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Engineering better biomass-degrading ability into
a GH11 xylanase using a directed evolution
strategy
Letian Song1,2,3, Béatrice Siguier1,2,3,4, Claire Dumon1,2,3, Sophie Bozonnet1,2,3 and Michael J O’Donohue1,2,3*

Abstract

Background: Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable
importance for second-generation biorefining. To address this problem, and also to gain greater understanding of
structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a
combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn).

Results: Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were
identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic
activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most
active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold
and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S,
Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%tot. xyl (wild-type
Tx-Xyn) to 18.6% to 20.4%tot. xyl. Also, all five mutant enzymes exhibited a better ability to act in synergy with a
cellulase cocktail (Accellerase 1500), thus procuring increases in overall wheat straw hydrolysis.

Conclusions: Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is
linked to (i) improved ligand binding in a putative secondary binding site, (ii) the diminution of surface
hydrophobicity, and/or (iii) the modification of thumb flexibility, induced by mutations at position 111.
Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme
engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the
lignin barrier.

Keywords: Directed evolution, high-throughput screening, endo-β-1,4-xylanase, lignocellulosic biomass, synergistic
interaction, biorefining

Background
Wheat straw is an abundant coproduct of the agri-food
industry that is currently considered to be a primary
source of lignocellulosic biomass for second-generation
biorefining. The composition of wheat straw is typical of
graminaceous species, containing arabinoxylan (20% to
25% dry weight (DW)), cellulose (35% to 45% DW) and
lignins (15% to 20% DW) in variable proportions that
are determined by both cultivar characteristics and

pedoclimatic differences [1,2]. Regarding the ultrastruc-
ture of wheat straw, the internode regions, which in
DW terms represent the majority of wheat straw, are
characterized by different tissue types, which notably
display different levels of lignification. The central cav-
ity, or lumen, of straw is lined by pith that covers par-
enchyma cells and that possesses mainly primary cell
walls. Moving further outwards to the external part of
wheat straw, one can identify sclerenchyma cells, xylem
tissue and finally the outer epidermis, all of which pos-
sess lignified secondary cell walls [3,4].
Endo-b-1,4-xylanases (EC 3.2.1.8, xylanase) randomly

depolymerize the backbone of b-1,4-linked xylans [5],
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including arabinoxylans such as those found in wheat
straw. Current commercial uses for xylanases mainly
focus on the paper, food and animal feed industries
[6,7], but it is increasingly recognized that these will
also be important for biorefining of lignocellulosic bio-
mass [8,9]. Indeed, recent studies have shown that xyla-
nases are needed in cellulase cocktails in order to
alleviate the inhibition of various cellulose-degrading
enzymes by xylo-oligosaccharides [10]. Also, the devel-
opment of ambitious approaches such as consolidated
bioprocesses [11], which require the use of microorgan-
isms possessing the dual ability to degrade complex bio-
mass and convert the fermentable sugars into useful
products, will also create new demands for highly effi-
cient xylanolytic systems.
To date, most industrial processes that employ xyla-

nases use enzymes that belong to the glycoside hydro-
lase family GH11 [12]. Bacterial GH11 xylanases are
mostly single domain enzymes that exclusively act on b-
1,4 links between xylosyl units in xylans and display a
b-jelly roll structure that has been likened to a partially
folded human right hand (Figure 1) [13]. Likewise, the
prominent elements of the GH11 three-dimensional
structure, which is composed mainly of two b sheets
and one a helix, have been identified using terms such
as ‘thumb’, which describes a large mobile loop that is

located above the active site cleft, ‘palm’, whose half-
folded structure forms the active site cleft, and fingers,
which constitute one side of the active site cleft and
whose ‘knuckles’ bear a secondary substrate binding
motif [14,15].
Despite the fact that xylanases will be necessary for

biorefining operations, very little R&D has so far been
focused on the improvement of xylanases specifically for
biorefining purposes, and in particular for increased
activity on complex biomass. This is partly because a lot
of effort has been focused on cellulase engineering, and
also because presently it is unclear on what basis
improvements could be achieved. Regarding the action
of xylanases on lignocellulosic biomass that has not
been subjected to prior pretreatment, very little is
known, though some studies of GH11 xylanase from
Thermobacillus xylanilyticus (designated Tx-Xyn)
actions on wheat bran and straw, and have provided
insight into the factors that might determine overall
enzyme efficiency. Nevertheless, the available informa-
tion is still sparse, making the prospect of rational engi-
neering rather haphazard.
Alternatively, random approaches coupled to enzyme

in vitro evolution could be a suitable way to tackle xyla-
nase engineering. So far, the use of such techniques on
xylanases has been limited to the improvement of ther-
mostability [16-20] and alkaliphilicity [21-23]. In these
studies, screening methods relied on the use of isolated
xylans, such as Remazol Brilliant Blue (RBB)-xylan and
birchwood xylan. However, in a recent study we have
developed a new microtiter plate-based screening
method that is far more suitable for the study of xyla-
nase action on complex biomass [24]. Therefore, in this
paper, we describe the use of this screening procedure
in an enzyme engineering project that has focused on
the moderately thermostable Tx-Xyn. This enzyme was
selected, because it has already been extensively studied,
notably with regard to its activity on insoluble complex
substrates such as wheat bran and straw, which is not
the case for other GH11 xylanases [25-28]. Using a
combination of random mutagenesis and DNA shuffling,
we have isolated several Tx-Xyn variants that showed
increased activity on wheat straw and improved syner-
gistic action, when used in combination with a commer-
cial cellulase preparation.

Results
Screening of randomly mutagenized xylanase libraries
The different steps of the engineering strategy are sum-
marized in Figure 2. The initial phase of this work
involved the use of error-prone PCR (epPCR) to gener-
ate random biodiversity. In preliminary work, we
observed that more than 10 base mutations/kb produced
>70% inactive clones. Therefore, a progressive strategy

Figure 1 Ribbon representation of Thermobacillus xylanilyticus
xylanase (Tx-Xyn) three-dimensional structure. The schematic
protein is ‘color-ramped’ from the N-terminus (blue, N-ter) to the C-
terminus (red, C-ter). The relevant regions of ‘thumb’, ‘palm’ and
‘fingers’ are highlighted in frames, and the ‘knuckles’ in the fingers
region are indicated by an arrow.
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employing three successive rounds of epPCR was pre-
ferred, with moderate mutational charge (5 to 7 base
mutations/kb) at each stage. The results of activity
screening (where activity can generally be considered to
be the product of both expression levels and specific
activity) at each round are summarized in Table 1.

Regarding the first round of screening, this work has
already been reported by Song et al. [24]. Although the
best mutant from this first round, designated Tx-Xyn-
AF7, displays a wild-type amino acid sequence, its DNA
sequence contains two mutations (at nucleotide posi-
tions 27 and 516) that cause approximately twofold

Figure 2 Flowchart of the in vitro evolutional process. The best-performing mutants, used as parental input for a subsequent round of
evolution, are boxed and mutants are designated according to the point mutations that characterize them.

Table 1 Summary of directed evolution for improvement of Thermobacillus xylanilyticus xylanase (Tx-Xyn) xylanase
activity

Library type Substrate Variants screened CV WT Percentage of clones with improved activity No. of hits selected

>4C >5C >6C >7C >8C

V V V V V

epPCR In-WS 264 11.1 ± 1.3% 0.4% 0.4% - - - 1

epPCR In-WS 4,333 18.1 ± 5.4% 0.1% - - - - 4

SDM - - - 11

epPCR Dpl-WS 4,300 10.9 ± 2.2% 1.2% 0.6% - - - 30

Shuffling Dpl-WS 3,840a (approximat ely 2,500) 8.1 ± 0.6% 1.4% 6.0% 2.1% 0.8% 0.1% 7

Shuffling Dpl-WS 864a (1,847) 10.2% 9.3% 2.8% 0.9% 0.2 - 8

Shuffling Dpl-WS 864a (127) 11.3% 19.5% 7.5% 2.4% 0.5% 0.2% 7

CV = coefficient of variation; Dpl-WS = xylanase-depleted wheat straw; epPCR = error-prone PCR; In-WS = intact wheat straw; SDM = site-directed mutagenesis;
WT = wild-type.
aValues in brackets are the number of theoretical mutational combinations.
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higher expression of the recombinant enzyme. There-
fore, the sequence encoding Tx-Xyn-AF7 was used as
the template for the second round of epPCR.
DNA sequence analysis of ten library clones, taken

from the second-generation library, revealed an average
mutation rate of 5.4 base substitutions/kb and a transi-
tion/transversion ratio of approximately 1.4, indicating
that the mutations were relatively unbiased in this
respect. A total of 4,333 clones were screened on intact
wheat straw (In-WS), and the 4 most active clones
(>4CV) were selected, using the activity of Tx-Xyn-AF7-
bearing clones as the base case for comparison. DNA
sequencing revealed that all four clones were character-
ized by single amino acid changes. Two clones were
mutated at position 3 (Y3L and Y3H), while two others
were mutated at independent, but neighboring locations
(W109R and Y111H).
Examination of the three-dimensional structure of Tx-

Xyn revealed that Y3 lies in the distal glycon part of the
active site cleft, while W109 and Y111 are situated
nearby and in the thumb region, respectively; thus all
three residues are potentially important for enzyme
function. For this reason, at this stage in the experiment
it was decided to focus on these mutations for the crea-
tion of further mutant libraries. However, to ensure that
all of the possible permutations would be present in the
third generation, recombination was achieved using site-
directed mutagenesis. Consequently, five double mutants
(Y3L-W109R, Y3L-Y111H, Y3H-W109R, Y3H-Y111H
and W109R-Y111H) and two triple mutants (Y3L-
W109R-Y111H and Y3H-W109R-Y111H) were created.
Together with the other four original single mutants,
these were used as parental templates for the next
round of epPCR, which led to the creation of a fourth
generation (Figure 2).
To efficiently challenge clones present in the fourth

library, the microtiter plate assay was modified by repla-
cing In-WS with xylanase-depleted wheat straw (Dpl-
WS). The principle behind this was to select clones that
produce enzymes that can actually hydrolyze arabinoxy-
lans that are inaccessible or resistant to wild-type xyla-
nase. The key features and performance descriptors of
this modified assay are summarized in Table 2. Overall,
the CV value for individual wells of Tx-Xyn-AF7 control
varied between 8% to 11%, indicating that this screen
was sufficiently reliable for library screening.
DNA sequence analysis of a randomly picked sample

of fourth-generation library clones revealed an average
mutation rate of 7.2 nucleotide substitutions/kb. Like-
wise, functional screening using the modified Dpl-WS
assay indicated that 0.6% of screened clones presented
activities that were significantly higher (>5CV) than the
mean value of the activity of Tx-Xyn-AF7 clones.

Therefore, the top 30 clones were isolated and used for
subsequent rounds of DNA recombination.

Optimization of mutant xylanases using DNA
recombination
To further increment the functional fitness of the
enzymes expressed by the candidate clones obtained
from random mutagenesis, the staggered extension pro-
cess (StEP) DNA shuffling approach was adopted,
because it offers a much simpler procedure than classi-
cal DNA shuffling [29,30]. This method was used to
successively create fifth, sixth and seventh-generation
libraries. To appreciate the impact of the iterative use of
StEP on overall library fitness, Figure 3 shows the rela-
tive performance of fourth-generation to sixth-genera-
tion libraries. At each generational increment, library
fitness increased in accordance with expectations
[30-32]. The results of statistical analyses performed on
the three successive libraries (fifth, sixth and seventh
generations) that were created using this method are
summarized in Table 3.
For the initial round of DNA shuffling, 30 clones were

used as parental input. After DNA shuffling, the library
was submitted to screening using the modified Dpl-WS
assay. This step allowed the selection of seven hits
whose activities were significantly higher (>7CV) than
the mean value of the activity of Tx-Xyn-AF7 clones.
DNA sequencing revealed that these 7 clones contained
11 point mutations, including Y111H and some new

Table 2 Characteristics of intact wheat straw (In-WS) and
xylanase-depleted wheat straw (Dpl-WS) and summary of
the two screening assays

In-WS
screening

Dpl-WS screening

Substrate properties:

Substrate type Intact wheat
straw

Xylanase-depleted wheat
straw

Particle size Average 0.5
mm

Glucose, % (w/w) 44.51 ± 0.08% 45.69 ± 0.94%

Xylose, % (w/w) 26.16 ± 0.14% 21.92 ± 0.17%

Arabinose, % (w/w) 2.37 ± 0.03% 2.05 ± 0.07%

Ratio of Ara:Xyl 0.091 0.094

Screening conditions:

Weight (mg per
microplate)

420 to 440 385 to 405

Cell-free extract (CFE)
loading

CFE in NaOAc, pH 5.8, 250 μl/well

Temperature and time 60°C, 4 h 60°C, 16 h

Sealing Aluminum film Polypropylene film

Evaporation (w/w, %) 1.44 ± 0.16% 0.23 ± 0.05%

Activity assay Micro-DNS
assay
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amino acid substitutions (Figure 2). As before, the seven
mutants were used as parental input for two further
rounds (sixth and seventh) of DNA shuffling.
After the creation of the seventh-generation library,

the experiment was stopped, because DNA sequencing
of the highest performing seventh-generation clones
showed that five mutational combinations out of a total
of seven had already been identified in the sixth genera-
tion (Figure 2). This observation suggested that the evo-
lutionary itinerary had almost reached an end, with very
little new biodiversity being introduced.
Among the seven best performing seventh-generation

clones, Y6H-Y111H and Y6H-S27T-Y111H displayed
the highest activity increase (>8 CV) in the screening,
compared to that of wild-type control (Tx-Xyn-AF7). In

addition, among the six amino acid substitutions that
were detected in clones obtained from DNA shuffling,
Y111H was present in every template and the frequency
of Y6H and S27T increased from the fifth generation to
the seventh generation (Table 3). Consequently, we
decided to focus on clones containing these three amino
acid changes for enzyme production and characteriza-
tion. Overall mutants that were retained for characteri-
zation included Y6H-Y111H, S27T-Y111H and Y6H-
S27T-Y111H from the seventh-generation screening and
the single mutants Y111H, Y6H and S27T.

Site-saturation mutagenesis (SSM) at positions 3 and 111
Among the second-generation clones, selected for
higher activity on In-WS, two amino acid positions, 3

Figure 3 Iterative improvement of enzyme fitness after screening on xylanase-depleted wheat straw (Dpl-WS). The x-axis represents
clones in a microtiter plate, randomly selected from a wild-type control series (open triangles, using Thermobacillus xylanilyticus xylanase (Tx-
Xyn)-AF7 coding sequence), fourth random mutagenesis library (filled triangles), fifth recombinant library (open squares) and sixth recombinant
library (filled circles). The y-axis indicates the activity value of corresponding clone in the screening. The same batch of Dpl-WS substrate was
used for the four experiments.

Table 3 Mutational frequency in the fifth to seventh generations

Generation Y6H Y24F S27T S29N N30D L64P W109R Y111H K132R V139A Y172H

Fifth 22.2% 11.1% 22.2% 11.1% 11.1% 22.2% 11.1% 100% 22.2% 22.2% 11.1%

Sixth 28.6% 14.3% 28.6% - 14.3% - - 100% 14.3% 14.3% -

Seventh 44.4% - 55.6% - 11.1% - - 100% 22.2% 22.2% -
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and 111, were pinpointed as potentially interesting loca-
tions. Therefore, in addition to the use of Y3H and
Y111H as parental templates for further random muta-
genesis and DNA shuffling, SSM was performed to
investigate the importance of these two residues with
respect to enzyme activity on recalcitrant arabinoxylan
(AX) in wheat straw (that is, Dpl-WS). In each case a
library was created and 288 clones were screened using
the modified Dpl-WS assay. This number of clones was
sufficient to ensure a 99.87% probability that all possible
amino acid variants were present [33]. Additionally, a
random sample of each library was submitted to DNA
sequence analysis in order to control the success of the
experiment.
Figure 4 shows the results of the screening of the two

site-saturation libraries. Overall, the Y111N (N represents
any amino acid) library provides a larger population of
improved clones, though both libraries contain a small
minority of clones that display activities that are above the

value of μ + 4s of wild-type control (where s is standard
deviation and μ is mean value). Three highest performing
clones were selected from each library and analyzed by
DNA sequencing. All three clones from the Y3N library
displayed the same Y3W mutation, whereas two clones
from the Y111N library were phenotypically and genotypi-
cally identical (encoding the mutation Y111S) and one dis-
played an Y111T mutation. In view of these results, three
individual clones encoding Y3W, Y111S and Y111T were
retained for further characterization.

Characterization of key properties of the Tx-Xyn mutants
Since the screening of mutant enzyme libraries obeys
the maxim ‘you get what you screen for’, the mutants
selected in this work were only improved with respect
to the hydrolysis of wheat straw. Hence, other important
properties such as thermostability could have been nega-
tively affected. Consequently, the thermostability of each
mutant was assessed (Table 4). Although the

Figure 4 Xylanase-depleted wheat straw (Dpl-WS) screening of site-saturation libraries. Filled squares and open circles correspond to site-
saturation mutagenesis (SSM) performed at positions 3 and 111, respectively. The 288 clones of each library are positioned on the x-axis, and
their activity on Dpl-WS is shown on the y-axis. The two solid lines represent the mean value (μ) and the value of μ + 4s for the activity of
Thermobacillus xylanilyticus xylanase (Tx-Xyn)-AF7.

Song et al. Biotechnology for Biofuels 2012, 5:3
http://www.biotechnologyforbiofuels.com/content/5/1/3

Page 6 of 16



thermostability of some mutants at 60°C was clearly
affected (for example, that of Y6H and Y6H-Y111H), all
of the enzymes were sufficiently stable to enable the
measurement of kinetic properties without any major
modifications to the protocols that were routinely used
to characterize wild-type Tx-Xyn. It is also noteworthy
that all of the mutants were highly stable at 50°C, since
measured activity remained stable over a 6 h incubation
period.
Each of the mutants was characterized with regard to

its ability to hydrolyze birchwood xylan (BWX) and low-
viscosity wheat arabinoxylan (LVWAX). According to
our findings (data not shown), BWX is devoid of a-L-
arabinosyl substitutions, and LVWAX displays an A/X
ratio of 0.54. Concerning wild-type Tx-Xyn, its turnover
number and performance constant were higher for
LVWAX, though the apparent KM value was lower on

BWX. This tendency was also displayed by the majority
of the mutants (Table 5). Regarding the apparent values
of KM, all of the mutants displayed improved affinity for
BWX, but this was not the case for LVWAX. Notably,
Y111H was the mutant that displayed the best affinity
for BWX, while its affinity for LVWAX was unaltered.
However, the rate constant for Y111H-mediated hydro-
lysis of BWX was lowered when compared to that of
the wild-type enzyme, but was improved on LVWAX.
Intriguingly, the opposite was true for Y111T, for which
the value of kcat was 48% greater than that of Tx-Xyn
on BWX, but identical to that of Tx-Xyn on LVWAX.
When Y111H was combined with other mutations (for
example, S27T-Y111H or Y6H-Y111H), its influence on
the performance constant appeared to be dominant,
annulling the improved activity on BWX, displayed by
the single mutants S27T and Y6H.

Assessment of the impact of Tx-Xyn mutants on wheat
straw
To further evaluate the altered properties of the differ-
ent mutants, their activities on the original wheat straw
samples (In-WS and Dpl-WS) were examined. Reactions
were performed using pure preparations of wild-type
and mutant xylanases either alone or in the combination
with Accellerase 1500 (a cellulase cocktail). The results
of HPAEC-PAD analyses performed on the reaction
supernatants are shown in Figure 5A,B, which show the
conversion of total xylose and glucose (that is, %tot. xyl

and %tot. glu, w/w) in the straw residues. The soluble
sugar yields are summarized in Additional files 1 and 2.
The hydrolysis of Dpl-WS revealed that all of the

mutants could release further amounts of soluble xylose
equivalents and that their performance was superior to

Table 5 Kinetic parameters of Thermobacillus xylanilyticus xylanase (Tx-Xyn) and mutants for hydrolyses involving
either birchwood xylan (BWX) or LVWAX

Mutant Kinetic parametersa SRc

BWX LVWAX

kcat(s
-1) KM

b (g/l) kcat/KM
b (s-1/g/l) kcat (s

-1) KM
b (g/l) kcat/Kmb (s-1/g/l)

Tx-Xyn 610.5 ± 19.6 2.54 ± 0.19 242.1 1,699.4 ± 95.9 5.10 ± 0.09 333.1 0.73

Y6H 806.1 ± 61.2 2.37 ± 0.27 340.5 2,081.6 ± 16.4 5.73 ± 0.09 363.0 0.94

S27T 742.9 ± 22.4 1.93 ± 0.15 376.5 1,936.0 ± 19.2 4.81 ± 0.04 402.5 0.94

Y111H 449.3 ± 23.2 1.54 ± 0.14 292.0 1,889.0 ± 72.9 5.01 ± 0.07 376.7 0.78

Y6H-Y111H 433.1 ± 12.5 1.91 ± 0.11 226.8 1,834.7 ± 75.4 5.33 ± 0.35 345.9 0.66

S27T-Y111H 535.8 ± 30.2 1.72 ± 0.21 311.5 1,906.1 ± 4.4 4.39 ± 0.02 434.1 0.72

Y3W 704.5 ± 29.8 2.11 ± 0.14 333.4 1,743.0 ± 26.5 5.51 ± 0.02 316.3 1.05

Y111S 758.8 ± 15.9 2.12 ± 0.04 358.6 1,755.0 ± 106.3 4.75 ± 0.14 369.4 0.97

Y111T 905.2 ± 17.2 2.35 ± 0.15 369.4 1,740.4 ± 41.8 4.81 ± 0.06 361.4 1.02
aAll data presented are the result of triplicate experiments.
bThe heterogeneous nature of the substrate excludes the determination of a value for KM , thus values are apparent.
cRatio of the performance constants

(
kBWX
cat /KBWX

M

)
/
(
kLVWaX
cat /KLVWAX

M

)
for a given enzyme.

Table 4 Thermostability of Thermobacillus xylanilyticus
xylanase (Tx-Xyn) and mutants thereof

Mutant Tm (°C) t1/2 at 60°C (h)

Tx-Xyn 75.9 5.4

Y6H 72.9 2.6

S27T 76.4 6.4

Y111H 75.1 3.9

Y6H-Y111H 72.7 2.7

S27T-Y111H 75.4 6.4

Y6H-S27T-Y111H 74.3 3.9

Y3W 73.1 3.2

Y111S 75.1 3.6

Y111T 74.9 5.0

The melting temperature (Tm) was determined using differential scanning
fluorimetry (DSF) and the half-life (t1/2) was defined as the period necessary
for the initial activity to be reduced by 50% at 60°C.
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Figure 5 Percentage conversion of total sugars in xylanase-depleted wheat straw (Dpl-WS) and intact wheat straw (In-WS) by
Thermobacillus xylanilyticus xylanase (Tx-Xyn) alone or in combination with Accellerase 1500 . (A) Conversion of total xylose in reactions
involving wild-type or mutant Tx-Xyn and Dpl-WS (reactions performed at pH 5.8) or In-WS (pH 5.0 and 5.8) as substrates. (B) Conversion of total
xylose and glucose in In-WS, using Accellerase 1500 alone or in combination with wild-type and mutant Tx-Xyn (reactions performed at pH 5.0).
In both (A) and (B), the x-axis shows the enzyme(s) employed in the corresponding hydrolysis reaction. The method used to derive percentage
conversion is described in the Methods section.
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that of wild-type Tx-Xyn. The mutants S27T and Y111T
produced the most outstanding results, because these
could release 2.3-fold and 2.1-fold more xylose equiva-
lents from Dpl-WS than Tx-Xyn. The lowest performers
were Y111H and Y3W, which yielded 35% and 46%
more xylose equivalents, respectively (Figure 5A). How-
ever, it should be noted that even the best variant S27T
could only release 2.5% tot. xyl of Dpl-WS (5.5 g xylose
per kg wheat straw), which is evidence of the recalci-
trance of this substrate.
For the hydrolysis of In-WS (pH 5.8), wild-type Tx-

Xyn released 43.7 g equivalent xylose per kg wheat
straw. This represents 4.4% of the dry weight and 16.7%
of total xylan (16.7%tot. xyl) content. Similar results were
obtained for the mutants Y6H, Y6H-Y111H, Y6H-S27T-
Y111H and Y3W, but five other mutants yielded higher
amounts (18.6% to 20.4%tot. xyl) of soluble xylose equiva-
lents, with the best mutant being Y111T (Figure 5A).
The five mutants displaying improved activity on In-

WS, were further selected to investigate synergy with
cellulases on In-WS, operating at the optimum pH for
Accellerase (pH 5.0). Likewise, suitable control reactions
at pH 5.0 were performed using only mutant xylanases,
or wild-type Tx-Xyn. All controls revealed that the dif-
ferent xylanases displayed reduced hydrolytic capacity,
compared to their activity at pH 5.8 (Figure 5A).
According to its manufacturer, Accellerase 1500 princi-
pally contains endoglucanase and b-glucosidase activ-
ities. In our trials, Accellerase alone was able to
solubilize 7.3%tot. xyl and 18.9%tot. glu In-WS (Figure 5B).
However, in combination with xylanases, higher yields
of xylose and glucose were measured, which were
greater than the sum of the yields of Accellerase and
xylanase alone, clearly revealing synergistic interactions
between the enzyme participants. The mixture of wild-
type Tx-Xyn and Accellerase solubilized 24.5%tot. xyl and
23.6%tot. glu of In-WS (Figure 5B). However, significantly
the different mutants were able to improve on this per-
formance, solubilizing 27.4 to 29.0%tot. xyl and 24.9 to
26.4%tot. glu from In-WS.

Discussion
Is enzyme engineering a useful strategy to improve
biomass deconstruction?
Artificial enzyme evolution, relying on in vitro random
mutagenesis and DNA recombination techniques, is a
powerful strategy to pinpoint functional determinants
and to rapidly improve enzyme fitness with regard to a
variety of physical or biochemical properties [34-36].
However, the need for an appropriate screen is vital. In
this work, we relied on a previously described screening
method, which allowed us to address a highly ambitious
target, which was the isolation of enzymes that display
higher activity on raw biomass. To our knowledge, no

such enzyme engineering has yet been attempted,
mainly because biomass-degrading enzymes are
improved for their activity on artificially isolated biodi-
versities or pretreated biomass, wherein the notion of
chemical and structural complexity is totally omitted or
mainly cellulose is present, with lignin and hemicellu-
loses being very minor components [37-39].
Therefore, the underlying rationale of our approach

was to investigate to what extent the fitness of a xyla-
nase, or for that matter any other biomass-degrading
enzyme, can be independently improved for hydrolysis
of complex biomass, without interfering with the struc-
tural and chemical complexity of the substrate. Likewise,
we hoped to provide a novel angle on the understanding
of the factors that govern the enzymatic deconstruction
of raw biomass.
Our previous study revealed that the Tx-Xyn-

mediated hydrolysis of wheat straw is a complex reac-
tion that cannot be modeled using Michaelis-Menten
kinetics and does not reach completion even at high
enzyme loading and after long time periods [24,28]. To
achieve the first phase of the reaction requires quite
long incubation times (approximately 8 h), thus screen-
ing using raw wheat straw (that is, In-WS) provides a
means to find variants that display improved initial cata-
lytic rates, which can result either from the improve-
ment of intrinsic catalytic properties of the xylanase, or
from an increase in enzyme production. However, the
use of In-WS is not appropriate to isolate xylanases that
will surpass the sugar solubilization yield of the wild-
type Tx-Xyn. For this purpose, it is more appropriate to
use Tx-Xyn-pretreated wheat straw (that is, Dpl-WS),
which should provide a means to identify enzyme var-
iants that can accelerate the latter phase of the reaction
and better surmount the obstacles that prevent further
action by Tx-Xyn. Therefore, in the strategy developed
here, both screening approaches were applied, first in an
attempt to accelerate the reaction and second to
improve the overall impact of xylanase action on wheat
straw.
Overall, all of the qualitative indicators that are pre-

sented here show that the enzyme evolution approach
was successful in increasing the fitness of Tx-Xyn for
biomass hydrolysis. At each step, clones with ever
increasing activity could be selected and the ultimate
analysis of the best clones revealed that several could
actually better hydrolyze wheat straw, especially when
their action was coupled to a cellulose cocktail. Never-
theless, unsurprisingly the overall impact of the
improvements was modest, but these results need to be
considered in the light of current knowledge.
Two recent studies [3,40] have attempted to relate

enzyme action on wheat straw to changes at the ultra-
structural level. These authors have shown that a mild
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hydrothermal pretreatment (185°C, 10 min) releases
approximately 34% of available xylans (that is, approxi-
mately 8.2% of the initial DW), which appear to come
from the pith that lines the central lumen of wheat
straw. Further treatment of the sample with a cellulase
cocktail released glucose and xylose from cellulose
microfibrils and xylans, respectively, apparently present
in the parenchyma cells that form the cortex. However,
enzymatic degradation was impotent on lignified cells
(for example, sclerenchyma cells). In our experiments,
total xylans in wheat straw represent approximately 26%
DW and Tx-Xyn can release 16.7% of these (that is,
4.4% DW). The mutant Y111T is able to solubilize
approximately 21.9%tot. xyl or 5.3% DW over a 24-h per-
iod. Taken together, our results reveal that the hydroly-
sis of wheat straw using Tx-Xyn variants procures
solubilization yields that are inferior, but not dissimilar,
to those obtained using mild hydrothermal treatment,
and thus it is tempting to suggest Tx-Xyn also preferen-
tially hydrolyzes pith and parenchyma cells.
The failure of Tx-Xyn, or variants thereof, to further

solubilize xylans is probably not linked to intrinsic cata-
lytic potency or to substrate selectivity of Tx-Xyn and
its mutants, but rather to the inaccessibility of the sub-
strate. Indeed, coupling of wild-type Tx-Xyn to that of a
cellulase cocktail clearly revealed a certain degree of
synergy, releasing approximately 24% of the theoretical
yield of sugars. Significantly, mutants generated in this
work amplified this synergy and achieved higher levels
of sugar solubilization, indicating that the enzymatic
removal of cellulose exposes xylan and vice versa. Possi-
bly, the improved action of the mutants allows a slightly
more profound degradation of the parenchyma cells that
form the cortex of wheat straw. However, the results of
this study indicate that enzyme engineering alone can-
not overcome the limits imposed by the lignin barrier,
which is progressively exposed by the peeling action of
the xylanase/cellulases cocktail.

Structure-function relationships revealed in this study
One of the remarkable findings in this study is the iden-
tification of a relatively small number of mutations.
After six rounds of combined mutagenesis and DNA
shuffling, seven mutants possessing a total of six point
mutations were identified. Among these mutations,
three emerged (amino acids 6, 27 and 111) as important
positions, because of their reoccurrence in the seven
mutants. In addition, another three mutants (Y3W,
Y111S and Y111T) were isolated from SSM libraries, in
which amino acids 3 and 111, respectively were targeted.
Tyr3 and Tyr6 are located at the B2 b strand in the N-
terminal region of Tx-Xyn, whereas Ser27 forms part of
the ‘knuckles’ region of fingers and Tyr111 is located on
the thumb (Figure 6A). The examination of the different

combinations that were obtained reveals that generally
these mutations did not provide additive benefits. For
example, regarding the mutants Y6H-Y111H, S27T-
Y111H and Y6H-S27T-Y111H, the two point mutation
variants Y6H and S27T displayed greater hydrolytic
potency on Dpl-WS than any of these combinations.
Similarly, S27T displayed the highest catalytic efficiency
towards the two soluble xylan substrates, BWX and
LVWAX. Therefore, it appears legitimate to consider
the impacts of the different mutations independently.
The findings presented here concerning the reduced

thermostability of mutants displaying substitutions at
positions 6 (Y6H) and/or 111 (Y111H) clearly provide
support for the existence of hydrophobic patches that
might mediate the oligomerization, and thus the ther-
mostabilization, of Tx-Xyn in solution. According to
Harris et al. [41], Tyr6 and Tyr111 are surface exposed
aromatic amino acids that along with nine other aro-
matic residues participate in the formation of intermole-
cular ‘sticky patches’ that form the basis for
thermostability in Tx-Xyn. Nevertheless, it is also
important to note that not all mutations at position 111
produced the same effect. Notably, the mutant Y111T
displayed thermostability very close to that of the wild-
type Tx-Xyn. Interestingly, the mutant S27T actually
increased thermostability, which agrees with a trend
among certain proteins, including GH11 xylanases, that
correlates thermostability with an increased Thr:Ser
ratio [42,43].
Among the six mutants bearing single substitutions,

S27T, Y111H, Y111S and Y111T displayed improved
hydrolysis of In-WS and synergy with the cellulase cock-
tail. However, the selection of the mutants Y6H and
Y3W in our assay was more surprising, because these
single mutants did not appear to improve wheat straw
hydrolysis, although their specificity towards BWX was
clearly altered and Y6H displayed the highest kcat value
on both BWX and LVWAX. The mutants S27T, Y111S
and Y111T also showed increased specificity towards
BWX, indicating that all single site mutants selected in
our assay had acquired an improved ability to hydrolyze
less substituted xylans, displaying an Ara:Xyl ratio that
is comparable to that of wheat straw xylan (Ara:Xyl
ratio of 0.091). Curiously, the only exception to this
trend was the double mutant Y6H-Y111H, which dis-
played unaltered specificity on In-WS, when compared
to wild-type Tx-Xyn.
The amino acid Ser27 is located in a region that has

been identified as a secondary binding site (SBS) in the
GH11 xylanases from Bacillus circulans [14] and Bacil-
lus subtilis [44,45]. Tx-Xyn shares 73% amino acid iden-
tity with the xylanase from B. circulans xylanase, and
this figure increases to 81% when one just considers the
SBS determinants, suggesting that a functional SBS
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Figure 6 Localization of key mutations in the three-dimensional structure of Thermobacillus xylanilyticus xylanase (Tx-Xyn) . (A)
Positions of Y3, Y6, S27 and Y111 residues. (B) Potential secondary binding site determinants (red), including S27 (blue), mutated in this study.
(C) Space-filling model showing the spatial occupation of side chains at positions 111 and 121 in Tx-Xyn and in the mutants Y111H, Y111S and
Y111T. All figures were prepared using PyMol software [64].
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might be present in Tx-Xyn (Figure 6B). In this context,
it is noteworthy that Ser27 is located in a relatively deep
part of a surface groove in Tx-Xyn that is linked to a
shallower region via Ser25, and that surface grooves are
potential ligand binding sites [46]. Therefore, one can
speculate that Ser27 constitutes an element of a SBS in
Tx-Xyn. Functionally, it is proposed that the SBS in cer-
tain GH11 xylanases interacts with three or four xylosyl
units via hydrogen bonds and Van der Waals interac-
tions, and possibly improves binding of xylan polymers
in the active site cleft [14]. The mutation of Ser27 to
Thr certainly leads to a localized increase in hydropho-
bicity, which is probably favorable for xylan binding to
the putative SBS. Indeed, experimental evidence sup-
ports this, because the mutant S27T significantly
reduced the Michaelis constant for the hydrolysis of
BWX and, to a lesser extent, for LVWAX. In this
respect, it is also noteworthy that among the other
mutations identified during the directed evolution pro-
cess (Table 3), figure S29N, N30D and V139A, which
are also in the vicinity of the putative SBS region in Tx-
Xyn. Therefore, a complementary study of these muta-
tions could be an interesting way forward to better
define the Tx-Xyn SBS and understand its effect on the
enzyme activity.
The thumb loop is known to be of prime functional

importance in GH11 xylanases. The open and closing of
this loop almost certainly plays a key role in substrate
selectivity, binding [47-49] and product release [50].
Regarding substrate binding, the conserved tip of the
thumb, composed of the motif Pro-Ser-Ile (position 114
to 116 in Tx-Xyn), is involved in binding of xylosyl resi-
dues at the -1 and -2 subsites via hydrogen bonds
[45,51,52]. Tyr111 and its opposing neighbor Thr121
are located at the base of the loop where they control
the movement of this structure [50,53]. The mutation of
Tyr111 to either His, Ser or Thr reduces the spatial
occupancy at position 111 (Figure 6C), although this is
less so for His, and thus probably renders the loop more
mobile and more inclined to fold downwards and
inwards towards the -1 and -2 subsites. The overall
effects of these changes would be improved catalytic
turnover and possibly improved binding affinity, both of
which are observed for the mutants Y111S and Y111T.
Regarding the loop movement, the mutation of Tyr6 is

also worth considering. The relatively conservative sub-
stitution of this residue by a slightly less bulky histidine
clearly improved the enzyme turnover on both BWX
and LVWAX, but had a slightly negative effect on sub-
strate affinity in the case of LVWAX. This implies that
Tyr6 might influence the movement of the loop,
although a direct interaction is impossible. Nevertheless,
Trp7 forms part of the -2 subsite and faces Pro114 and

Ile116, which form the thumb tip. Slight adjustments in
the position of Trp7 could facilitate the open-close
movement of the thumb loop, with the risk of disturb-
ing the high-energy interaction between this residue and
the -2 xylosyl moiety.
Finally it is noteworthy that many of the mutations

that were identified in this study involved the loss of
aromatic side chains. Often, the non-productive binding
by lignin is cited as a major cause of enzyme inefficiency
on lignocellulosic biomass [54-57]. In an earlier study, it
was shown that wild-type Tx-Xyn was strongly absorbed
by both wheat straw and isolated wheat straw lignin
[28]. In a more recent study [58], it has been shown
that phenolic acids can act as non-competitive multisite
inhibitors of Tx-Xyn that might provoke conformational
alterations of the enzyme. Therefore, it is tempting to
speculate that the elimination of surface exposed aro-
matic amino acid side chains might lower such inhibi-
tory effects.

Conclusions
Using a random mutagenesis and directed evolution
approach we have been able to generate a number of
mutants whose behavior is globally coherent with the
screening assay that was employed. Several mutants dis-
play improved hydrolytic activity on wheat straw and
show increased synergy with cellulase, though none are
sufficiently potent to be able to overcome the accessibil-
ity barrier, which inevitably blocks the way to further
hydrolysis of polysaccharides.

Methods
General materials and regents
Unless otherwise stated, all chemicals were of analytical
grade and purchased from Sigma-Aldrich (St Louis,
MO, USA). The T7-promoter based vector pRSETa was
purchased from Invitrogen (Cergy Pontoise, France),
and the Escherichia coli host strains Novablue(DE3) and
JM109(DE3) were obtained from Stratagene (La Jolla,
CA, USA) and Novagene (Darmstadt, Germany), respec-
tively. All restriction enzymes, T4 DNA ligase, Taq
DNA polymerase and their corresponding buffers were
purchased from New England Biolabs (Beverly, MA,
USA). Oligonucleotide primers were synthesized by
Eurogentec (Angers, France), and the DNA sequencing
was performed by GATC Inc. (Marseille, France). Sterile
96-well cell culture microtiter plates and sealing tapes
were purchased from Corning Corp. (NY, USA), and
other polypropylene microtiter plates were from Ever-
green Scientific (Los Angeles, CA, USA). The low visc-
osity wheat flour arabinoxylan (LVWAX) was obtained
from Megazyme (Wicklow, Ireland), and the birchwood
xylan (BWX) was purchased from Sigma-Aldrich.
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Mutagenesis procedure and library construction
Random mutagenesis was carried out by epPCR using an
established protocol [31]. The template was (first round
only) the DNA encoding Tx-Xyn (Swiss-Prot accession
number Q14RS0, bearing the substitution N1A) or (in
subsequent rounds) Tx-Xyn-AF7 described by Song et al.
[24]. Briefly, the PCR reaction mixture (50 μl) contained 5
ng of template DNA, 0.3 μM of primers epF and epR (see
below), 0.2 mM dGTP/ATP (equimolar mixture) and 1
mM dCTP/TTP (equimolar mixture), 7 mM MgCl2, 5 IU
Taq polymerase and (in the third round of epPCR only)
0.05 mM of MnSO4. Reactions were conducted using the
following sequence: 1 cycle at 94°C for 2 min, 30 cycles at
94°C for 1 min, 1 cycle at 42°C for 1 min and 1 cycle at
72°C for 1 min, and finally 1 cycle at 72°C for 5 min. The
amplicons were purified using QIAquick PCR Purification
Kit (Qiagen, Courtaboeuf, France) and were digested with
EcoRI and NdeI and inserted into a similarly digested
pRSETa vector. The ligation mixture was used to trans-
form competent E. coli Novablue (DE3) cells. epF: 5’-
GGAGATATACATATGGCCACG-3’; epR: 5’-GGAT-
CAAGCTTCGAATTCTTACC-3’. DNA recombination
was carried out using an adapted StEP method [30,32].
The PCR reaction (50 μl) contained 5 ng of total template
DNA (equimolar mixture of each parental gene), 0.3 μM
of each primer, 0.2 mM of each dNTP, and 5 IU Taq poly-
merase. Reactions were conducted using the following
sequence: 1 cycle at 94°C for 2 min; 40 cycles comprising
a step at 94°C for 30 s and 1 step at 58°C for 2 s; followed
by 40 cycles with 1 step at 94°C for 30 s and 1 step at 56°C
for 2 s. Afterwards, 20 IU of DpnI was added to the PCR
reaction, which was incubated at 37°C for 1 h, before
amplicon purification and digestion with EcoRI and NdeI.
Finally, the mutant library was generated by ligating the
digested amplicons to EcoRI/NdeI-digested pRSET plas-
mid DNA and transforming the resultant products into
competent E. coli Novablue(DE3) cells.
Site-saturation mutagenesis on residues Tyr3 and

Tyr111 of Tx-Xyn was performed using the QuikChange
mutagenesis kit (Stratagene, La Jolla, CA). The following
mutagenic primers (Eurogentec) were designed using
NNK degeneracy [59], according to the recommenda-
tions provided in the instruction manual (mismatched
bases are underlined; N is A, G, C, or T; K is G or T; M
is A or C). For amino acid position 3: Y3N_FW: 5’-
GATATACATATGGCCACGNNKTGGCAGTATTG-
GACG-3’; Y3N_REV: 5’-CGTCCAATACTGCCAM
NNCGTGGCCATATGTATATC-3’. For amino acid
position 111: Y111N_FW: 5’-C TATCACAGCTGGCGC
NNKAACGCACCGTCC ATCGAC-3’; Y111N_REV: 5’-
GTCGATGGACGGTGCGTTMNNGCGCCAGCTGT-
GATAG-3’. Following PCR, a digestion with DpnI
removed template DNA, and the product was used to
transform E. coli Novablue (DE3) cells.

The mutational combinations W109R-Y111H, Y3H-
W109R-Y111H, Y3L-W109R-Y111H, S27T, and Y6H
were created through site-directed mutagenesis. This
was achieved using the QuikChange site-directed muta-
genesis kit, according to the manufacturer’s instruction.
The oligonucleotide primers employed in PCRs are
listed in Additional file 3.

Library screening on intact and xylanase treated wheat
straw
Wheat straw (Triticum aestivum, cv. Apache) harvested
(2007) in France was milled using a blade grinder that
procured a fine powder having an average particle size
of 0.5 mm. After, the wheat straw powder, designated
In-WS, was washed with distilled water (10 volumes),
filtered using a Büchner funnel equipped with Whatman
No.4 filter paper (pore size: 20 to 25 μm), dried in an
oven at 45°C and then sterilized by autoclaving. To pre-
pare xylanase-treated wheat straw (designated Dpl-WS),
20 g In-WS were suspended in 50 mM sodium acetate
buffer, pH 5.8 (containing 0.02% NaN3) containing Tx-
Xyn (150 BWX U/g biomass) and incubated at 60°C for
70 h. Afterwards, the reaction mixture was heated at 95°
C for 5 min to inactivate the enzyme. The solid residues
were recovered by filtration (see above) and dried as
before. The sugar composition of both wheat straw sub-
strates (Table 2) was analyzed according an established
protocol [60].
Microtiter plate-based screening of mutant libraries

was performed according to the method described by
[24]. Briefly, individual E. coli transformants were grown
in the wells of 96-well microtiter plates and then cells
were recovered and lysed using the combined effect of
lysozyme (0.5 g/l) and freeze-thaw cycling (-80°C and
37°C). The screening of xylanase activity was then
achieved using a four-step protocol, which involved (1)
substrate delivery into microtiter plates (2) addition of
xylanase-containing cell lysates (3) incubation and (4)
measurement of solubilized reducing sugar using a
micro-DNS assay. The important experimental details of
these steps are summarized in Table 1. When Dpl-WS
was employed in the place of In-WS, the incubation
time was extended to 16 h and, consequently, microtiter
plates were thermosealed using polypropylene film to
reduce evaporation. In all microtiter plate screening,
wells containing transformants expressing wild-type Tx-
Xyn were included as internal controls. These were used
to calculate a coefficient of variation (1 CV = s/μ ×
100%) of Tx-Xyn activity, which was employed to assess
the activity of mutant variants.

Xylanase expression and purification
The production in E. coli JM109(DE3) cells and purifica-
tion of Tx-Xyn and variants thereof was performed
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according to the previously described procedure [61].
Briefly, purification followed a two-step protocol invol-
ving ion-exchange (Q sepharose FF) and then affinity
chromatography (Phenyl sepharose) operating on an
ÄKTA purification system (GE Healthcare, Uppsala,
Sweden). Enzyme conformity and purity were assessed
using SDS-PAGE and theoretical extinction coefficients
were computed using the ProtParam server [62]. The
concentration of xylanase solutions was determined by
measuring UV absorbance at 280 nm and then applying
the Lambert-Beer equation.

Evaluation of xylanase-mediated hydrolysis on Dpl-WS
and In-WS
To measure xylanase activity using In-WS or Dpl-WS as
substrates, a reaction mixture in 50 mM sodium acetate
buffer, pH 5.8 was prepared that contained 2% (w/v)
biomass, 0.1% (w/v) bovine serum albumin (BSA), 0.02%
(w/v) NaN3 and an aliquot (final concentration of 10
nmol enzyme/g biomass) of Tx-Xyn or a mutant
thereof. To analyze the combined effect of xylanase and
cellulase on In-WS, reactions were conducted as
described above, except that Accellerase 1500 (Genen-
cor, Rochester, NY, USA) (0.2 ml cocktail per g bio-
mass) was added to the reaction mixture and reactions
were buffered at pH 5.0. To assess the action of Accel-
lerase 1500 alone, xylanase was omitted.
All hydrolyses were performed at 50°C for 24 h with

continuous stirring (250 rpm) in screw-capped glass
tubes, and then stopped by heating at 95°C for 5 min.
For analysis, the reaction mixture was centrifuged
(10,000 g for 2 min) and then the supernatant was fil-
tered (polytetrafluoroethylene, 0.22 μm), before injection
onto a high performance anion exchange chromatogra-
phy system with pulsed amperometric detection
(HPAEC-PAD). For monosaccharide analysis, separation
was achieved at 30°C over 25 min on a Dionex Carbo-
Pac PA-1 column (4 × 200 mm), equipped with its cor-
responding guard column and equilibrated in 4.5 mM
NaOH and running at a flow rate of 1 ml/min. For the
analysis of xylo-oligosaccharides (XOS), a Dionex Car-
boPac PA-100 column (4 × 200 mm), equipped with its
corresponding guard column and equilibrated in 4.5
mM NaOH was employed. Separation of various XOS
was achieved by applying a gradient of NaOAc (5 to 85
mM) in 150 mM NaOH over 30 min at 30°C, using a
flow rate of 1 ml/min. Appropriate standards (monosac-
charides such as L-arabinose, D-xylose, D-glucose and
D-galactose and various XOS displaying a degree of
polymerization of 2 to 6) at various concentrations (2 to
25 mg/l) were used to provide quantitative analyses.
Finally, the quantitative results from HPAEC analysis
(monomeric and oligomeric sugars) were converted into

the amount of soluble monosaccharide equivalents
(designated ‘average solubilized weight’), and the percen-
tage conversion was calculated as follows, either in
terms of xylose or glucose:

Conversion %tot.N =
average solubilized N

theoretical total N
× 100% (w/w)

Where ‘N’ represents xylose or glucose, and the ‘theo-
retical total N’ is the total amount of sugar N present in
the initial straw sample (Table 1).

Determination of kinetic parameters
To measure the kinetic parameters of Tx-Xyn and its
mutants, BWX and LVWAX were used as substrates at
eight different concentrations (0 to 12 g/l). Hydrolysis
reactions (1 ml) were performed at 60°C in NaOAc, pH
5.8 using approximately 4.5 and 3.5 nM of xylanase for
BWX and LVWAX assays, respectively. During the
course of the reaction, aliquots (100 μl) were removed
at 3-min intervals, and immediately mixed with an equal
volume of 3,5-dinitrosalicylic acid (DNS) reagent to stop
the reaction. The quantity of solubilized reducing sugars
present in samples was assessed by the DNS assay [63].
Finally, results were analyzed using SigmaPlot V10.0,
which generated values for kcat and KM. Taking into
account the heterogeneous nature of the substrates,
computed KM values are apparent values having units of
g/l.

Thermostability assay
To measure the thermostability of the xylanases used
in this study, enzyme solutions (100 mM in 10 mM
Tris-HCl buffer, pH 8.0) were incubated at 50°C and
60°C for up to 6 h. At intervals, aliquots were removed
and used to measure residual xylanase activity on
BWX (at 5 g/l) at 60°C using the DNS method to
quantify solubilized reducing sugars. One unit (1 U
BWX) of xylanase activity was defined as the amount
of xylanase required to release 1 μmol of equivalent
xylose per minute from BWX. Enzyme half-life (t1/2)
was deduced by fitting the curve of ln(residual activity)
= kt where t is the time and k is the slope, and t1/2 = k
-1ln(0.5) [16].

Determination of melting temperature by differential
scanning fluorimetry (DSF)
A sample in 20 mM Tris-HCl buffer, pH 8.0 was prepared
that contained 100 mM NaCl, SYPRO Orange (Invitrogen,
final concentration 10 ×), and an aliquot (final concentra-
tion of 6.75 μM) of Tx-Xyn or mutant xylanases thereof.
Negative controls containing either SYPRO or xylanase
alone were analyzed in parallel. A CFX96 Real-Time PCR
Detection System (Bio-Rad) was used as a thermal cycler
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and the fluorescence emission was detected using the
Texas Red channel (lexc = 560 to 590 nm, lem = 675 to
690 nm). The PCR plate containing the test samples (20 μl
per well) was subjected to a temperature range from 20°C
to 99.5°C with increments of 0.3°C every 3 s. The apparent
melting temperature (Tm) was calculated by the Bio-Rad
CFX Manager software.

Additional material

Additional file 1: Equivalent xylose yields from hydrolyses involving
Tx-Xyn and mutants.

Additional file 2: Equivalent xylose and glucose yields (recorded at
24 h) from the hydrolysis of In-WS by a mixture of Accellerase 1500
and Tx-Xyn or mutants thereof.

Additional file 3: Oligonucleotide primer pairs used for site-directed
mutagenesis.
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