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Abstract

Neutral community models have shown that limited migration can have a pervasive influence on the taxonomic
composition of local communities even when all individuals are assumed of equivalent ecological fitness. Notably, the
spatially implicit neutral theory yields a single parameter I for the immigration-drift equilibrium in a local community. In the
case of plants, seed dispersal is considered as a defining moment of the immigration process and has attracted empirical
and theoretical work. In this paper, we consider a version of the immigration parameter I depending on dispersal limitation
from the neighbourhood of a community. Seed dispersal distance is alternatively modelled using a distribution that
decreases quickly in the tails (thin-tailed Gaussian kernel) and another that enhances the chance of dispersal events over
very long distances (heavily fat-tailed Cauchy kernel). Our analysis highlights two contrasting situations, where I is either
mainly sensitive to community size (related to ecological drift) under the heavily fat-tailed kernel or mainly sensitive to
dispersal distance under the thin-tailed kernel. We review dispersal distances of rainforest trees from field studies and assess
the consistency between published estimates of I based on spatially-implicit models and the predictions of the kernel-based
model in tropical forest plots. Most estimates of I were derived from large plots (10–50 ha) and were too large to be
accounted for by a Cauchy kernel. Conversely, a fraction of the estimates based on multiple smaller plots (1 ha) appeared
too small to be consistent with reported ranges of dispersal distances in tropical forests. Very large estimates may reflect
within-plot habitat heterogeneity or estimation problems, while the smallest estimates likely imply other factors inhibiting
migration beyond dispersal limitation. Our study underscores the need for interpreting I as an integrative index of migration
limitation which, besides the limited seed dispersal, possibly includes habitat filtering or fragmentation.
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Introduction

Community ecology underwent a sea-change in 2001 with the

advent of the neutral theory of biodiversity [1]. In his seminal

contribution, Hubbell [2] assumed that species biodiversity at local

and regional scales is maintained by a stochastic interplay of birth,

death, migration and speciation processes involving individuals of

equivalent fitness. He argued that propagule dispersal limitation is

a universal and strong enough constraint on migration which

generates the complex observed patterns of local species coexis-

tence. The spatially-implicit neutral model (SINM [2,3]) defines

the migration process as the rate at which individuals originating

from a regional source pool or metacommunity establish

themselves in a local community. A single parameter, I, is then

used to represent the effective number of immigrants competing

with the offspring of a local community to replace a dead local

individual (zero-sum dynamics) [4]. Ever since, the scope of I has

been broadened to account for limits to species movement other

than their dispersal abilities such as habitat filtering, physical

barriers and anthropogenic fragmentation [5,6]. The original

SINM, along with some of its later variants have been used to infer

I and thereby the intensity of immigration with respect to the

taxonomic composition of the local communities [5,7–9]. A still

unresolved issue is to determine to what extent the inferred

immigration parameter from field data relates to features of

propagule dispersal and to other causes obviating immigration

from the regional pool into the local community. In this regard,

and given the renewed call for a regional perspective to

community ecology [10,11], disentangling the effects of genuine

local dispersal limitation, as initially invoked by Hubbell [2], from

the regional processes of species migration is still a central issue.

Investigating the nature of migration limitation is particularly

difficult when the system under study is a continuous landscape

(e.g., a non-fragmented tropical wet forest), where local commu-

nities have no a priori delineation and where the consequences of

habitat heterogeneity are not known. On the other hand, as an

alternative to the SINMs, spatially-explicit or continuous models

(SCNM, [3]) have acknowledged the effect of propagule dispersal

by modelling the dynamics of individuals in a suitable and uniform

environment, without referring to a regional pool of migrants [12–

14]. The probability of dispersal success has thus been represented

as a decreasing function of the distance from the mother individual
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which is summarized by a dispersal parameter (generally the mean

dispersal distance) and the shape of the distribution, e.g. thin- vs.

fat-tailed according to the relative importance of long- vs. short-

distance dispersal events [15]. Despite this gain in realism, the

existing SCNMs do not acknowledge physical barriers or habitat

heterogeneity explicitly, and therefore cannot account for the

multiple drivers of limited immigration frequently encountered in

a real-world scenario. By focusing on ‘dispersal limitation’ in its

spatially-explicit approach and on ‘migration limitation’ in its

spatially-implicit formulation [16], the neutral theory here mirrors

the complexity of dealing simultaneously with both local and

regional processes acting at distinct spatial scales.

In this paper, we explore the extent to which SINM-based

estimations of the I parameter reflects processes, other than pure

seed dispersal, responsible for a limited migration of species. In

order to assess the extent to which habitat and physical barriers

hinder migration beyond the limited dispersal abilities of species,

we need a baseline model as to predict the value of the SINM’s

immigration parameter I that is expected if dispersal limitation of

propagules from parent individuals was the only factor. A first

attempt by Chisholm & Lichstein [17] proposed an analytical

approximation of I under strict dispersal limitation, by modelling

the flux of propagules landing in a region of fixed area and shape

(e.g. a forest plot) under a well-known seed dispersal kernel. This

study remains limited due to the assumption of short dispersal

distance with respect to the dimensions of the field plot. Here, we

extend their approach by relaxing this assumption while consid-

ering both the Gaussian and Cauchy dispersal kernels to represent

contrasted thin-tailed and heavily fat-tailed kernels, respectively

[15]. We compared the values predicted by our approach to values

of the SINM’s I parameter that were estimated from the

taxonomic composition of tropical forest plots, based on various

estimation methods (Table 1). We also made use of a review of

field studies [18] (Table 2) and of a large database on forest tree

species traits from French Guiana [19] (Figure S1), in order to

determine realistic bounds of seed dispersal distances in the

context of tropical rainforests. With respect to predictions of I from

a baseline seed dispersal limitation model, additional causes of

migration limitation acting at regional scales (e.g. physical and

ecological barriers) are expected to yield I estimates substantially

below this baseline. On the other hand, excessively high estimates

of I may point towards weaknesses of the estimation methods or

violations of some important assumptions that underline them

[8,20].

Methods

Spatially-implicit estimation of the immigration number
The neutral spatially-implicit theory is based on the coupling of

discrete communities to a regional background via immigration

(Figure 1 left). In the initial model of Hubbell [2], the immigration

rate, m, denotes the probability that a new immigrant replaces a

dead resident in the local community. Later publications have

introduced the "fundamental immigration number", hereafter

called the immigration parameter, I [4,7,21], which represents the

effective number of immigrants competing with the offspring of

residents to replace a dead individual in the local community, so

that m~
I

IzJ{1
, where J is the number of residents. As such, I

embodies the migration-drift equilibrium driving community

dynamics, under the assumption that the migrants originate from

a far larger spatial scale called the regional background. The

spatially-implicit framework is then based on two fundamental

assumptions: (i) that the local offspring competing for the

replacement of a dead individual are drawn with equal probability

from any individual within the local community (panmixia [22])

and (ii) the migrants are drawn from the same regional

background for all local communities.

A number of methods have been proposed (most of them based

on a coalescent reasoning) to estimate m and I from community

composition on the basis of SINMs. A desirable property of the

coalescent-based approaches [5,7,23,24] is that they apply to any

sample of Js individuals drawn from the local community (Figure 1

left). The actual migration-drift balance measured by I is directly

dependent on community size J (that is sample-independence)

whereas m~
I

IzJs{1
is always sample-dependent (Appendix S5

of [17], Figure 2 of [24]).

We review in Table 1 SINM estimates of the immigration

parameter that have been published in the context of rainforest

tree communities, either directly as I estimates or as m estimates

(which were converted to I thanks to the above formula). We

distinguished estimates that were based on the analysis of single

large forest plots (10–50 ha) from estimates based on multiple

smaller forest plots (c. 1 ha). These estimates were inferred using

any of the four main published methods: (i) curve fitting of a SAD

sensu [25], (ii) exact maximum-likelihood based on a coalescent

approach (Etienne’s sampling formula, ESF [7]) and variants [24],

(iii) Approximate Bayesian Computation with simulations making

use of the phylogenetic relationship between species within a field

plot [23], or (iv) estimators based on similarity statistics (GST(k) [5]).

A kernel-based analogue of the neutral immigration
number

We considered a kernel-based analogue (~II ) of the SINM

immigration parameter, as a function of community radius, Rc,

and of a parameter of the dispersal kernel, say Rd, such that
~II~f (Rc,Rd ). In this model, the local community was a disc of

radius Rc embedded into a spatially uniform, infinite two-

dimensional landscape (Figure 1 right). The individuals from both

the community and the neighbouring landscape were considered

to be spread out at an average density r per unit area. Each

individual dispersed the same number of propagules per gener-

ation following a specified dispersal kernel q(r), which was the

probability density function of dispersal distances. The immigra-

tion parameter associated to the dispersal process, ~II , represents the

number of immigrants competing with local offspring for the

replacement of a dead individual in the community. The incoming

migrants were modelled from the number of propagules falling

within the boundaries of the community from an outside source,

Nout, while the local progeny were modelled from the number of

propagules of residents that fall within the community, Nin. ~II was

thereby related to the ratio Nout/Nin to represent the relative

number of immigrants competing for replacement, so that

(Appendix S1 of [7]):

~II~
Nout

Nin

2pR2
cr{1

� �

~

Ð?
0

Ð rzRc
max Rc ,r{Rcð Þ lrq(r) arccos

l2zr2{R2
c

2lr

� �
dl

� �
dr

ÐRc
0

ÐRc{l

0 plrq(r)drz
ÐRczl

Rc{l
lrq(r) arccos

l2zr2{R2
c

2lr

� �
dr

� �
dl

2pR2
cr{1

� �
:

ð1Þ

Nout and Nin were obtained by summing over all sources located at

distance l from the centre of the community. In the absence of a

closed form expression for Eq. (1), we integrated it numerically
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(using Mathematica 8, Wolfram Research, Champaign, Illinois,

USA) based on our given dispersal kernel functions q(r) (see below).

For all subsequent calculations, we fixed the density r at 400

individuals per hectare, a value typically observed in tropical

rainforests for trees with a minimal diameter at breast height

above or equal to 10 cm diameter at breast height (dbh).

Dispersal kernels
As advocated by previous authors [15,26,27], we assumed a

rotational symmetry for q(r) and normalised the kernel density over

2D space accordingly:

ð?
0

ð2p

0

q(r)r drdh~

ð?
0

2pq(r)r dr~1: ð2Þ

We thus examined two dispersal kernels traditionally used to fit

seed distribution patterns from seed traps by inverse methods [26].

The first kernel defines an exponential family of curves [15]:

q(r)~
c

2pa2C(2=c)
e{ r

að Þc , ð3Þ

which for shape parameter c = 2 is the well-known Gaussian

curve, and where a is a dispersal parameter and C the gamma

function. A second kernel is the two dimensional Student’s t

distribution, denoted as Student 2Dt [15,26–28], which was used

in [17] to model seed dispersal. However, we used a slightly

modified version of the formula in [17] (see Eq. 5.1 of [29]), so that

the dispersal parameter u could be expressed in standard units of

distance (i.e. in m instead of m2 in the original formula). This

dispersal kernel can be written as:

q(r)~
p

pu2 1z r2

u2

� 	pz1
: ð4Þ

It corresponds to the heavily fat-tailed bivariate Cauchy kernel to

model long distance dispersal (LDD) events [30], when the shape

parameter p = 0.5 [29]. With p becoming large, Eq. (4) reduces to

a Gaussian dispersal kernel [17]. Note that our choice of the

dispersal kernels is meant to address the relative influence of thin-

tailed vs. fat-tailed kernels, which are known to affect diversity

patterns in contrasted ways [31].

Calculation of the dispersal parameter
Direct experimental information on seed dispersal distances is

generally based on seed traps, thus results are often presented in

terms of the median (the distance at which 50% of seeds fall before

and 50% beyond) or maximal distance found. However the

"maximal" distance, as observed in a given field study, may

actually be overtaken by rare long dispersal events which are

Table 1. Published estimates of the immigration parameter I in rainforest tree communities, using Spatially Implicit Neutral
Models (SINMs).

Plot code A Js S m I R95
d (Gaussian) R95

d (Cauchy)

Single large forest plot datasets

Based on taxonomic diversity alone

A Barro Colorado Island, Panama [44] 50 ha 21457 225 0.093 2200 122 m .10 km

B
C

Yasuni National Park, Ecuador [44,45] 25 ha
50 ha

7613
17546

546
821

0.5
0.429

7612
13182

391 m
504 m

.10 km

.10 km

D Korup National Park, Cameroon [44] 50 ha 24591 308 0.547 29693 818 m .10 km

E Pasoh Forest Reserve, Malaysia [44] 50 ha 26554 678 0.093 2722.6 147 m .10 km

F Sinharaja, Sri Lanka [44] 25 ha 16936 167 0.0019 32.3 3 m 2 m

G Lambir Hills, Malaysia [44] 52 ha 33175 1004 0.115 4310.7 216 m .10 km

H Western Ghats, India [46] 30 ha 13383 148 0.082 1195.3 86 m .10 km

Including phylogenetic information [23]

I Barro Colorado Island, Panama 50 ha 20788 236 0.002 41.66 2.5 m ,0

J La Planada, Colombia 25 ha 14100 164 0.003 42.42 4 m 55 m

K Pasoh Forest Reserve, Malaysia 50 ha 29257 674 0.01 295.5 18 m .10 km

L Lambir Hills, Malaysia 52 ha 29890 990 0.008 241.0 14 m 6205 m

Multiple plot datasets

M Baro Colarado subplot, Cocoli
and Sherman plots, Panama [9]

,5 ha/plot 1079–2860 99–171 30.7–54.2 8 m 419 m

N Western Ghats, India [5] 1 ha/plot ,400/plt ,45/plt 0.01–0.11;
0.003–0.08

4.7–50;
1.3–354

10 m 436 m

O Panama Canal Watershed [24] 1 ha/plot ,400/plt ,78/plt 0.05–0.3 21–171 34 m 4334 m

The corresponding 95% quantile dispersal distances, R95
d , are given under the assumption of pure dispersal limitation using the Gaussian and Cauchy kernels (see main

text). A is the sample area in ha and Js corresponds to the sample size in number of individuals above 10 cm dbh. S indicates the respective species richness of the
sample plots. Bold/normal values respectively denote the published/transformed parameter values of Hubbell’s [2] migration rate m or the corresponding immigration

parameter, I [21]. m/I and R95
d are calculated here for the case when the forest plots represent complete communities (i.e. sample size = community size in Figure 1). Rd

values have been rounded to the nearest metre.
doi:10.1371/journal.pone.0072497.t001
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notoriously difficult to observe directly, and is therefore a statistic

highly sensitive to the noisy and outlying variation [32]. In these

cases, quantile statistics, which are generally more robust to such

variation, can be used for dispersal kernel modelling [33]. In this

paper, we equated the 95% quantile of dispersal distances in the

dispersal kernel with the ’maximal’ distance given from field

observations (we also used the 90% quantile for testing the

robustness of our results). We further considered the 50% quantile

since some studies reported the median dispersal distance. Thus,

we parameterized the dispersal kernels with the help of empirical

dispersal distances which were considered as the 50% (median),

90% or 95% quantiles. For a Student’s 2Dt dispersal kernel, the

fraction of seeds dispersed beyond the radius R is
u2

u2zR2

� �p

,

which can be written as exp {
R

a

� �2
 !

in the Gaussian limit

when p goes to infinity ([15]: 1489). We then calculated u (for

Cauchy with p = 0.5) and a (for the Gaussian limit) so that this

fraction was 50% (R~R50
d ), 10% (R~R90

d ) or 5% (R~R95
d ).

Specifically, in the Gaussian limit,R50
d ~a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log (2)

p
, while in the

Cauchy case, R50
d ~u

ffiffiffi
3
p

.

Here the kernel-based ~II is calculated under the assumption that

dispersal limitation is the only component of limited migration

found in real communities. Other extrinsic barriers to migration,

including physical and ecological barriers, can still decrease the

immigration fluxes below this baseline value. Thus, a comparison

of the spatially-implicit and kernel-based immigration parameters

allows assessing the contribution of each of these factors.~II was

therefore evaluated numerically for both dispersal kernels, and

compared to published values of I estimated from tropical forests

plots, under variants of the SINM. We calculated Rc for a disk of

same area than the plot, and deduced R95
d (as well as R90

d and R50
d )

Table 2. Some orders of magnitude of seed dispersal distances of tree species in tropical rainforests, as estimated from field
studies (extracted from [18]).

Dispersal mode Species name Measure of dispersal distance Site

mean/median/other maximum

Autochory Eperua falcata 60% of trees within 10 m 30 m French Guiana

Anemochory Lophopetalum wightianum median at 15–43 m 30–80 m Western Ghats, India

Anemochory Platypodium elegans median at 10–23 m 75–105 m Barro Colorado Island, Panama

Anemochory Swintonia schwenkii - few fruits . 50 m Gunung Gadut, Sumatra

Zoochory (bat) Carollia perspicillata 90% of seeds within 50 m few seeds . 300 m Costa Rica

Zoochory (bird) various mean & median at 100–300 m - Rwanda (montane forest)

Zoochory (monkey) various mean at 76–440 m 288–575 m La Macarena, Columbia

doi:10.1371/journal.pone.0072497.t002

Figure 1. Comparing spatially-implicit immigration from a regional pool to a model based on seed dispersal from the community
neighbourhood. A hypothetical rectangular forest plot is shown. In a spatially-implicit framework (left), the plot is part of a discrete local
community, which is related to a regional species pool via immigration. Based on the composition of the plot, the SINM based methods allow
estimating the number of immigrants available for replacement of a dead individual at the scale of the entire local community. If dispersal limitation
is assumed to be the only driver of immigration into the local community (right), the number of incoming individuals from the neighbourhood
around the community can be modelled with the help of a dispersal kernel model.
doi:10.1371/journal.pone.0072497.g001

Migration vs. Seed Dispersal
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that would allow ~II~I (Table 1 and Table S1). We further

compared the values of ~II with those based on the approximate

formula of Chisholm and Lichstein [17] which illustrated, within

the limit of their approximation, the validity of our approach

(Appendix S1).

Results

Kernel-based predictions of the migration-drift
equilibrium

Figure 2 presents contour lines of ~II obtained for the two

dispersal kernels by varying the community radius Rc and the

dispersal parameter (95% quantile). Computations were conduct-

ed to represent a range of community radii from 1 to 600 m (i.e. a

disk area from 361024 to 113 ha) which largely includes the range

of forest plot sizes presented in Table 1. Also, the range of dispersal

distances from 1 to 600 m encompasses the largest values observed

in tropical forests as reported in Table 2 and Figure S1. Our study

of ~II found two contrasted situations: in the case of the Cauchy

kernel, ~IIwas mainly sensitive to variation in community size, Rc

(horizontal isolines in Figure 2 right), except for very small R95
d ,

while in the case of the Gaussian kernel, ~II was mainly sensitive to

variation in the dispersal distances, as embodied by (vertical

isolines in Figure 2 left). We denote the former situation as a ‘size

dependent’ (SD) regime, because in this case the outcome of the

migration-drift dynamics on community composition depends far

more on a change in the size of the community (which determines

the effect of drift) than on a change in the dispersal parameter R95
d .

Conversely we call the second situation a ‘dispersal dependent’

(DD) regime, because in this case the migration-drift isolines are

strongly sensitive to variation in the dispersal parameter. Although

the isolines of ~II were established with respect to the same realistic

ranges of Rc and from published data, they varied from 0 to more

than 10000 in the Gaussian case, but only from 0 to a little above

100 in the Cauchy case (Figure 2). Thus the nature of the dispersal

kernel strongly influenced the expected migration-drift equilibrium

experienced by the community.

The sensitivity of ~II to the changeover between the SD and the

DD regimes was also studied using the log-ratio of the partial

derivatives of ~II with respect to Rc and (Figure 3). This ratio cancels

out when variations in Rc and contribute equally to the net change

of ~II . It becomes positive under the SD regime and negative under

the DD regime. Note that the sensitivity of the migration-drift

equilibrium to a change in Rc and is independent of community

density (which vanishes in the ratio). Figure 3 (left) illustrates the

change of regime for the Gaussian kernel, which occurs for a

community radius of 10 to 20 m (less than 0.12 ha). Similarly,

Figure 3 (right) reveals that the Cauchy kernel is mainly associated

with a size dependent situation (positive log-ratio).

Comparison with inferred values and empirical dispersal
distances

Table 1 shows that I values previously derived from species

abundance data for a single large plot range from 1195.3 to 29693,

except for the Sinharaja plot (32.3). Most of them are thus several

orders of magnitude above the values deduced either from

networks of smaller plots, which do not exceed 171, or from

methods acknowledging the community phylogenetic structure of

a single large plot [23], which do not exceed 300. Moreover,

substantial variation can be found between estimates from surveys

even within the same forest. For instance, regarding the Barro

Colorado Island plot, there was considerable variation between

the initial assessment [7] and the values found in later works

[17,23,34].

We further addressed to what extent the published estimates of

I in Table 1 could be interpreted as resulting from a dispersal

process as modelled via kernel functions (Eq. 1). We assumed that

plot sizes equalled community sizes to calculate Rc, then computed

for the I estimates of Table 1 the (resp., R50
d and R90

d ) values that

allowed Ĩ to match I, and mentioned their corresponding positions

on Figure 3. The values of (resp., R50
d and R90

d ) are included in

Figure 2. Isolines of the dispersal kernel-based analogue Ĩ of the immigration parameter (Eq. 1) computed as a function of the
community radius Rc (1,Rc,600 m) and of the 95% quantile (1,Rc,600 m) of the Gaussian (left) and Cauchy (right) dispersal

kernels. The dispersal dependent (DD) regime encompasses situations when Ĩ is mostly sensitive to R95
d (vertical portion of the isolines), while the

size dependent (SD) regime sets in when Ĩ is mostly sensitive to Rc (horizontal portion of the isolines).
doi:10.1371/journal.pone.0072497.g002

Migration vs. Seed Dispersal
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Table 1 (resp., Table S1). Note that Figure 3 is independent of the

density of individuals found among the tropical plots, which allows

us to plot the various expected values as long as they are within a

realistic range of dispersal distances. Only four estimates of I in

Table 1 could be associated with a range of realistic in the Cauchy

case (all other plots were outside Figure 3 right) while most of the

plots were present within this range for the Gaussian kernel (Figure

3 left), except Korup (R95
d = 818 m). For the Cauchy kernel, the

derived was often above 10 km (Table 1), which is clearly

unrealistic for any kind of dispersal mode. The results were

qualitatively consistent when considering R50
d , or when using R90

d

instead of as a proxy of long-dispersal distance (Table S1).

A focal community of 1 ha (Rc < 56 m), would always

correspond to a DD situation in the Gaussian case and to a SD

regime for the Cauchy case. For Rc = 56 m and according to a

Gaussian kernel, letting range from 10 to 60 m results in Ĩ values

between 24 and 204 which is consistent with the I estimated for

networks of 1 ha plots in Table 1. This exemplifies the notion of a

DD regime since most of the variation of Ĩ can be explained by

variations of within the range of realistic dispersal distances for

tropical rainforests although zoochorous dispersal can yield a still

higher (Table 2 and Figure S1). For the Cauchy case (Figure 2

right), an Ĩ . 60 at Rc = 56 m requires a very high (2831 m),

which is clearly unrealistic, even in the case of zoochory (Table 2

and Figure S1). In the Gaussian case, we further note that

attaining Ĩ values in the range of 2000–5000 (i.e., roughly the

range of estimates from large plots in Table 1) with kept at 200 m

(compatible with zoochory) requires 145 m,Rc,538 m (6.61

ha,Rc,90.93 ha). With the Cauchy kernel, a similar variation in

Rc yields 32,Ĩ, 89 (with kept at 200 m), while values substantially

above 100 are unattainable for any meaningful value of Rc.

Finally, some estimates like those of Korup (i.e. I . 13000, see

Table 1) are definitely too high, whichever the kernel used (plot

outside Figure 3).

Discussion

In his spatially-implicit neutral model (SINM), Hubbell

promoted migration as the central driver of local community

diversity and assembly whilst speciation processes operate over the

long term at regional scale [2]. Subsequent works have questioned

this spatially-implicit formulation [22] and pursued a complemen-

tary line of research that focuses on the effects of propagule

dispersal on population dynamics and community assembly, with

particular interest into the role of long-distance dispersal [28,35–

37]. These studies, which model variations in dispersal character-

istics using kernel functions, further instigated research into the

reconciliation between the concept of spatially-implicit migration

limitation and the kernel-based formulation of pure dispersal

limitation around parent individuals [7,17,38,39]. In this paper,

we provide novel insights into this issue. In the context of tropical

forest communities, we compiled published values of the SINM

immigration parameter I estimated from field plots, along with

observations of seed dispersal distances. Secondly, we derived

predictions of the immigration parameter alternatively using two

contrasting dispersal kernels (i.e., Gaussian vs. Cauchy). By

exploring a large range of plausible dispersal distances and

community sizes (with respect to field data) we checked for

inconsistencies between the kernel-based prediction (denoted as Ĩ)

and the spatially-implicit estimates (i.e. I) inferred from tropical

field plots (Table 1).

Our study highlights that the kernel-predicted immigration

parameter Ĩ is liable to switch between two extreme states (Figures

2 and 3), respectively shaped by size dependence (or SD) where it

is more sensitive to changes in community size, and dispersal

Figure 3. Sensitivity of the immigration parameter Ĩ, as predicted from Gaussian and Cauchy dispersal kernels, to dispersal

distance and local community radius. Isolines of x~ ln
L I

*

LRc

,
L I

*

LR95
d

 !
are functions of the community radius Rc (10,Rc ,600 m) and of the

95% quantile, R95
d (1,R95

d ,600 m), for the Gaussian (left) and Cauchy (right) dispersal kernels. The null isoline of x represents the limit (equal

sensitivity to the variation in Rc and R95
d ) between the dispersal dependent (DD, x,0) and size dependent (SD, x . 0) zones (see main text). We

displayed field plot locations (using the codes in Table 1) by calculating the R95
d values corresponding to each plot size. Most of the plots fall into the

DD and SD zones for the Gaussian Cauchy kernel, respectively.
doi:10.1371/journal.pone.0072497.g003
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dependence (or DD) where it is primarily sensitive to changes in

dispersal distances. Such a result is consistent with the definition of

I as a migration-drift parameter [2]. The heavily fat-tailed Cauchy

kernel and the Gaussian kernel thus correspond to SD and DD

regimes, respectively. Fat-tailed dispersal kernels from outside

sources are flatter over the local community area and thus

changing dispersal distance does not make much difference to that

flatness, whereas Gaussian dispersal kernels decay more sharply in

the tails and thus dispersal distance has more effect when

integrated over the local community. Kernel-based modelling

can thus be used to assess whether variations in I values inferred

from real communities may be due to either variations in

community size or dispersal distances. Furthermore, we can

expect actual I values to be lower than the predicted Ĩ (i.e. under

strict propagule dispersal) when ecological factors reinforce the

isolation of local communities (e.g. physical or anthropogenic

barriers) by restricting immigration. Conversely, I values larger

that Ĩ (greater immigration than expected under strict dispersal

limitation) are difficult to explain and probably highlight

estimation problems such as the violation of some of the main

assumptions of the SINM-derived estimation methods.

The considerable variation in published I values in Table 1 is

conspicuously related to the size of the field forest plots in which

species abundance information was recorded. Very large values of

I, which are associated with single large plots, cannot be consistent

with a fat-tailed dispersal kernel (Cauchy kernel, Figure 2 right),

unless the reference dispersal range (R95
d , i.e., the quantile at 95%)

is unrealistically large (above 10 km). However a Gaussian

dispersal kernel agreed with such values, insofar as is approx-

imately above 100 m and below 500 m, which is mainly consistent

with data on zoochory (Table 2 and Figure S1). For fixed R95
d ,

larger I values can of course be found by increasing community

size, but very large communities are expected to violate the

SINM’s fundamental assumption of panmixia within communities,

which posits that all individuals in the community have the same

probability of contributing a descendant to the replacement of a

dead individual. A large plot could then contain several distinct

communities and therefore appear globally more diverse than

each community taken alone. Besides, large plots are also subject

to habitat heterogeneity, as reported in several of the large plots

mentioned in Table 1 (e.g., [40,41]). Finally, under the assumption

of panmixia within local communities, coalescent-based models of

community dynamics assume that I, contrary to m, is independent

of the size of a sample plot embedded in the reference community

(Figure 1 left). Accordingly, the broad variation that is observed

among the estimates of I within comparable forest communities

(cf. Table 1 for plots of different sizes within the Barro Colorado

area) should be seen as an anomaly. We therefore advocate the use

of many smaller samples, whose estimates are probably more

reliable, as they are less likely to violate the panmixia assumption

of the SINM.

The small I estimates in Table 1 are obtained through very

different estimation techniques (e.g., [5] vs. [24]), appear much less

variable and are probably more ecologically relevant than their

larger counterparts. Moreover, values similar to those estimated

from multiple plot datasets were found when single-plot estimates

accounted for the phylogenetic relationship between tree species

[23]. Studies inferring I from a network of forest plots are

unfortunately rare and limited to the regions mentioned in Table

1, but the upper range of estimated I values (i.e. 80-150) easily

match with Ĩ in the Gaussian case for realistic dispersal distances

(Figure 2). However, smallest values (10,I,20) imply very small

dispersal distances for the case of a Gaussian kernel (R95
d ,10 m,

Fig. 2 left). The same variation of I estimates is possible under a

wider range of dispersal distances for the heavily fat-tailed Cauchy,

but this would mean that the community is smaller than the

reference plot (Rc,1 ha, Fig. 2, right). Therefore, in order to

explain such low estimates one has to either assume very low

dispersal distances or very small communities. The first case would

mean that dispersal modes of low range (e.g. barochory) are

dominant though the available literature seems to present

zoochory as the most frequent mode in tropical rainforests (cf.

Table 2 and Figure S1). The second case begs the question as to

whether the widely used 1-ha plots are a reasonable limit. Other

explanations imply that strict dispersal limitation alone, as

modelled by a kernel function, cannot account for the low

observed values and the reported I values may therefore

encompass various sources of migration limitation. If so, one

should not interpret I values as the outcome of a pure dispersal

limitation model. Also, the tree communities, usually sampled at a

10 cm limit for the diameter at breast height (dbh), may not

acknowledge all the reproductive trees and may underestimate

local diversity, which would tend to decrease I estimates. Finally,

our results illustrate the relevance of extending the scope of the

neutral models to better acknowledge other sources of migration

limitation from the regional background, by habitat filtering or

biogeographical barriers (see [24]).

Apart from these awaited and ongoing developments, we can

nevertheless underline the usefulness of the SINM framework

which provides, via the immigration parameter I, a phenomeno-

logical measure of community isolation from its regional

biogeographic background. The use and interpretation of I as

such does not require any assumption on the nature of the

migration limitation (ex. pure dispersal limitation). Neither does it

require any assumption that local communities are part of a

panmictic metacommunity at speciation-drift equilibrium [5],

thereby enabling the estimation of I independently from any

assumption on the process of speciation. This property renders the

SINM, or at least some of its variants, highly complementary to

the spatially explicit formulation under which dispersal and

speciation have been depicted so far with intertwined roles [29].

Thus, the difficult question of the theoretical relationship between

spatially-implicit and -explicit neutral models may be translated

into the more pragmatic prospect of analyzing how the SINM-

based estimation of immigration is sensitive to local and regional

causes of community isolation. Interpreting I as an isolation index

then only requires the assumption that the available data are

sufficiently informative about the taxonomic composition of the

regional background around the focal community (species pool).

The design of species pools has recently become a major challenge

of community ecology [42,43], and the linking of this issue to that

of assessing migration processes from regional to local scales opens

promising perspectives. Similar approaches could contribute to

comparisons between continents and regions in terms of individual

and/or species mobility and help bridge the gap between the

community and biogeographic scales.

Supporting Information

Figure S1 Frequency distribution of the mean dispersal
distances of 260 rainforest tree species from French
Guiana, categorized into dispersal modes. Data compiled

from the online data of species traits http://mariwenn.ecofog.gf/

[19].
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Table S1 The 50% and 90% quantile dispersal distances,

R50
d and R90

d , corresponding to the rainforest field plots of
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Table 1. The R50
d and R90

d values are provided for the purpose of

comparison with the R95
d values given in the main text (Table 1).

The I values are published estimates of the immigration parameter

using Spatially Implicit Neutral Models (SINMs). A (sample area in

ha) corresponds to Js (the plot sample size in number of

individuals) assuming a density 400 individuals/ha of trees above

10 cm dbh. Rd values have been rounded to the nearest metre.

(DOC)

Appendix S1 Rewriting Chisholm and Lichstein’s an-
alytical expression.
(DOC)
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