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Abstract. Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks
and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the
simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix
partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties
of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix
adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The
effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the
tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix
interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of
broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix
volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit
is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

1 Introduction

Cemented aggregates of solid particles are very common in
nature and an essential ingredient of many industrial prod-
ucts. Well-known examples are sedimentary rocks such as
sandstones and conglomerates [1], mortars, concrete, bitu-
minous concrete [2–4], grouted soils [5], and biomaterials
such as the wheat endosperm composed of starch granules
bound together by a protein matrix [6, 7]. The common
denominator of all these materials is to be composed of
a dense granular assembly cemented by a paste partially
filling the pore space. They may be described as intermedi-
ate materials between particle-reinforced composites and
cohesionless granular media. The cementing paste endows
the aggregate with macroscopic cohesion but, in contrast
to particle-reinforced composites, the mechanical proper-
ties are strongly controlled by the granular backbone [8].
Hence, cemented aggregates are more complex than co-
hesive granular materials with surface adhesion between
grains such as fine powders [9–12] due to the bulk ef-
fect of the matrix, which makes the mechanical behavior
depend not only on the granular backbone but also on
load transfer between the grains and the matrix [13–15].
For this reason, a multitude of physical mechanisms (in-
terface debonding, particle fracture, matrix deformation,
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etc.) control the deformation and failure of cemented ag-
gregates that are generally difficult to isolate from exper-
iments or to predict theoretically [16–18].

Another important feature of cemented aggregates
is that the pore space is often only partially filled by
the matrix. In particular, they generally involve micro-
cleavages or bare contacts (no interposed matrix) between
the grains [13,19]. For example, there is experimental ev-
idence that the contact zones in grouted sand are not all
cemented and the cohesion is ensured only by the grain-
matrix adhesion [5]. The bare contacts behave as micro-
cracks and lead to reduced stiffness and strength in both
tension and compression. For this reason, the formulation
of concrete requires an overfilling cement, i.e. the cement
exceeding the minimum content that would fill the voids
of the fully packed grains [19]. The porosity is also mon-
itored by means of the particle size distribution, which
allows for largest pores to be filled by finer particles. The
adhesion of the cement to the grains and the defects in
the contact zone between the grains are as important as
its volume for load-bearing capacity of concrete [4,17,20].

The theoretical and numerical models developed for
cohesionless granular aggregates or particle-reinforced
composites are often inappropriate for cemented gran-
ular aggregates. Discrete element modeling (DEM) is a
powerful approach for the simulation of granular materi-
als composed of rigid particles [21–26]. However, cohesive
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behavior in DEM simulations may be introduced only in
terms of force laws at the contact point [27–30] or by
connecting the particles by rigid beams [31–35]. In such
models, the bulk effect of a cementing matrix cannot be
taken into account. On the other hand, particle-reinforced
composites may be modeled by means of analytical meth-
ods [36–39] or numerical approaches [40,41] based on con-
tinuum mechanics and used essentially to compute the
elastic properties of composite systems. In cemented ag-
gregates the microstructure is highly complex because of
both its multiphase nature and the intrinsic disorder of
its granular structure, which involves an inhomogeneous
stress transmission. Hence, the application of analytical
and finite element methods (FEM) is almost unfeasible
for a representative volume element of the material with
a large number of embedded particles.

In order to be able to simulate complex microstruc-
tures, a trade-off is necessary between numerical efficiency
and physical description of the system. Such a compro-
mise is provided by the lattice element method (LEM),
which has been recently applied for the simulation of 2D
cemented aggregates [8]. In this method, the space is dis-
cretized on a regular or irregular lattice of 1D elements,
which can be simple harmonic springs or beams with an
elastic brittle behavior [42–44]. These lattice elements be-
long to different bulk or interface phases (particle, ma-
trix, void, particle-matrix interface, particle-particle in-
terface) with different properties (stiffness, failure thresh-
old) representing the nature of each phase. This approach
accounts for breakable interface elements (as interparticle
contacts in a granular media) and breakable bulk elements
(as a damageable volume element in continua). Using sim-
ple elastic-brittle bonds allows for the simulation of large
systems involving a large number of particles with vari-
able volume fraction of the binding phase. Lattice-type
discretization has been extensively used for the statistical
mechanics of fracture in disordered media, and applied
to study the fracture properties of concrete and ceram-
ics [43,45–54].

In this paper, we employ LEM simulations for a de-
tailed analysis of 3D cemented aggregates composed of
a dense packing of spherical particles with variable ma-
trix volume fraction and particle-matrix adhesion under
tensile loading. We investigate the effective stiffness, ten-
sile strength, stress transmission and failure of cemented
aggregates by focusing on the respective roles of matrix
volume fraction and particle-matrix adhesion. For the ef-
fective stiffness, we also evaluate the influence of finite
spatial resolution and compare the data with the predic-
tion of analytical models developed for composites. The
influence of granular structure is studied by considering
the distribution of node stresses. A fundamental issue in
this respect is whether the broad inhomogeneous force dis-
tributions observed in cohesionless granular media (under
compressive forces) are relevant under tensile loading, and
how the distributions are affected by load transfer from the
particle phase to the matrix phase as the matrix volume
fraction is increased.

We are also interested in the tensile strength and mech-
anisms of failure by the generation and propagation of

cracks as a result of the rupture of lattice elements. In par-
ticular, we show that, depending on whether the binding
phase percolates throughout the system and the strength
of adhesion at the particle-matrix interface, the cracks
may propagate either in the matrix phase or across the
particles producing a superficial or core damage. We dis-
cuss whether a single material parameter combining ma-
trix volume fraction and particle-matrix adhesion may be
defined to scale the strength and particle damage data.
Our 3D simulations and results provide the opportunity
for comparison with both experiments performed with
model granular aggregates [55] and 2D LEM simulations
of disk packings [8].

In the following, we first introduce in sect. 2 the phys-
ical model and numerical procedures used for the sim-
ulations. Then, in sect. 3, we focus on the stress-strain
behavior and elastic stiffness. The stress transmission is
analyzed in sect. 4. Section 5 is devoted to the tensile
strength and its scaling with matrix volume fraction. In
sect. 6, we analyze crack paths and particle damage. Fi-
nally, in sect. 7, we conclude with the most salient results
and perspectives of this work. Most technical aspects are
presented in separate appendices.

2 Numerical procedures

2.1 Lattice element method

The lattice element method (LEM) is based on the dis-
cretization of different phases of a solid on a regular or ir-
regular lattice [8,56,57]. Hence, the space is represented by
a grid of points (nodes) interconnected by one-dimensional
elements (bonds). Each bond can transfer normal force,
shear force and bending moment up to a threshold in force
or energy, representing the cohesion of the phase or its in-
terface with another phase. In its simplest version, the
elements are linear springs characterized by a Hooke con-
stant and a breaking threshold.

Each bulk phase (particle, matrix, pores) or surface
phase (interface between two bulk phases) is materialized
by the bonds carrying the properties of that phase. The
samples are deformed by imposing displacements or forces
to nodes belonging to the contour. The total elastic energy
of the system is a convex function of node displacements
so that finding the unique equilibrium configuration of
the nodes amounts to a minimization problem. Perform-
ing this minimization for stepwise loading corresponds to
subjecting the system to a quasistatic deformation pro-
cess. Alternatively, the system of equations can be inte-
grated by explicit time-stepping schemes as in molecu-
lar dynamics. We developed a 3D LEM algorithm based
on a conjugate-gradient solver. A brief description of the
method is given in appendix A.

LEM has the advantage of allowing for the initiation
and propagation of cracks by simply breaking the criti-
cal elements, i.e. the elements carrying a force above a
breaking threshold. The effective behavior is elastic brit-
tle with elastic moduli depending on the lattice geometry
and single-element characteristics. A fully irregular lattice
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Fig. 1. Lattice representation of a granular aggregate com-
posed of particles, solid matrix connecting the particles and
voids.

with random orientations of all elements represented by
simple springs of the same Hooke constant k corresponds
to an isotropic medium of Young’s modulus E = 3

√
2k/5

and Poisson ratio ν = 1/4; see appendix B. The macro-
scopic breaking threshold depends on the lattice disorder
and local thresholds. In porous granular aggregates con-
sidered in this paper, the main source of disorder is the
random spatial distribution of the particles and the matrix
phase.

2.2 System description

We first generate a large dense packing of rigid spheres
compacted isotropically by means of a discrete element
method in a cubic box. A cubic portion of this packing
is overlaid on a random 3D tetrahedral lattice. The bind-
ing matrix is then introduced in the form of truncated
conical bridges of variable thickness connecting neighbor-
ing particles within a prescribed distance; see fig. 1. The
total volume of the binding matrix is distributed among
the eligible pairs of particles proportionally to the mean
square diameter of each pair. Hence, at low matrix volume
fraction, the matrix occurs basically in the form of con-
ical bridges joining neighboring particles. As the matrix
volume fraction is increased, the bridges begin to overlap
and percolate at some point throughout the packing. The
bonds belonging to these bridges are given the properties
of the binding matrix whereas those within the particles
have the properties of the particle phase. In the same way,
the bonds located between a particle and the matrix or be-
tween two particles are given the desired properties of the
corresponding interface.

In the simulations reported in this paper, the under-
lying lattice bonds are simple springs characterized by a
Hooke constant and a breaking force threshold. A lattice
of beam-like elements leads to a more realistic behavior
of crack propagation for shear and distortion when the
characteristics of the beams are uniform throughout the
system with some degree of bond disorder. In our system,
the material behavior reflects to a lesser extent the lattice

characteristics than structural disorder at the scale of the
particles, each particle being represented by a collection
of hundreds of elements. For example, the tortuosity of
the cracks is mainly controlled by the contrast between
the bonds belonging to the matrix and those belonging
to the particles as well as by the particle size distribu-
tion. The cracks propagate along straight lines and may
be deflected by the particles. It is also important to note
that we consider only small strains so that the topology
of lattice is not alterned during deformation. Hence, the
strength of the lattice in shear and distortion is ensured
by the high connectivity of the nodes. For these reasons,
the spring-like elements lead to a rather realistic behavior
in our simulations. Another important parameter is com-
putation time, which is reduced by a factor of the order
of 3 when using springs instead of beam-like bonds.

The samples consist of the bulk phases: 1) parti-
cles, denoted “p”; 2) matrix, denoted “m”; and 3) void
space or pores, denoted “v”, as well as the interface
phases: 1) particle-particle interface, denoted “pp”, and
2) particle-matrix interface, denoted “pm”. The elements
belonging to each phase φ (bulk or interface) are given
a Hooke constant kφ and a breaking force fφ. We have
fv = 0 and the choice of the value of kv is immaterial.

The surface phases “pm” and “pp” are mono-element
transition zones linking two particles or a particle to the
matrix. The interface phases affect the global behavior
through their specific surfaces (total surface per unit vol-
ume) and their strengths represented by the Hooke con-
stants kpp and kpm, and the corresponding tensile force
thresholds fpp and fpm. It is noteworthy that, depend-
ing on the fineness of discretization, the volume of the
interface zones in a discrete representation may not be
negligible compared to that of the bulk phases. The vol-
ume of the interface may be partially or fully attributed
to either of the two bulk phases depending on the me-
chanical problem at hand. For example, in dealing with
the effective stiffness as a function of the matrix volume
fraction, the latter needs to be adjusted by requiring that
the tensile stiffness vanishes at ρm = 0; see sect. 3.

It is dimensionally convenient to express the bond
characteristics in stress units. We thus define the bond
breaking (or debonding) stresses σφ ≡ fφ/a2 and the
moduli Eφ ≡ kφ/a, where a is the average length of the el-
ements. These bond moduli Eφ of the lattice are obviously
distinct from the effective phase moduli which depend on
both the bond moduli and geometry of the lattice. We
will use below square brackets to represent the effective
phase moduli: E[p], E[m], E[pp] and E[pm]. In a granular
aggregate, the effective tensile strength σeff of the sys-
tem and the effective Young’s modulus Eeff depend on
the breaking characteristics σφ and phase moduli Eφ, the
geometry of the lattice and the spatial distributions of the
phases. The main elastic parameters that will be consid-
ered in this paper are the Hooke constants kp and km

of the bonds belonging to the particles and matrix, re-
spectively. The initial state is the reference (unstressed)
configuration. When the sample is loaded, bond forces de-
velop inside the sample.
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Fig. 2. A node i with its neighbors j and the corresponding
Voronoi cell for the definition of node stress.

A stress tensor σi can be attributed to each node i of
the lattice network

σi
αβ =

1
|V i|

∑

j

rij
α f ij

β , (1)

where the summation runs over all neighboring nodes j,
rij
α is the α component of the vector joining the node i to

the midpoint of the bond ij and f ij
β is the β component of

the bond force [57,58]; see appendix C for more details. In
the stress maps of granular agglomerates each component
σα

ij is represented by a proportional color intensity or grey
level over the elementary Voronoi cell centered on the node
i (volume |V i|); see fig. 2.

2.3 Simulation parameters

In LEM calculations of cemented aggregates, the preci-
sion depends on the number of lattice elements per par-
ticle. On the other hand, for a good statistical represen-
tativity of a sample, a minimum number of particles are
required. In the parametric studies reported in this pa-
per, the samples are of cubic shape, containing each 516
particles of diameters uniformly distributed between dmin

and dmax = 1.25dmin. The particle volume fraction is
ρp � 0.64. The samples are meshed by M � 1.3 × 106

elements and each particle contains about 1550 elements.
These parameter values provide a good compromise be-
tween the numerical efficiency, precision and representa-
tivity of the structure. Given the spatial resolution, the
particle shapes may be considered as spheres with a rough
surface. The roughness is of the order of 2a/d � 0.2, where
d is the average particle diameter.

Eight samples were prepared with the following values
of the matrix volume fraction ρm: 0.06, 0.1, 0.13, 0.17, 0.2,
0.22, 0.24 and 0.28. The matrix is distributed equally to
all pairs of particles separated by a distance δ ≤ dmin. In
all samples, except in fig. 5, we set σpp = 0, which corre-
sponds to “bare” contacts between particles with vanish-
ing tensile strength. This choice is motivated by the obser-
vation that in most cemented aggregates such as conglom-
erates and concrete the binding material is the only source
of adhesion. The direct contact points between particles

σ
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Fig. 3. Vertical tensile stress normalized by the tensile
strength σ[p] of the particles as a function of vertical strain
for different values of the matrix volume fraction ρm.

are therefore the weak points of the material, which can be
considered as micro-cracks or cleavages where the cracks
are initiated. Obviously, such contacts are eligible for re-
ceiving the matrix only outside the contact zone. Note also
that, because of the thickness of the particle-particle in-
terface due to finite spatial resolution, the pores between
particles are filled by the matrix for ρm = 0.28 (this would
have been 0.34 if the thickness were zero).

The particles are assumed to be three times stiffer than
the matrix (Ep = 3Epm = 3Em) as usually observed
in concrete. We also set σp = σm in order to avoid in
the parametric studies the effects related to the proper
strength of the particles. Although such effects need to be
investigated later, we focus in this paper on the particle-
matrix adhesion and matrix volume fraction. As to the
particle-matrix adhesion σpm, its value for each configu-
ration was varied from 0.2σp to 1.4σp. In this way, a total
number of 81 simulations were performed for the paramet-
ric studies analyzed in this paper.

Assuming that the chosen computational cells reach
the size of the Representative Volume Element, affine
displacement boundary conditions are applied. For ten-
sile loading, the vertical positions of the bottom nodes
of each sample are fixed and upward displacement incre-
ments of 3 × 10−4a are applied to the top nodes. All
other surface nodes of the samples are free with a null
confining stress. The simulation ends when the tensile
stress vanishes. The CPU time is on the average 0.025 s
per displacement increment and per node before failure
on a 2.93 GHz Intel Xeon processor. Video samples of
some of the simulations analyzed below can be found at
www.cgp-gateway.org/ref017.

3 Elastic behavior

Typical examples of strain-stress behavior are displayed
in fig. 3 where the vertical stress σzz is plotted as a func-
tion of the cumulative vertical strain εzz for three different
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Fig. 4. 3D map of broken bonds (black segments) in the post-
failure regime.

values of ρm and for σpm = 0.3σp. The stresses are nor-
malized by the tensile strength σ[p] = σ[m] of the particles
and matrix. We observe an initial linear elastic behavior
with a well-defined stiffness Eeff followed by a nonlinear
regime up to failure at σzz = σeff . Since the lateral con-
fining stress is zero in our simulations, Eeff represents the
effective Young modulus of the material. The post-failure
regime is characterized by an abrupt fall-off followed by a
gradual decrease of tensile stress until the full disruption
of the sample. The peak stress increases with ρm and is
reached for a deformation εzz � 4 × 10−3.

The nonlinear rising regime corresponds to progres-
sive degradation of the material due to diffuse breaking
of the bonds. The sample yields when a fracture surface
emerges from diffuse cracks and propagates across the
sample. Generally, a single fracture surface survives and
propagates, causing the separation of the sample into two
blocks. One example of the broken bonds and rupture sur-
face is shown in fig. 4. The post-failure damage in our 3D
simulations appears to be much more progressive than in
2D simulations [8]. In fact, a 2D sample breaks apart sim-
ply by a line of broken bonds across the sample whereas
a 3D sample will keep its mechanical integrity unless a
fracture surface is formed.

The evolution of the effective Young’s modulus Eeff

with ρm is displayed in fig. 5 for our system with bare
contacts between particles (σpp = 0) and for the same
samples with the same tensile strength between particles
as that of particles with the matrix (σpp = σpm). For all
simulated samples and in both cases, Eeff is a clear-cut
linear function of ρm. The observed values of the effective
Young’s modulus are below the Young’s modulus of the
particle phase since tensile loading affects mainly the ma-
trix phase, which is three times less stiff than the particles.
But we also see that, due to the presence of the particles,
for high matrix volume fractions Young’s modulus rises
to values of the order of 1.6 and 2.5 times Young’s mod-
ulus of the matrix phase with bare and adhesive contacts

E
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Fig. 5. Normalized effective initial Youngs moduli with bare
contacts between particles (σpp = 0, red) and with adhesive
contacts (σpp = σpm, blue) together with linear fits (dotted
lines): numerical results (symbols), Hashin-Shtrikman-type es-
timates (lines, see appendix D).

between particles, respectively. With adhesive contacts be-
tween particles, the effective Young’s modulus approaches
that of the particles since tensile stresses can also be di-
rectly sustained by the contact network. This is also true
under compressive loading, since the contraction of the
packing affects the contact zones between particles as ob-
served previously in 2D cemented aggregates [8, 59].

It is interesting to compare the effective stiffness calcu-
lated from the simulation data with the predictions of ana-
lytical field theories of elastic strains in an infinite homoge-
neous medium containing inclusions of simple shape [60].
Our numerical results are in agreement with the predic-
tions of analytical Hashin-Shtrikman-type estimates de-
tailed in appendix D, when considering a three-phase com-
posite made of a matrix interphase, a collection of spher-
ical pores and a collection of spherical particles randomly
distributed in space.

In analyzing the effective Young’s modulus as a func-
tion of matrix volume fraction, the numerical parameters
such as the total number of bonds M and the configura-
tion of the particles were kept the same in all simulations.
But, since the volume is discretized independently of the
microstructure, a property may be correctly attributed to
a bond only if it belongs entirely to a phase. Irrespec-
tive of discretization, random or structured, there is thus
always a misfit between the meshed microstructure and
the true microstructure. In the case of FEM simulations,
this finite spatial resolution is known to affect the effective
elastic properties and an insufficient number of elements
or meshes in a solid region may not represent correctly
continuum elasticity [61, 62]. In order to evaluate such
discretization errors in the LEM simulations, we studied
Young’s modulus Eeff at increasing number of elements M
in two limit cases: a solid matrix containing a random dis-
tribution of 20% of i) stiff spherical inclusions, ten times
stiffer than the matrix and ii) spherical pores. Figure 6
shows the corresponding effective Young’s modulus Eeff

as a function of the average mesh density Ln = 1/M1/3 in
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Fig. 6. Normalized effective Young’s modulus for a material
with hard inclusions or with porous inclusions as a function of
the mesh density (symbols) and linear fits (dotted lines).

both cases. As in FEM simulations, we observe a linear de-
pendence with an increasing stiffness in the first case and
a decreasing stiffness in the second case as the resolution
increases (decreasing Ln):

Eeff

E[p]
� Eeff

E[p]

∣∣∣∣
0

+ αELn,

where αE is a dimensionless coefficient and Eeff/E[p]|0 rep-
resents the “exact” value of normalized Young’s modulus
Eeff/E[p] for a vanishing mesh size (mesh density Ln tends
to zero and global number of bounds M tends to +∞).
The linear fit to data points makes it possible to evaluate
this exact value. In the following, all situations analyzed
in this paper are carried out with Ln � 0.01 so that the
possible relative errors in the apparent elastic properties,
compared to the exact value, are below 10%.

4 Stress transmission

Stress transmission in granular materials is featured by
highly loaded contact chains sustaining nearly the whole
shear stress [59, 63]. In a dense cemented aggregate, the
stress chains may still occur due to higher stiffness of the
particles and their high connectivity. From the simula-
tions, we have access to the node stresses in the matrix,
particles and their interface; see appendix C. Maps of uni-
axial node stresses σi

zz are displayed in fig. 7 for three
values of the matrix volume fraction. We observe both ten-
sile and compressive vertical stresses while the aggregate
is subjected to vertical tensile loading. Chains of strong
tensile stresses cross the particles and a higher stress con-
centration is observed at the contact zones between par-
ticles as in granular materials.

The probability density function (pdf) of the vertical
components of node stresses σi

zz is shown in fig. 8 for the
same values of the matrix volume fraction. The strong
tensile stresses fall off exponentially

P (σi
zz) ∝ e−βσi

zz/σzz . (2)

Fig. 7. A color map of vertical stresses σzz at the center of
a cemented aggregate under tensile loading for three different
values of the matrix volume fraction: (a) 0.06, (b) 0.17 and
(c) 0.28. The color scale shows the range of tensile (positive)
and compressive (negative) stresses.
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/

.

.

.

Fig. 8. Probability density function (pdf) of vertical node
stresses σi

zz normalized by the applied tensile load for three
levels of matrix volume fraction; see fig. 7. The dotted line in-
dicates the exponential tail of the pdf in the range of strong
tensile stresses.

The exponential distribution is a hallmark of strong con-
tact forces in cohesionless and cohesive granular me-
dia [64–67]. The weak tensile (positive) and compressive
(negative) stresses have a nonzero pdf in analogy to weak
contact forces in granular materials and reflect the arching
effect [63,65,68].

Despite the smaller range of compressive stresses, they
seem to follow an exponential fall-off as strong tensile
stresses. As compared to stress distribution previously ob-
tained for 2D aggregates [8, 59], the 3D distributions are
broader and reveal a higher degree of inhomogeneity. The
pdf is increasingly broader for decreasing matrix content
as the stresses become more concentrated in the matrix
bridges between the particles. The exponent β varies from
� 0.7 to � 2.1 as ρm increases from 0.06 to 0.28. We find
similar behavior for other components of the stress tensor.

This striking similarity of stress distributions to force
distributions in granular media, up to variations in the
range of forces as a function of matrix volume fraction,
indicates that stress concentration in cemented aggregates
is mainly controlled by contact network disorder. This is a
distinctive feature of cemented granular aggregates com-
pared to composites where stress concentration is mainly
dependent on the pore space, e.g. [69].

5 Tensile strength

The failure of aggregates is initiated by diffuse debonding
in the whole volume of the composite and accelerated by
the coalescence of micro-cracks along a rupture surface.
Since the matrix and particle phase have the same tensile
strength (σ[p] = σ[m]) and the particle-particle contacts
have no adhesion (σpp = 0), the effective tensile strength
of the material depends on the particle-matrix adhesion
σpm and the matrix volume fraction ρm, which controls
the porosity of the aggregate.

The effective tensile strength σeff , defined as the peak
stress in the effective stress-strain response, is an increas-

Fig. 9. Tensile strength as a function of particle-matrix adhe-
sion for different values of matrix volume fraction.

Fig. 10. A pair of particles joined by a cylindrical bridge of
length δ and filling angle θ.

ing function of both the matrix volume fraction ρm and
particle-matrix adhesion σpm as shown in fig. 9. The
particle-matrix interface is reinforced by increasing σpm

with the effect of hindering the propagation of cracks. This
effect is less pronounced at low values of ρm (high poros-
ity) where stress transmission is governed by the pore
space rather than particle-matrix interface. At higher val-
ues of ρm the role of the interface zones prevails and the
tensile strength grows rapidly with σpm.

It is remarkable that in the range σpm > σ[p], the ten-
sile strength continues to increase with σpm though with
a trend to saturate. The particle-matrix interface with an
adhesion above the internal adhesion of each phase be-
haves as a hard coating, which protects the particles from
cracking or from the penetration of cracks initiated in the
matrix. Due to this “coating effect”, the largest value of
σeff is slightly above σ[p] for σpm > σ[p] in the absence of
pores (ρm = 0.28).

In order to understand the effect of ρm, we distinguish
between 1) the matrix bridges between particles, which
are responsible for stress transmission in the particle phase
under tensile loading (binding effect), and 2) bulk trans-
mission of tensile stresses in the matrix phase (bulk effect).
Let us consider two particles of the same radius R joined
by a cylindrical matrix bridge, as displayed in fig. 10. The
total area of the two particles covered by the matrix is
given by

S = 4πR2(1 − cos θ), (3)

where θ is the filling angle.
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Fig. 11. Particle-matrix interface area normalized by the total
surface of the particles as a function of matrix volume fraction.

The largest tensile force supported by a particle-matrix
interface element n′dS, where n′ is the outward normal to
the particle surface, is df = σpmn′dS. Hence, the largest
tensile force fc sustained by the bridge is obtained by in-
tegrating the projection of df along the bridge axis n over
the covered area

fc =
∫

covered area

n · df =
1
2
πR2σpm(1 − cos 2θ). (4)

This force may be expressed as a function of the local spe-
cific surface S′ = S/(4πR2) by eliminating θ between (3)
and (4)

fc = πR2σpmS′(2 − S′). (5)

The factor 2 − S′ reflects the curvature of the interface.
This equation shows that fc is an increasing function of
S′ and reaches its highest value πR2σpm for S′ = 1.

In a mean-field approach, we neglect the small-size
polydispersity of the particles and fc may be replaced by
the average tensile force between particles at failure. In
the same way, S′ represents the particle-matrix interface
specific area Spm, defined as the covered area normalized
by the total area Sp of the particles. Figure 11 shows Spm

as a function of the matrix volume fraction ρm. The spe-
cific area Spm increases linearly with ρm, and the particles
are fully covered by the matrix (Spm = 1) only when the
pore space is filled (ρm = ρm

f = 0.28). This is a conse-
quence of the filling procedure by increasing the diameter
of matrix bridges among particles. We thus get a simple
relation,

Spm

Sp
=

ρm

0.28
=

ρm

ρm
f

, (6)

which, with the assumption that the average behavior is
a consequence of the local force model of eq. (5), leads to
the following expression for the mean tensile force:

〈fc〉 = πR2σpm ρm

ρm
f

(
2 − ρm

ρm
f

)
. (7)

Again, in a mean-field approximation, the average ten-
sile stress σp

eff sustained by the matrix bridges between

σ
ef

f /
σ

 p
m
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f  - ρm) / (1 - k ρm)
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Fig. 12. The scaling of tensile strength normalized by the
particle-matrix adhesion with the matrix volume fraction. The
dashed line indicates the mean trend according to eq. (10) for
k = 2.5. The symbol labels, corresponding to those of fig. 9,
are omitted.

particles is proportional to the mean force 〈fc〉 divided by
the average particle cross section πR2

σp
eff ∝ σpm ρm

ρm
f

(
2 − ρm

ρm
f

)
. (8)

The proportionality factor is a function only of the packing
structure and number of matrix bridges per particle. The
latter is of the order of 9 and does not evolve with ρm in
exception to the lowest value ρm = 0.06 for which not all
contacting particles are connected by a matrix bridge and
the number of matrix bridges per particles is about 6.

The tensile stress σp
eff represents a fraction of the total

stress σeff at failure. With increasing ρm, an increasing
fraction of the tensile load is transferred to the bulk of
the matrix phase. Assuming that this fraction is a linear
function of ρm, we have

σp
eff = (1 − kρm)σeff , (9)

where k is a constant independent of ρm. This relation,
together with eq. (8), leads finally to the following scaling
of tensile strength:

σeff

σpm
= A

ρm(2ρm
f − ρm)

1 − kρm
, (10)

where A is a packing constant.
In fig. 12, all our normalized tensile strength data

σeff/σpm from fig. 9 are plotted as a function of ρm(2ρm
f −

ρm)/(1−kρm). We see that nearly all data points collapse
on a straight line by setting k � 2.5 and A � 0.3. The data
corresponding to ρm = 0.06 show a slightly lower slope
(� 0.2) which is consistent with the lower connectivity of
the particles in this limit.

6 Crack regimes and particle damage

In lattice models of fracture, the number of broken ele-
ments is often used as a measure of damage [49]. In a



Eur. Phys. J. E (2012) 35: 117 Page 9 of 15

Fig. 13. Proportion of broken bonds inside the particle phase
as a function of vertical strain for different values of parame-
ters. The inset is a zoom.

cemented aggregate, the broken bonds may happen in the
matrix, in the particle phase or at their interface. We con-
sider here the proportion nb of broken bonds inside the
particles compared to the total number of broken bonds
in the whole aggregate. The limit case nb = 0 corresponds
to a situation where the particles are not damaged and
the micro and macro cracks propagate only in the ma-
trix phase or along the particle-matrix interface. The limit
nb = 1 corresponds to an aggregate where the particles are
much more brittle than the matrix and break down under
tensile loading. In our system with the choice σp = σm,
the cracks propagate from the bare contacts between par-
ticles or from the initially broken bonds at the most loaded
elements at the interface, and they may penetrate more or
less easily into the particles depending on the properties
of the particle-matrix interface. Hence, the evolution of nb

provides an interesting indicator of particle damage and
crack paths.

Figure 13 shows the evolution of nb as a function of
axial strain for three different sets of parameters. For
low enough values of σpm, particle damage is negligibly
small irrespective of the matrix volume fraction ρm. Ob-
viously, the cracks propagate in this case favorably along
the particle-matrix interface. At high levels of σpm, nb

remains small up to the yield point at which it rapidly in-
creases as a result of rupture along a fracture surface, and
then continues to increase slowly during the post-failure
phase.

Figure 14 displays nb just after failure as a function
of σpm for different values of ρm. We see that nb begins
to increase from zero only for a finite value of σpm that
depends on ρm. Thereafter, the increase of nb with σpm is
nonlinear: increasing rate followed by a decreasing rate
with an inflection point at σpm � σp. The number of
broken bonds in the particle phase is also an increasing
function of matrix volume fraction ρm. Note that for the
lowest value ρm = 0.06, the number of broken bonds nb

remains vanishingly small.
A grey-level map of nb in the parameter space

(ρm, σpm) is shown in fig. 15. Below a well-defined fron-

Fig. 14. Proportion of broken bonds inside the particles after
failure as a function of particle-matrix adhesion for different
values of matrix volume fraction.

Fig. 15. Grey-level map of the proportion of broken bonds
in the particle phase for various values of the matrix volume
fraction ρm and particle-matrix interface strength σpm. The
dashed line represents the weakest link approach (eq. (13) with
Kr

c = 0.4). The dotted curve represents the “particle damage
limit” (eq. (14) with Kr

c = 0.7).

tier (marked by a dotted line), no particle damage occurs
(nb � 0). This means that, for this range of parame-
ter values, corresponding essentially to low values of ρm

or σpm, the cracks propagate either in the matrix or at
the particle-matrix interface. Above this “particle dam-
age” limit, the iso-level lines of nb are similar to the limit
line with increasing nb. The map is comparable to that of
2D cemented aggregates investigated in [8] with a major
difference that in 3D no change of behavior is observed
for a critical value of ρm. We simply distinguish here two
regimes: 1) below the particle-damage limit, the cracks by-
pass the particles and propagate through the matrix, the
pores or along the particle-matrix interface and 2) above
this limit, the cracks may penetrate also into the particles
from the matrix or interface.

The particle-damage limit is a consequence of the
combined influence of the matrix volume fraction and
particle-matrix adhesion on the penetration of cracks into
the particles. According to linear fracture mechanics, the
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Fig. 16. Proportion nb of broken bonds inside the particle
phase as a function of the relative toughness (14) between the
particle-matrix interface and the particle phase.

penetration of a crack into a particle implies that the
particle is less tough than the matrix-particle interface.
Otherwise, the crack will be deflected by the interface,
e.g. [70]. For pure mode I (tensile), the toughness of any
phase φ corresponds to the critical stress intensity factor
Kφ

c =
√

E[φ]Gφ
c and combines the effective Young’s mod-

ulus E[φ] with the critical energy release rate Gφ
c . The

stored elastic energy of a bond at failure is fully dissipated
when the bond fails and Gφ

c reads locally

Gφ
c =

a

2
(σφ)2

Eφ
. (11)

Following [8], we define the relative interface/particle
toughness Kr

c = Kpm
c /Kp

c that reads (definition of Kφ
c

and eq. (11))

Kr
c =

√
E[pm]

E[p]

Ep

Epm

σpm

σp
. (12)

In order to derive various estimates for this relative in-
terface/particle toughness, the effective Young’s modulus
E[pm] of the particle-matrix interface is replaced in (12)
by Young’s modulus of a reference medium E0.

A first simple choice for E0 corresponds to a weakest
link approach setting the effective ratio E[pm]/E[p] to the
local ratio Epm/Ep. The relative interface/particle tough-
ness reads in this case

Kr
c =

σpm

σp
. (13)

Anticipating in the sequel, fig. 16 shows the propor-
tion nb of broken bonds inside the particles as a function
of Kr

c from all simulated configurations. It is remarkable
that, as compared to fig. 14, the data points are much
less dispersed. Moreover, the weakest link approach is as-
sociated to the configuration for which Kr

c leads to the
first occurrence of broken bonds inside the particles. In
fig. 16, this situation corresponds to Kr

c � 0.4, and the
lower bound σpm/σp � 0.4 is in agreement with data in
fig. 15.

Another choice for E0 corresponds to an estimate of
the “particle damage limit” by setting Young’s modulus
of the reference medium to the effective Young’s modulus
E0 = Eeff

Kr
c =

√
Eeff

E[p]

Ep

Epm

σpm

σp
. (14)

In this case, fig. 16 reveals a mean critical value Kr
c � 0.7

below which practically no particle damage occurs. This
choice for the reference modulus E0 is motivated by the
fact that the elastic energy available for the propagation
of a crack is stored in the whole medium. In this way,
the relative toughness provides a single particle damage
criterion, which combines the two parameters ρm (upon
which depends the effective Young’s modulus, see fig. 5)
and σpm (involved in (14)). The particle damage limit
curve displayed in fig. 15 is simply given by eq. (14) in
which the Kr

c is replaced by its mean critical value � 0.7
and ratio Eeff/E[p] by data of fig. 5. We see that this curve
represents fairly the frontier of the range of ρm and σpm

for particle damage.

7 Conclusion

In this paper, a 3D lattice element approach was intro-
duced for modeling cemented granular aggregates. This
approach, by representing a solid material with a network
of bonds connecting material points, is appropriate for the
simulation of the deformation and rupture of aggregates
composed of a relatively large number of particles and
a binding matrix that fills partially the pore space. The
stiffness and tensile strength of each bulk phase and the
interface zones between different phases may be adjusted,
and cracks are generated naturally as a result of breaking
bonds. The mean-field mechanical model is obviously well
adapted to elastic brittle behavior but it can be complexi-
fied and adapted to other behaviors. The precision may be
improved by increasing the spatial resolution. In granular
aggregates, composed of a dense packing of particles, it is
essential to represent each particle by a large number of
degrees of freedom as the structure of the packing controls
to a large extent the stress transmission, and the interface
with the binding matrix is a major factor for adherence
between the particles and the matrix. The effect of spatial
resolution was more specifically investigated in this paper
with respect to the effective elastic behavior.

For a given packing fraction in all simulations, we in-
vestigated in some detail the joint effects of the matrix
volume fraction and particle-matrix adhesion on the ef-
fective stiffness, global tensile strength and crack propa-
gation. Interestingly, the effective stiffness is found to be a
linear function of the matrix volume fraction in spite of the
complex morphology of the matrix phase, distributed in
the interstitial space of the packing. The tensile strength
is an increasing function of both the matrix volume frac-
tion and particle-matrix adhesion. Increasing the matrix
volume enhances the tensile strength by increasing the
adhesive surface between the matrix and particles, on one
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hand, and by allowing for load transfer between the par-
ticles and the matrix and therefore a more homogeneous
transmission of stresses across the aggregate.

The failure of aggregates by crack propagation in ce-
mented aggregates is a complex process. Depending on the
matrix volume fraction and particle-matrix adhesion, the
cracks initiated in the matrix or particle-matrix interface
may penetrate into the particles or be deflected to the
interfacial zone. We showed that particle damage is con-
trolled by the relative toughness of the interface with re-
spect to the particles. Below a critical relative toughness,
the cracks propagate only in the matrix phase or along
its interface with the particles. The structure of the frac-
ture surface as a function of different parameters including
the particle size distribution is an important aspect of ce-
mented aggregates, which was investigated in detail but
will be reported later. In the same way, the influence of
the packing fraction and the protocol of matrix distribu-
tion need to be analyzed for a better characterization of
the aggregates.

Most properties of 3D aggregates analyzed in this pa-
per are consistent with those reported previously for a
2D geometry as a consequence of the brittle behavior and
granular disorder. The 3D aggregates appear to be more
inhomogeneous due to both the linear structure of stress
chains in a 3D space and the distribution of the binding
material, which covers only partially the particles unless
when the interstitial space is saturated by the matrix. It
should be noted that, in contrast to the pore space in
a 3D packing, the pores in a dense 2D packing are not
contiguous. For this reason, stress transmission in 2D is
always mediated by the particle phase whereas in 3D a
matrix phase percolating inside the interstitial space may
partially overtake independently the applied load. These
aspects and the role of the percolation of the matrix may
be studied only in a 3D configuration by varying the rela-
tive stiffness and strength between the matrix and particle
phase.

Appendix A. Lattice element method

Lattice-type discretization has been extensively used for
the statistical mechanics of fracture in disordered media,
and applied to study the fracture properties of concrete
and ceramics [17, 43, 46–51, 53, 54, 71]. The space is dis-
cretized as a regular or disordered grid of points (nodes)
interconnected by one-dimensional elements (bonds). We
used a 3D irregular meshing of the space in tetrahedral el-
ements as shown in fig. 1. Each bond can transfer normal
force, shear force and bending moment up to a threshold
in force or energy. Various behaviors such as elasticity can
be carried by these material lattice bonds, in contrast to
the finite element approach where the local behavior is
carried by volume elements.

A granular aggregate is composed of three bulk phases:
particles, matrix and voids; see fig. 1. There are also two
interface phases: particle-particle and particle-matrix. All
elements belonging to a phase carry the same proper-
ties with a distribution that represents the intrinsic in-

homogeneity of that phase. We use linear elastic-brittle
elements, each element characterized by a Hooke con-
stant and a breaking force threshold. The bonds transmit
only normal forces between the lattice nodes and thus the
strength of the lattice in shear and distortion is ensured
only by the high connectivity of the nodes. The use of
beam-like elements leads to a more realistic behavior of
crack propagation for shear and distortion of the lattice,
but requires considerably more computation time [43].

A sample is defined by its contour and the configu-
ration of the phases in space. The samples are deformed
by imposing displacements or forces to nodes belonging to
the contour. The initial state is the reference (unstressed)
configuration. The total elastic energy of the system is
a convex function of node displacements and thus finding
the unique equilibrium configuration of the nodes amounts
to a minimization problem. Performing this minimization
for stepwise loading corresponds to subjecting the system
to a quasistatic deformation process. The overloaded ele-
ments (exceeding a threshold) are removed according to
a breaking rule. This corresponds to irreversible micro-
cracking of the lattice. If necessary, a healing mechanism
can be implemented as well by restoring the broken ele-
ments. The released elastic energy between two successive
equilibrium states is fully dissipated by micro-cracking.

In principle, the strain increment should be small
enough in order to have only one critical bond at a time.
But this method is hardly feasible, and for a reasonable
choice of the strain increment, several elements may be-
come critical (overloaded) simultaneously. Two possible
rules for removing these critical elements are:

– Only the most critical bond is removed.
– All critical bonds are removed.

A breaking probability as a function of the degree of crit-
icality may also be used [44, 47, 49, 72–74]. In order to
optimize the computational effort, we adopt the second
solution but with post-relaxation cycles until an equilib-
rium state is reached before applying the next strain in-
crement. This gives rise to the possibility of crack propa-
gation within one time step. Physically, this corresponds
to fast unstable growth of the micro-cracks compared to
the imposed strain rate.

The computational effort in solving the set of 3N equa-
tions by minimizing the potential energy varies in general
as N2. Since in our case N will be huge (� 3 × 105 for
parametric studies), an important aspect of the algorithm
is that its storage requirement should vary only linearly
with N . Fortunately in our case, due to the simple ad-
ditivity of the potential energy, the effort does not grow
with N at all. Therefore the computation time should also
depend only linearly on N .

Appendix B. Effective stiffness of a 3D
periodic lattice

The effective elastic properties of a 3D periodic lattice are
here derived for two standard cases: i) an elementary pat-
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Fig. 17. A triangular orthobicupola lattice.

tern corresponding to a triangular orthobicupola (some-
times referred as the Johnson’s solid #27, see fig. 17), and
ii) a lattice with random orientations. These two situa-
tions correspond to overall transversely isotropic media
and to isotropic media, respectively.

Denoting by n the unit vector along the transverse
isotropy axis and by i the second-order identity tensor,
the second-order identity tensor in the transverse plane
reads iT = i−n⊗n, where ⊗ denotes the dyadic product.
The generic basis of the fourth-order transversely isotropic
and symmetric tensors is thus defined by the six following
tensors:

El = n ⊗ n ⊗ n ⊗ n, J t = (1/2)iT ⊗ iT ,

Kt = It − J t, F = (1/
√

2)iT ⊗ n ⊗ n, TF ,

Kl = K − Kt − (1/6)(2n ⊗ n − iT ) ⊗ (2n ⊗ n − iT ),

where It is the fourth-order identity tensor in the trans-
verse plane and K = I − J with 2Iijkl = (iikijl + iilijk)
and 3J = i ⊗ i, i being the second-order identity ten-
sor. Moreover, the symmetric tensors J and K define the
generic basis of the fourth-order isotropic symmetric ten-
sors.

The effective elastic fourth-order stiffness tensor C of
case i) satisfies

Ep =
1
2
ε : C : ε =

1
|V |

12∑

i=1

E i
p(xi),

where Ep and |V | = 2
√

5/3 are the potential energy and
volume of the considered triangular orthobicupola lattice,
respectively, ε is the two-order symmetric strain tensor,
E i

p(xi) = k(xi·ε·xi)
2

2xi·xi
is the potential energy of the i-th node

of the lattice with coordinates xi, k is the Hooke constant
of the lattice. For this specific lattice, one obtains after
some algebra

C(i)

k
=

4
√

2El

5
+

2(F + TF )
5

+
2J t + Kt√

2
+

2
√

2Kl

5
.

Following [62], the corresponding stiffness tensor for the
random lattice (case ii)), is obtained by projection of
the previous quantity onto the basis of the fourth-order

isotropic symmetric tensors

C(ii) =
J :: C(i)

J :: J
J +

K :: C(i)

K :: K
K = 3κ(ii)J + 2μ(ii)K,

where the bulk modulus κ(ii) and the shear modulus μ(ii)

read after calculations

κ(ii) =
2
√

2
5

k, μ(ii) =
6
√

2
25

k.

The corresponding Young’s modulus and Poisson ratio are
thus

E =
9κ(ii)μ(ii)

3κ(ii) + μ(ii)
=

3
√

2
5

k, ν =
3κ(ii) − 2μ(ii)

2(3κ(ii) + μ(ii))
=

1
4

.

We assume in this paper that this type of constraint on
the Poisson ratio does not have a strong influence on the
crack regimes of cemented granular aggregates.

Appendix C. Node stresses

The definition of the Cauchy stress tensor assumes a suf-
ficiently large number of material points inside a control
volume so that the surface density of forces is statistically
well defined. Following a general framework first intro-
duced by Moreau, one can attribute a stress tensor to each
node [58, 75]. The physical content of this tensor remains
the same whether applied to a node or to a portion of
space including several nodes, and it tends to the Cauchy
stress tensor at large scales.

In the framework of the virtual power formalism, a
force (in the general sense) experienced by a bounded por-
tion S of a material system is defined through the expres-
sion of the power P that it develops when subjected to a
virtual velocity field v(r). Let v(r) be an affine field,

vα(r) = vα(0) + bαβrβ , (C.1)

where we assume Einstein’s summation rule over sub-
scripts. By definition, the power Pint(v) of internal forces
is linear in v. This means that there exist R and M such
that

Pint = Rαvα(0) + Mαβbαβ . (C.2)

In the particular case of a rigid body motion, b is antisym-
metric (bαβ = −bβα) and Pint = 0 by virtue of Newton’s
third law. This implies that R = 0 and M is a symmet-
ric tensor of rank 2 and independent of the choice of the
reference frame. Following Moreau, we will refer to M as
the internal moment tensor of the volume S [58].

The internal moment tensor can be evaluated without
restriction for any portion S of the system. In particular,
we tesselate the space by Voronoi cells whose faces are
bisectors of the segments joining the nodes, fig. 2. The
internal moment of a cell i (centered on node i) can then
be calculated by assuming force balance at each node. The
total power P = Pint + Pext, where Pext is the power
associated with external forces, is zero irrespective of the
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choice of virtual velocities. Since the only forces f ij acting
on the node i are exerted at the midpoints rij of the bonds
ij by neighboring nodes j, the internal power is given by
Pint(p) = −Pext(p) = −

∑
j vα(rij)f ij

α . Identifying this
with the general expression (C.2) of the internal power,
yields

Mαβ(i) = −
∑

j

rij
α f ij

β . (C.3)

It can be shown that this expression holds also in the
presence of bulk forces (gravity) acting at the lattice nodes
if the origin of coordinates for each cell is placed at its
center.

The internal moment M i∪j of two nodes i and j shar-
ing the bond ij is the sum of their respective internal
moments M i and M j because opposite reaction forces of
equal magnitude act on the two nodes at the same mid-
point. This additive property implies that the total inter-
nal moment M(S) of a portion S of space is simply the
sum of the internal moments of all nodes belonging to S.
On the other hand, if the number of nodes in S is suffi-
ciently large, it makes sense to evaluate the Cauchy stress
tensor σ for S. Assuming the same test field as (C.1), the
corresponding internal power by definition of σ is

Pint =
∫

S

σαβ∂αvβdV. (C.4)

Then, according to (C.2), we have

Mαβ(S) =
∫

S

σαβdV = 〈σαβ〉V. (C.5)

This shows that the internal moment tensor of S per unit
volume (M/V ) tends to the average Cauchy stress tensor
〈σαβ〉 at larger scales or for an increasing number of nodes
contained in S.

We see that the internal moment tensor per unit vol-
ume in a discrete system plays the same role as the Cauchy
stress tensor in a continuous medium. For this reason, it
is legitimate to define “node stresses” σαβ(i) by simply
dividing the internal moment of the nodes by the volume
V (i) of the corresponding Voronoi cells

σi
αβ =

1
V i

∑

j

rij
α f ij

β . (C.6)

Appendix D. Estimates of elastic behaviors

The effective elastic properties of porous cemented gran-
ular aggregates (as depicted in fig. 1) can be estimated
with the help of two scale transitions.

The first scale concerns the “interphase” between the
particles (see fig. 18). This interphase, denoted by iph, is
composed of particle-particle interface (fourth-order stiff-
ness tensor C [pp], volume fraction ρpp) inserted within a
ring of matrix (stiffness tensor C [m], volume fraction ρm).
The effective elastic properties of this interphase can be

Fig. 18. Sketch of porous cemented granular composite.
Three main phases: particles (black), pores (white), interphase
(particle-particle interface in light gray + matrix in gray). The
matrix-particle interface is associated to the matrix pahse.

deduced from the Voigt bound (the relative volume frac-
tions of the particle-particle interface and of the matrix
in this composite are ρpp/(ρpp + ρm) and ρm/(ρpp + ρm)
respectively)

C [iph] =
ρm

ρpp + ρm
C [m] +

ρpp

ρpp + ρm
C [pp].

The second scale transition concerns a three-phase
composite: particles (stiffness tensor C [p], volume fraction
ρp), voids (vanishing stiffness tensor, volume fraction ρv),
interphase defined in the first scale transition (stiffness
tensor C [iph], volume fraction ρiph = 1 − ρp − ρv). As a
first approximation, each phase is considered as spherical
in shape and randomly distributed in space. The effective
elastic properties Ceff of this composite is thus estimated
with the help of the Hashin-Shtikman’s result [36]

(
Ceff + C∗(C0)

)−1
= ρp

(
C [p] + C∗(C0)

)−1

+ρiph
(
C [iph] + C∗(C0)

)−1

+ρvC∗(C0)−1, (D.1)

where C∗(C0) is the Hill influence tensor associated to
the fourth-order stiffness tensor C0 of a reference medium.
For a random distribution of phases, this influence tensor
reads

C∗(C0) = 4μ0J +
μ0(9κ0 + 8μ0)

3(κ0 + μ0)
K,

where κ0 and μ0 are the bulk and the shear moduli of the
reference medium respectively.

Since the considered microstructure exhibits overall
isotropy, eq. (D.1) allows to derive the effective bulk mod-
ulus κeff and the effective shear modulus μeff as Ceff =
3κeffJ +2μeffK, and the effective Young’s modulus is thus
obtain as

Eeff =
9κeffμeff

3κeff + μeff
.

The estimates drawn in fig. 5 are straightforward:
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– the effective initial Young’s modulus with bare con-
tacts between particles (σpp = 0) corresponds to a van-
ishing stiffness for the particle-particle interface and a
reference medium set as the interphase

C [pp] = 0, C0 = C [iph] for bare contacts;

– the effective initial Young’s modulus with adhesive
contacts (σpp = σpm) corresponds to a particle-particle
interface set as particle-matrix interface and to a ref-
erence medium set as particule

C [pp] = C [pm], C0 = C [p] for adhesive contacts.
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