calibration procedure was carried out in 2 steps: (i) selection 

of relevant spectral bands from the IR spectra matrix in order to 

decrease its complexity using the Competitive Adaptive 

Reweighted Sampling (CARS) approach (Li et al., 2009); (ii) on 

the resulting dataset, calibration model construction using 

partial least squares (PLS) regression in a 4-fold cross-validation 

scheme repeated 500 times (Monte Carlo Cross-Validation, 

MCCV), where the optimal number of latent variables was 

determined using a Wold’s R criterion equal to one (Wold, 

1980). The best model among all 8 modes was determined for 

each combination of phenotype and acquisition condition on the 

basis of both the MCCV statistics (R²cv: cross-validation R²; 

RMSEcv: root mean square error of cross validation; and RPDcv: 

Ratio of standard error of performance in cross validation to 

standard deviation) and the number of latent variables. 

Afterwards, for each phenotype the best models of each 

acquisition condition were compared and ranked according to 

the same criteria (MCCV statistics and number of latent 

variables). All analyses were carried out in R (R Development 

Core Team, 2012). 

 

Results and discussion 

 
The best calibration models for each acquisition condition 

are presented in Tables 2 and 3 for the phenotypes related to 

wood chemical composition and saccharification potential, 

respectively. Whatever the acquisition condition, the calibration 

models for the amount of extractives had RPDcv values close to 

2. For lignins and holocellulose content, model quality was 

poorer, with RPDcv values ranging between 1.55 and 1.95. For 

saccharification potential related traits, the best calibration 

models were obtained whatever the acquisition condition for 

the soluble sugars (Soluble_Sug, Soluble_Gluc_ 

Soluble_Gluc_Prop), with RPDcv values ranging between 2.42 

and 3.91, which was consistent with the results for the 

extractives. The calibration models for the proportion of 

solubilized glucose were of similar quality for all acquisition 

conditions, with RPDcv values higher than 2.5. For all the other 

phenotypes, the calibration model quality was in general poorer 

with RPDcv ranging between 1.28 and 2.20. Thanks to the prior 

spectral band selection with the CARS algorithm, all selected 

calibration models were characterized by a fairly low number of 

latent variables, ranging between 1 and 7. 

For each phenotype, we then compared and ranked the 

selected models between the different acquisition conditions. A 

graphical representation of the rank frequencies per acquisition 

condition is presented in Figure 1. With a rank of 1 for half of the 

phenotypes (6) and of 2 for 4 phenotypes, an average spectrum 

over 3 acquisitions in a glass vial seemed to be the most 

promising approach for calibrating our phenotypes. It was 

substantially better than a single collection in a glass vial which 

reached the rank 1 only once and the rank 2 twice. The rotating 

cup system performed surprisingly worse than 3 acquisitions in 

glass vial, despite the fact it integrates spectra over multiple 

points. Nevertheless, this acquisition condition was, as expected, 

better than a single collection in a glass vial. The MIR condition 

consisted also of a single scan but it ranked better than a single 

scan in a glass vial, with a rank of 1 or 2 for half of the 

phenotypes. This acquisition condition had a comparable 

performance to the collection in a rotating cup, and thus it gave 

models of slightly worse quality than 3 acquisitions in vial, 

suggesting that in the case of MIR an average of 3 independent 

collections appears to be the most promising acquisition 

technique. 

These comparisons should nevertheless be taken with care 

because the 12 phenotypes under study were not completely 

independent, with significant correlations between some of 

them (data not shown). It would thus be interesting to extend 

and confirm the present results with other phenotypes that 

would not be correlated with the ones used in the present 

study. However, the present results still allow us to conclude 

that, despite the fact it involves the advantage of analyzing only 

a small amount of material, spectral acquisition on a single point 

in a glass vial does not seem satisfactory for our purpose, and a 

spectrum averaged over multiple scans either in a rotating cup 

or preferably in a glass vial should be recommended. 
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Figures and tables 

 

 
Table 1. List and definition of the 12 quantitative traits phenotyped on the 100 calibration samples of P. nigra wood. 

Trait Name Trait Identifier Formula 

Chemical properties   

Extractives content (%) Extract  

Lignin content (%) Lignin  

Holocellulose content (%) Holocellulose 100 – (Extract + Lignin) 

Sacharification Potential   

Soluble Sugars   

Total Sugars (µmol /mg) Soluble_Sug  

Glucose (µmol /mg) Soluble_Gluc  

Proportion of glucose (%) Soluble_Gluc_Prop Soluble_Gluc / Soluble_Sug 

Solubilized Sugars   

Total Sugars (µmol /mg) Solubilized_Sug  

Glucose (µmol /mg) Solubilized_Sug  

Proportion of glucose (%) Solubilized_Gluc_Prop Solubilized_Gluc / Solubilized_Sug 

Hydrolized Sugars   

Total Sugars (µmol /mg) Hydrolyzed_Sug Solubilized_Sug – Soluble_Sug 

Glucose (µmol /mg) Hydrolyzed_Gluc Solubilized_Gluc – Soluble_Gluc 

Proportion of glucose (%) Hydrolyzed_Gluc_Prop Solubilized_Gluc_Prop – Soluble_Gluc_Prop 

 

 

 

Table 2. Calibration models for the phenotypes related to chemical properties of P. nigra wood. For phenotype description 

see table 1. # comp: number of latent variables in the model; R²train: training R²; R²cv: cross-validation R²; RMSEcv root mean 

square error of cross validation; RPDcv: Ratio of standard error of performance in cross validation to standard deviation; # 

lambda: number of wave numbers selected by CARS. For the cross validation statistics, the average over 500 replications is 

indicated together with the standard deviation in parenthesis. 

Trait Condition Treatment # comp R
2

train R
2

cv RMSEcv RPDcv # lambda rank 

Extract NIR-COUP der1_norm 7 0.85 0.79 (0.01) 1.25 (0.04) 2.20 (0.07) 37 1 

 

NIR-VIAL1 norm_der1 5 0.80 0.74 (0.02) 1.39 (0.04) 1.97 (0.06) 40 4 

 

NIR-VIAL3 norm_der2 3 0.79 0.75 (0.01) 1.36 (0.04) 2.02 (0.05) 20 2 

 

MIR der2_norm 2 0.77 0.74 (0.01) 1.38 (0.02) 1.98 (0.03) 59 3 

Lignin NIR-COUP der2_norm 4 0.72 0.65 (0.02) 0.95 (0.03) 1.69 (0.05) 335 1 

 

NIR-VIAL1 der2_norm 4 0.71 0.62 (0.02) 0.98 (0.03) 1.64 (0.04) 204 4 

 

NIR-VIAL3 der2 3 0.66 0.62 (0.01) 0.98 (0.02) 1.63 (0.03) 37 3 

 

MIR norm 6 0.73 0.63 (0.02) 0.97 (0.03) 1.66 (0.05) 205 2 

Holocellulose NIR-COUP der1 5 0.75 0.67 (0.02) 1.42 (0.04) 1.76 (0.05) 35 2 

 

NIR-VIAL1 norm_der1 6 0.81 0.73 (0.02) 1.28 (0.04) 1.95 (0.06) 40 1 

 

NIR-VIAL3 norm 5 0.70 0.66 (0.01) 1.45 (0.03) 1.71 (0.04) 79 3 

 

MIR norm 1 0.60 0.58 (0.01) 1.61 (0.02) 1.55 (0.02) 12 4 
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Table 3. Calibration models for the phenotypes related to saccharification potential of P. nigra wood. For phenotype 

description see table 1. # comp: number of latent variables in the model; R²train: training R²; R²cv: cross-validation R²; RMSEcv 

root mean square error of cross validation; RPDcv: Ratio of standard error of performance in cross validation to standard 

deviation; # lambda: number of wave numbers selected by CARS. For the cross validation statistics, the average over 500 

replications is indicated together with the standard deviation in parenthesis. 

Trait Condition Treatment # comp R
2

train R
2

cv RMSEcv RPDcv # lambda rank 

Soluble_Sug NIR-COUP der1_norm 7 0.93 0.89 (0.01) 0.02 (0.00) 3.06 (0.11) 759 4 

 

NIR-VIAL1 norm 4 0.90 0.89 (0.00) 0.03 (0.00) 3.00 (0.06) 39 3 

 

NIR-VIAL3 norm 3 0.91 0.90 (0.00) 0.02 (0.00) 3.15 (0.05) 10 2 

 

MIR norm 5 0.95 0.93 (0.00) 0.02 (0.00) 3.91 (0.11) 50 1 

Soluble_Gluc NIR-COUP der1_norm 5 0.89 0.87 (0.01) 0.01 (0.00) 2.81 (0.06) 155 3 

 

NIR-VIAL1 der2 5 0.88 0.85 (0.01) 0.01 (0.00) 2.63 (0.07) 17 4 

 

NIR-VIAL3 norm_der1 5 0.90 0.88 (0.01) 0.01 (0.00) 2.92 (0.06) 11 2 

 

MIR norm 6 0.94 0.92 (0.01) 0.00 (0.00) 3.50 (0.11) 98 1 

Soluble_Gluc_Prop NIR-COUP der2_norm 6 0.90 0.83 (0.01) 0.06 (0.00) 2.46 (0.09) 552 4 

 

NIR-VIAL1 der1 4 0.86 0.83 (0.01) 0.06 (0.00) 2.42 (0.06) 37 3 

 

NIR-VIAL3 der2_norm 6 0.89 0.85 (0.01) 0.05 (0.00) 2.57 (0.08) 182 2 

 

MIR norm_der2 5 0.88 0.86 (0.01) 0.05 (0.00) 2.65 (0.08) 61 1 

Solubilized_Sug NIR-COUP norm_der1 5 0.75 0.69 (0.02) 0.04 (0.00) 1.82 (0.05) 17 3 

 

NIR-VIAL1 norm 6 0.76 0.69 (0.02) 0.04 (0.00) 1.81 (0.05) 22 4 

 

NIR-VIAL3 norm 6 0.78 0.73 (0.02) 0.04 (0.00) 1.94 (0.05) 48 1 

 

MIR norm 5 0.75 0.70 (0.02) 0.04 (0.00) 1.84 (0.05) 20 2 

Solubilized_Sug NIR-COUP der2 6 0.76 0.68 (0.02) 0.03 (0.00) 1.79 (0.06) 46 2 

 

NIR-VIAL1 der1 4 0.71 0.66 (0.02) 0.03 (0.00) 1.72 (0.04) 34 3 

 

NIR-VIAL3 der2 6 0.82 0.74 (0.02) 0.02 (0.00) 1.97 (0.07) 90 1 

 

MIR norm_der1 6 0.72 0.66 (0.02) 0.03 (0.00) 1.73 (0.04) 16 4 

Solubilized_Gluc_Prop NIR-COUP der2 5 0.89 0.86 (0.01) 0.03 (0.00) 2.65 (0.07) 66 3 

 

NIR-VIAL1 der2 3 0.87 0.84 (0.01) 0.04 (0.00) 2.55 (0.06) 59 4 

 

NIR-VIAL3 norm_der1 4 0.89 0.87 (0.01) 0.03 (0.00) 2.74 (0.07) 65 1 

 

MIR norm 3 0.88 0.86 (0.01) 0.03 (0.00) 2.65 (0.06) 427 2 

Hydrolyzed_Sug NIR-COUP der1_norm 7 0.72 0.60 (0.03) 0.04 (0.00) 1.59 (0.05) 54 3 

 

NIR-VIAL1 norm_der2 6 0.73 0.62 (0.02) 0.04 (0.00) 1.64 (0.05) 50 2 

 

NIR-VIAL3 der1 7 0.72 0.63 (0.02) 0.04 (0.00) 1.66 (0.05) 26 1 

 

MIR norm 3 0.49 0.39 (0.03) 0.05 (0.00) 1.28 (0.03) 459 4 

Hydrolyzed_Gluc NIR-COUP norm_der2 6 0.81 0.75 (0.02) 0.03 (0.00) 2.00 (0.07) 78 2 

 

NIR-VIAL1 der1_norm 5 0.78 0.73 (0.01) 0.03 (0.00) 1.92 (0.05) 23 3 

 

NIR-VIAL3 der2_norm 6 0.85 0.79 (0.01) 0.02 (0.00) 2.20 (0.07) 65 1 

 

MIR norm_der1 3 0.74 0.71 (0.01) 0.03 (0.00) 1.86 (0.04) 32 4 

Hydrolyzed_Gluc_Prop NIR-COUP der2 4 0.69 0.63 (0.02) 0.05 (0.00) 1.65 (0.04) 56 3 

 

NIR-VIAL1 norm 6 0.71 0.64 (0.02) 0.04 (0.00) 1.68 (0.05) 22 2 

 

NIR-VIAL3 norm 5 0.74 0.68 (0.02) 0.04 (0.00) 1.77 (0.05) 15 1 

 

MIR der1_norm 3 0.64 0.61 (0.01) 0.05 (0.00) 1.62 (0.03) 4 4 
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Figure 1. Graphical representation of the frequency of calibration model ranks depending on the spectra acquisition 

condition over 12 phenotypes related to the chemical properties and saccharification potential of P. nigra wood. 

 




