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Seydou Traoré1,2,3,y, David Allouche4,y, Isabelle André1,2,3, Simon de Givry4,
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ABSTRACT

Motivation: The main challenge for structure-based computational

protein design (CPD) remains the combinatorial nature of the search

space. Even in its simplest fixed-backbone formulation, CPD encom-

passes a computationally difficult NP-hard problem that prevents the

exact exploration of complex systems defining large sequence-con-

formation spaces.

Results: We present here a CPD framework, based on cost function

network (CFN) solving, a recent exact combinatorial optimization tech-

nique, to efficiently handle highly complex combinatorial spaces

encountered in various protein design problems. We show that the

CFN-based approach is able to solve optimality a variety of complex

designs that could often not be solved using a usual CPD-dedicated

tool or state-of-the-art exact operations research tools. Beyond the

identification of the optimal solution, the global minimum-energy con-

formation, the CFN-based method is also able to quickly enumerate

large ensembles of suboptimal solutions of interest to rationally build

experimental enzyme mutant libraries.

Availability: The combined pipeline used to generate energetic

models (based on a patched version of the open source solver

Osprey 2.0), the conversion to CFN models (based on Perl scripts)

and CFN solving (based on the open source solver toulbar2) are all

available at http://genoweb.toulouse.inra.fr/�tschiex/CPD

Contacts: thomas.schiex@toulouse.inra.fr or sophie.barbe@insa-

toulouse.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The engineering of tailored proteins with desired properties holds

great interest for applications ranging from medicine, biotech-

nology (Nestl et al., 2011) and synthetic biology to nanotechnol-

ogies (Grunwald et al., 2009). Although, directed evolution

techniques coupled with high-throughput automated procedures
have met with some success, they do not provide structural

design principles to guide the rational design of novel proteins.

The development of generic and effective protein engineering

methodologies, both experimental and computational, is thus

of utmost interest to speedup the design of tailored proteins

having the desired properties. Structure-based computational

protein design (CPD) approaches have demonstrated their po-

tential to adequately capture fundamental aspects of molecular

recognition and interactions, which have already enabled the

successful (re)design of several enzymes for various purposes

(Dahiyat and Mayo, 1997; Hellinga and Richards, 1991).

Despite these outstanding results, the efficiency, predictability

and reliability of CPD methods have shown that they still need

to mature.
CPD is faced with several challenges. The first lies in the ex-

ponential size of the conformational and protein sequence space

that has to be explored, which rapidly grows out of reach of

computational approaches. Another obstacle to overcome is

the unsolved issue of accurate structure prediction for a given

sequence. Therefore, the design problem is usually approached as

an inverse folding problem (Pabo, 1983), to reduce the problem

to the identification of an amino acid sequence that can fold into

a target protein 3D-scaffold that matches the design objective.

This paradigm typically assumes a fixed protein backbone and,

for each type of amino acid considered at a given position, allows

the side chains to move only among a set of discrete and low-

energy conformations, called rotamers (Janin et al., 1978). CPD

is thus formulated as an optimization problem, which consists in

choosing combinations of rotamers at designable specified pos-

itions such that the fold is stabilized and the desired property is

achieved. To solve this problem, we need a computationally

tractable energetic model to evaluate the energy of any combin-

ation of rotamers. We also require computational optimization

techniques that can efficiently explore the sequence-conform-

ation space to find the sequence-conformation model of global

minimum energy (GMEC: global minimum-energy conform-

ation) or an ensemble of low-energy sequence-conformation

models. Indeed, several reasons can motivate the generation of

multiple near-optimal solutions. First, the sequence-conform-

ation model with the lowest predicted energy may not fold into

the targeted protein scaffold owing to inaccuracies in the model-

ing of protein energetics. Secondly, the GMEC solution may be

so stabilized that it can lack the flexibility required to operate

the protein biological function (Arnold, 2001). Such suboptimal

ensembles can then be analyzed to rationally guide the
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experimental construction of protein libraries while enhancing

the chances of success to identify a protein hit.
The protein design problem modeled with a rigid backbone, a

discrete set of rotamers and pairwise energy functions, has been

proven to be NP-hard (Pierce and Winfree, 2002). Hence several

meta-heuristic methods have been applied to it, including Monte-

Carlo with simulated annealing (Kuhlman and Baker, 2000;

Voigt et al., 2000), genetic algorithms (Desjarlais and Handel,

1995; Raha et al., 2000) and other methods (Allen and Mayo,

2006; Desmet et al., 2002; Wernisch et al., 2000). These

approaches can usually find a relatively low-energy model

fairly quickly but without any guarantees of completeness or

accuracy. Indeed, these stochastic optimization routines may

end up trapped in local minima and miss the GMEC with no

indication.
Conversely, there exist methods that solve the GMEC exactly,

such as approaches based on the dead-end elimination (DEE)

theorem (Desmet et al., 1992), on the branch-and-bound algo-

rithm (Gordon and Mayo, 1999; Hong et al., 2009; Wernisch

et al., 2000), on integer linear programming (Althaus et al.,

2002; Kingsford et al., 2005) or on dynamic programming

(Leaver-Fay et al., 2005). These exact methods offer several ad-

vantages. First, they ensure that discrepancies between CPD pre-

dictions and experimental results come exclusively from the

inadequacies of the biophysical model and not from the algo-

rithm. Next, because provable methods can determine that the

optimum is reached, they may actually stop before meta-heuristic

approaches. Finally, empirical studies on solving the GMEC

problem reported that the accuracy of meta-heuristic approaches

tend to degrade as the problem size increases (Voigt et al., 2000).

In this article, we modeled the CPD problem as either a binary

cost function network (CFN) or an integer linear programming

(ILP) problem (Section 2.4). We compared the performance of

the open source CFN solver toulbar2 and the IBMTM ILOG ILP

solver cplex against that of the combined DEE/A* approach as

implemented in the dedicated CPD software Osprey (Section

3.2), for design problems (Section 3.1). The CFN-based

method outperformed by several orders of magnitude the other

methods both in identifying the GMEC but also in producing a

set of low-energy sequence-conformation models. This second

step was not attainable in most of the study cases using DEE/

A* (Section 3.3). Therefore, on the basis of the CFN approach,

we propose a new CPD framework (Fig. 1). Our methodology,

which we describe in Section 2, is well-adapted to solving exactly

macromolecular design problems of large sequence-conform-

ation spaces. It also has the potential to improve methods that

integrate flexibility to a larger extent in protein design, as this

considerably expands the size of the search space or may require

solving a large number of GMEC instances (Hallen et al., 2013;

Humphris and Kortemme, 2008). These aspects are highly rele-

vant to CPD and we shall address them here.

2 METHODS

The CPD strategy introduced in this work (Fig. 1) is composed of five

main stages discussed in more details in the following subsections. The

whole CPD framework and the approaches used to handle the sequence-

conformation combinatorial optimization problem were assessed for the

design of more stable proteins and cofactor-bound proteins as well as

protein–ligand and protein–protein interfaces.

2.1 Preparation of structural molecular systems

Three-dimensional models of proteins in free and complex states were

derived from their respective crystallographic structures deposited in the

protein data bank (PDB) (Bernstein et al., 1977) (Supplementary Table

S1). Missing heavy atoms in crystal structures as well as hydrogen atoms

were added using the tleap module of the Amber 9 software package

(Case et al., 2006). Cofactors as well as crystallographic water molecules

specified in SITE and LINK records of PDB files were kept in structural

models. Histidine protonation states and disulfide bonds were assigned

using the tleap module. For multimeric proteins, the transformation

matrix specified in the PDB file was applied to reproduce missing

chains. Parameters for non-amino acid type ligands and cofactors were

generated with the Antechamber module of Amber 9 (Wang et al., 2006).

The molecular all-atom ff99SB (Hornak et al., 2006), Glycam06

(Kirschner et al., 2008) and gaff force fields (Wang et al., 2004) were

used for the proteins, carbohydrates and other non-standard molecules,

respectively. Each molecular system was then subjected to 500 steps of

minimization with the Sander module of Amber 9, using the generalized

born/surface area implicit solvent model (Hawkins et al., 1996).

2.2 Definition of sequence-conformation spaces

The residues of each protein were classified into three layers (labeled core,

boundary or surface) according to their burial in the 3D-model

(Supplementary Fig. S1). This burial of residues was defined by calculat-

ing their solvation radius from atomic solvation radii, as defined by

(Archontis and Simonson, 2005). The salvation radius BR of residue R

is given as follows:

BR ¼

P
i2R q2iP
i2R

q2
i

bi

ð1Þ

where bi and qi are the atomic solvation radius of atom i from residue R

and its partial charge, respectively. From these calculations, three layers

of decreasing residue-solvation radius from the core to the surface of the

protein were defined. The set of amino acid types considered at each

mutable residue (i.e. candidate positions for redesign) of the proteins

(in their apo form or bound to a cofactor) depends on the layer to

which the residue belongs to. Further details regarding the selection of

designed positions and the allowed amino acids can be found in the

Supplementary data.

2.3 Computation of pairwise energies

The total energy (Etotal) of a sequence-conformation model defined by the

selection of one specific amino acid associated with a given conformation

(rotamer) for each variable amino acid type is assessed as follows:

Etotal ¼ Ec þ
X

i
EðirÞ þ

X
i, j
Eðir, jsÞ ð2Þ

where Ec is a constant energy contribution capturing interactions between

fixed parts of the model, EðirÞ ¼ Eself ðirÞ � Eref ðirÞ is the difference be-

tween the self energy of rotamer r at position i capturing internal inter-

actions or interactions with fixed regions EselfðirÞ and its reference energy

ErefðirÞ, which corresponds to the lowest computed intra-rotamer energy

for each amino acid type by variable residue position (Lippow et al.,

2007) and Eðir, jsÞ is the pairwise interaction energy between rotamer r

at position i and rotamer s at position j. In this formulation, the con-

formations (i.e. rotamers) of amino acid–type ligands are processed as

rotamers of amino acid side chains.

All pairwise energy terms were pre-computed and stored using Osprey

2.0 (Gainza et al., 2012). These calculations were based on the Amber
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all-atom ff94 parameters implemented in Osprey 2.0 as well as on add-

itional force field parameters generated from Glycam06 and gaff force

fields using the Antechamber module of Amber 9. These parameters were

added in the parameter files of Osprey 2.0 (Chen et al., 2009) and were

used for modeling carbohydrates and other non-standard molecules. The

energy functions consisted in the sum of the Amber electrostatic terms

(with a distance-dependent dielectric constant), van der Waals and dihe-

dral energy terms and the EEF1 implicit solvation energy term. No cutoff

was used for non-bonded interactions.

2.4 Sequence-conformation optimization

The problem of finding the set of rotamers that will optimize the total

energy (Etotal) was modeled as either a binary CFN or an ILP problem.

The complete interaction graph and large tree-width excluded the use of

dynamic programming (Leaver-Fay et al., 2005). The performance of

CFN and ILP was compared against that of the combined DEE/A*

CPD-dedicated approach.

CFN model A CFN, or weighted constraint satisfaction problem P, is

composed of a set of local cost functions, each involving a set of specific

variables (Schiex et al., 1995). CFNs have been used as a modeling frame-

work for representing and solving various combinatorial optimization

problems in bioinformatics and resource allocation (Cabon et al., 1999;

De Givry et al., 2006; Zytnicki et al., 2008).

Formally, a CFN P is a triple P ¼ ðX,D,CÞ, where X¼ {1, 2, . . . , n} is

a set of n variables. Each variable i 2 X has a discrete domain di 2 D. C is

a set of local cost functions. Each cost function cs 2 C is defined over a

subset of variables S � X (called its scope), has domain �i2Sdi and takes

its values in N [ þ1f g. Cost functions must be non-negative but are

otherwise totally arbitrary and are often described by cost tables. The

infinite cost is used to represent hard constraints. An assignment A is a

mapping from variables to values from their domains. The cost of an

assignment A for a local cost function is the value of the cost function for

the projection of A to the scope of the function. The global cost of A is

the sum of the costs of A over all local cost functions. It is usually

assumed that C contains one constant cost function, with an empty

scope, denoted as c0. A CFN P defines a joint cost distribution over all

the variables X defined by the cost of the assignments. Because all cost

functions in a CFN are non-negative, the constant cost function c0 2 C

defines a lower bound on this joint cost distribution. Solving a CFN

consists in finding an assignment that minimizes the joint cost

distribution.

Modeling a CPD problem as a CFN is straightforward. Each mutable

or flexible residue i is represented by a variable i. The set of rotamers

available to the residue defines the domain di of the variable i. Finally,

each interaction energy term in Etotal can be represented as a cost func-

tion. The constant term Ec is captured as a constant cost function with

empty scope. The terms EðirÞ, which depend on one residue only, are

captured as unary cost functions involving one variable i each. Finally,

interaction terms Eðir, jsÞ can be captured as binary cost functions invol-

ving variables i and j. To enforce the non-negativity requirement on cost

functions, one can simply subtract the minimum of every cost function

from its cost table. The joint cost distribution defined by the correspond-

ing CFN is then equal to the energy, up to a known constant shift. The

optimal solution of the CFN is an assignment that corresponds to a

GMEC for the CPD problem. When the maximum number of available

rotamers over all residues is d, the resulting binary CFN takes space in

Oðn2d2Þ.

Solving a CFN consists in finding a combination of values for all the

variables in X that minimizes the joint cost distribution. Such an optimal

solution defines a GMEC for the CPD problem. Existing exact algo-

rithms for solving CFN are usually depth-first branch and bound

(DFBB) algorithms integrating strong incrementally computed polyno-

mial time lower bounds. The use of depth-first search algorithms avoids

the worst-case exponential space of the A* algorithm used in the DEE/A*

approach. The incremental lower bounds are produced by algorithms

that enforce so-called local consistencies (Larrosa and Schiex, 2004;

Schiex, 2000). Enforcing a local consistency on a given CFN P transforms

it to an equivalent CFN P’ (defining the same joint cost distribution) with

a possibly increased constant cost function c0, providing an improved

lower bound. This lower bound is used to prune the search tree and to

delete rotamers.

To identify the GMEC of all CPD instances, we used the open source

toulbar2 (Toulbar2 is an international collaborative CFN solver develop-

ment. All sources are available on our software forge at http://mulcyber.

toulouse.inra.fr/projects/toulbar2) solver (release 0.9.6.0) with options

�d:�l¼ 3 -m and no initial upper bound. By default, toulbar2 maintains

existential directional arc consistency (De Givry et al., 2005) for incre-

mental lower bounding, dynamic value ordering (based on minimum

unary cost) and a variable ordering heuristics (based on the median

energy of terms involving a given residue following preprocessing) com-

bined with last conflict heuristics (Lecoutre et al., 2009). The counterpoint

to the improved space complexity of a DFBB search instead of A* is that

DFBB search cannot directly provide a sorted list of suboptimal solu-

tions. To enumerate all suboptimal solutions within Ecut¼ 2.0 kcal.mol�1

of the GMEC, we first computed the GMEC and its associated energy

EGMEC as above and performed a second exhaustive search for all solu-

tions with energy below EGMEC þ Ecut (options –a and –ub in toulbar2 to,

respectively, produce all solutions and set a global upper bound).

ILP model We also modeled the CPD problem as an integer linear

program (01LP) problem using the usual translation from CFN to ILP

initially proposed in (Koster et al., 1999). An ILP is defined by a linear

criteria and a set of linear constraints on integer variables. For every

value/rotamer ir of the variable/residue i, we introduced one Boolean

variable Ecut dir that indicates whether the rotamer ir is used dir ¼ 1
� �

or

not dir ¼ 0
� �

. To enable the expression of the energy as a linear function

of variables, we introduced an extra Boolean variable Pirjs for every pair

of rotamers ðir, jsÞ, capturing the fact that this pair of rotamers is used.

The energy can then be expressed directly as the linear function to be

minimized (the constant term can be ignored as it cannot change the

optimal solution):
X

i, r
EðirÞ:dirþ

X
i, r, j, s

Eðir, jsÞ:pirjs ð3Þ

Additional constraints enforce that exactly one rotamer is selected for

each variable position and that a pair is used if and only if the

Fig. 1. Flow chart of the CPD framework

Computational protein design
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corresponding values are used. Then, finding a GMEC reduces to the

following ILP:

min
X

i, r
EðirÞ:dirþ

X
i, r, j, s

Eðir, jsÞ:pirjs ð4Þ

such that:
X

r

dir ¼ 1ð8iÞ

X

s

pirjs ¼ dir ð8i, r, jÞ

The resulting ILP contains Oðn2d2Þ variables and Oðn2dÞ constraints. It

is equivalent to the model proposed for CPD in (Kingsford et al., 2005).

Note that because the objective function is non-linear, it is fundamentally

impossible to express it in ILP without introducing a quadratic number of

variables. Hence, this ILP model cannot be improved significantly in size.

To identify the GMEC, we used the IBMTM ILOG ILP solver cplex

(version 12.4.0.0) on this ILP with parameters EPAGAP, EPGAP and

EPINT set to zero to avoid premature stop.

Dead-end-elimination / A* combined approach (DEE/A*) The

DEE algorithm iteratively eliminates rotamers and pairs of rotamers that

cannot possibly be part of the GMEC (Desmet et al., 1992) by using a

dominance criterion. The original DEE single elimination criterion re-

moves a rotamer r at position i if there exists another rotamer u at the

same position such that

EðirÞ � EðiuÞ þ
X

j 6¼i
mins Eðir, jsÞ�

X
j 6¼i

maxs Eðiu, jsÞ40 ð5Þ

In this case, r can be removed because any conformation using r can be

transformed into a lower energy conformation by substituting u for r.

The pruning criterion is applied until a single solution remains (i.e. the

GMEC) or all solutions outside an energy window of Ecut have been

pruned or otherwise when no more pruning is identified during a given

round. The DEE pruning step is followed by an A* branch-and-bound

like search, which uses the remaining rotamers (Leach et al., 1998) to

identify the GMEC or produces a sorted list of all models whose energy is

within a specified energy Ecut of the GMEC energy. The A* algorithm is a

worst-case exponential space and exponential time algorithm whose effi-

ciency is tightly linked to the quality of the heuristic admissible evaluation

function used to decide which node to explore next. Interestingly, the

heuristic used in the A* approach applied in this study is equivalent to

the CFN heuristic used in the PFC-DAC algorithm (Wallace, 1996). This

lower bound as well as an improved variant of it (Larrosa et al., 1998) has

been obsoleted by the incremental local consistencies introduced in

(Schiex, 2000).

In this study, we usedOsprey 2.0 to perform the DEE/A* procedure to

find the GMEC and suboptimal models within a Ecut¼ 2.0 kcal.mol�1 of

the GMEC energy (option initEw ¼ 2). The procedure starts by extensive

DEE (algoOption ¼ 3, which enables simple Goldstein, Magic bullet

pairs, 1- and 2-split positions, bounds and pairs pruning) and is followed

by the A* search. We also optionally applied a procedure including a pre-

filtering step before the DEE, which eliminates rotamers ir such that

EðirÞ430kcal.mol�1 and pairs ðir, jsÞ such that Eðir, jsÞ4100kcal.mol�1

(pruning and stericE parameters).

All computations (toulbar2, cplex and Osprey) were performed on one

core of an AMD OpteronTM Processor 6176@2.3GHz. We used 128 GB

of RAM and a 100h time-out.

2.5 Analysis of top-score models

For four design cases (PDB ids: 1TEN, 1UBI, 2PCY, 1CSK), the 3D

structure of the best conformation of each unique sequence found within

a 2kcalmol�1 window of the GMEC energy was built using Osprey 2.

These 3D structure models were then subjected to 1000 steps of mini-

mization with the Sander module of Amber 9, using the generalized born/

surface area implicit solvent model. During these minimizations, heavy

atom positions were restrained using a harmonic potential (force

constant¼ 1kcal.mol�1Å�2). The score of minimized structures was

computed with Osprey 2.0. Finally, the conformational variability of

the minimized models was assessed by carrying out an optimization

step allowing all variable amino acids (mutable and flexible) to repack.

This step was performed using the CFN-based approach with a Ecut of

0.2 kcalmol�1 and involved the pre-computing of pairwise energy terms

for each minimized model using Osprey 2.

3 RESULTS AND DISCUSSION

3.1 Benchmark set

A tailored benchmark set was produced to assess the perform-

ance of combinatorial optimization algorithms on sequence-con-

formation spaces of various sizes and complexity as well as the

potential of the CPD methodology proposed herein (Fig. 1) for

tackling the redesign of diverse structural systems involving free

proteins or proteins bound to a cofactor, a ligand or a protein.

The studied systems have all been extracted from previously pub-

lished articles about protein engineering, in silico protein design

or protein structural studies (see references Supplementary Table

S1). A detailed description of our benchmark preparation proto-

col is given in Supplementary Data.
In our benchmark set, the number of mutable residues varies

from 3 to 119 (Supplementary Table S1). They are located either

in the core of (holo)proteins (except when data are available in

the literature) or at the protein–protein or protein–ligand inter-

faces. We then defined a set of flexible residues (from 1 to 93)

(Supplementary Table S1) that surrounds mutable positions and

mainly occupies the core and the boundary regions of proteins.

The resulting number of variable residues ranges then from 23 to

120 and, given the penultimate rotamer library used, from 3 to

194 amino acid rotamers were considered at each variable pos-

ition. Our resulting benchmark set covers thus a wide range of

combinatorial spaces (from 4.1026 to 2.10249) and allows us to

evaluate different combinatorial optimization problems of vary-

ing complexity.

3.2 GMEC-based design

First, we evaluated the performance of CFN and ILP methods

for solving the GMEC identification problem exactly and com-

pared them against the exact CPD-specific method DEE/A*. We

compared the CFN solver toulbar2, the ILP solver cplex and the

DEE/A* implemented in the Osprey software on the benchmark

set of 35 design cases (Supplementary Table S1) and present the

results in Table 1.

Out of the 35 design cases, the CFN solver toulbar2 and the

ILP solver cplex solved, respectively, 30 and 27 cases within the

100 h time-out, whereas the DEE/A* CPD-dedicated approach

identified only 18 GMEC (Table 1).
The DEE/A* method managed to find the 18 GMEC with

CPU times ranging from a few minutes to 41h. Only four

cases (1MJC, 1CSK, 1SHF and 1NXB) corresponding to the

exploration of small combinatorial spaces on small proteins

took51min to be solved. The DEE step converged to a single

solution in only three instances (1MJC, 1NXB, 1CSE)

(Supplementary Table S3). The A* search successfully identified
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15 further GMEC using the subset of rotamers remaining after

the DEE step. It failed for 12 instances owing to time limit (10

cases) or memory limit (2 cases). In these cases, the size of the

combinatorial search space of non-pruned rotamers after the

DEE step ranged �1019 to 1036. This was not a sufficient reduc-

tion to enable A* to extract the GMEC from the subset of re-

maining rotamers with the available computational resources.

Supplementary Table S3 gives fractions of times spent during

DEE and A* for each instance. Using toulbar2 instead of A*

after the DEE step allowed to quickly identify the GMEC for

the 12 DEE/A* unsolvable instances. A* is therefore the limiting
step for these 12 instances. Finally, the DEE step failed to com-
plete within the 100 h time-out for five tests covering initial com-

binatorial spaces from �1061 to 10249 and the highest number of
variable residues at the surface of the proteins. One can expect
the surface residues to be more flexible than the buried residues,

and such flexibility may then lead to a high density of conform-
ations with similar energy and a corresponding increase in the
complexity of the combinatorial space to be explored. These re-

sults clearly underline the limits of the DEE-based approach to
handle large and complex problems.
To improve the efficiency of the DEE-based approach, a pre-

processing is usually applied to eliminate rotamers and pairs of

rotamers of high energy, which are not expected to appear in the
GMEC. We then performed such pre-filtering using a
30 kcalmol�1 threshold for rotamers and a 100kcalmol�1

threshold for pairs of rotamers. Using these parameters in one
instance (1CSE), the optimal solution after preprocessing did not
match the GMEC obtained in the absence of this pre-processing

step. However, when we increased the threshold for rotamers 30–
50 kcalmol�1, the optimal solution remained the same with and
without preprocessing. Besides losing the guarantee of optimal-

ity, the preprocessing step did not improve the performance of
DEE/A* in terms of the number of instances that were solved (18
GMEC identified out of the 35 cases) (Supplementary Table S3).

Furthermore, seven instances required more CPU time for iden-
tifying the GMEC when preprocessing was used.
The ILP solver cplex solved nine additional instances from our

benchmark set (2DRI, 1UBI, 1CTF, 1CM1, 1BRS, 1LZ1,
2RN2, 3CHY, 1L63) compared with DEE/A* (Table 1). In all
these cases, DEE/A* timed out during the A* search. Among

these nine design cases, only two (3CHY and 1L63) cover com-
binatorial spaces of greater size (�1092 and 1094) than the largest
combinatorial problem (1HNG �1088) solved by DEE/A*

(Table 1). The other 18 instances solved by cplex are the ones
that were successfully solved by DEE/A*. Although the ILP
solver was faster in 13 of these 18 instances, the time is overall

similar for both methods. Nevertheless, the total number of
solved instances shows that the ILP solvers can be more efficient
for several design cases, as previously reported (Allouche et al.,

2012). More concise quadratic programming (cplex QP solver)
and partial weighted MaxSAT (akmaxsat, MaxHS and Bin-
Core-Dis solvers) models were also tried, but they all failed on

all instances.
The CFN solver toulbar2 solved, respectively, 12 and 3 more

cases compared with DEE/A* and cplex (Table 1). Therefore,

CFN only failed on five instances (1PGB, 1ENH, 2CI2, 3HHR,
1STN) out of the 35 handled. These instances correspond to vast
combinatorial spaces (from about 1061 to 10249), which mostly

include variable residues scattered over the three layers of the
proteins (Supplementary Table S1). There are no cases solved by
DEE/A* or ILP that CFN could not solve. Moreover, CFN

outperformed the two other approaches by an impressive
margin in terms of speed. Among the 30 instances solved by
CFN and including large combinatorial spaces, 11 cases were

solved in 51 s, 23 in 510 s and only five instances required a
few minutes. Given its running time performance and its success
rate for handling large protein design problems, the CFN ap-

proach appears as an appealing alternative to current exact

Table 1. CPU-time for solving the GMEC using DEE/A* (osprey), ILP

(cplex) and CFN (toulbar2)

PDB Sequence

conformation

space size

Times (s)

DEE/A* ILP CFN

1MJC 4.36eþ 26 4.57 3.94 0.08

1CSP 5.02eþ 30 200.00 360.00 0.84

1BK2 1.18eþ 32 93.20 303.00 0.65

1SHG 2.13eþ 32 138.00 42.30 0.25

1CSK 4.09eþ 32 41.70 24.90 0.15

1SHF 1.05eþ 34 44.30 11.10 0.17

1FYN 5.04eþ 36 622.00 2.26eþ 03 3.79

1PIN 5.32eþ 39 9.54eþ 03 3.00eþ 03 3.99

1NXB 2.61eþ 41 11.10 21.20 0.24

1TEN 6.17eþ 43 113.00 81.70 0.33

1POH 8.02eþ 43 77.90 31.80 0.45

2DRI 1.16eþ 47 TA* 2.92eþ 5 24.5

1FNA 3.02eþ 47 3.31eþ 03 419.00 0.73

1UBI 2.43eþ 49 TA* 704.00 2.14

1C9O 3.77eþ 49 2.31eþ 03 1.40eþ 03 2.20

1CTF 3.95eþ 51 TA* 580.40 1.23

2PCY 2.34eþ 52 2.08eþ 03 76.70 0.51

1DKT 3.94eþ 58 5.42eþ 03 1.85eþ 03 3.95

2TRX 9.02eþ 59 487.00 1.34eþ 03 1.7

1PGB 5.10eþ 61 TDEE T T

1CM1 3.73eþ 63 TA* 2.65eþ 04 19.2

1BRS 1.67eþ 64 TA* 2.39eþ 05 426.0

1ENH 6.65eþ 64 TDEE T T

1CDL 5.68eþ 65 TA* T 191.1

1LZ1 1.04eþ 72 TA* 1.25eþ 03 2.11

2CI2 7.26eþ 75 TDEE T T

1GVP 1.51eþ 78 TA* T 593.6

1RIS 1.23eþ 80 TA* T 501.00

2RN2 3.68eþ 80 MA* 1.14eþ 03 2.77

1CSE 8.35eþ 82 367.00 205.93 1.36

1HNG 3.70eþ 88 5.59eþ 03 4.15eþ 03 6.97

3CHY 2.36eþ 92 TA* 2.91eþ 04 171.00

1L63 2.17eþ 94 MA* 2.82eþ 03 6.41

3HHR 2.98eþ 171 TDEE M T

1STN 2.00eþ 249 TDEE M M

Number of cases solved in

10min

11 13 30

Number of cases solved in

100h

18 27 30

Note: A ‘M’ indicates an exceeded memory size (128GB) and a ‘T’ indicates an

exceeded computation time (100h). For the DEE/A* approach, the A* and the

DEE associated with M or T indicate the step during which occurred the exceeding

of memory or computation time.
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CPD-dedicated methods, especially for solving highly complex

GMEC-based design problems.
There is no single explanation for the performance advantage

of the CFN solver toulbar2 over the ILP solver cplex and the

DEE/A* implemented in the Osprey. Indeed, solvers are complex

systems involving various mechanisms. The effect of their inter-

actions during solving is hard to predict. Moreover, the IBMTM

ILOG ILP solver cplex is a totally closed-source industrial black

box solver.
Compared with the CFN solver toulbar2, Osprey uses a lower

bound considered as obsolete in CFN (Wallace, 1996) instead of

the recent incremental stronger lower bounds offered by soft

local consistencies such as EDAC (Larrosa et al., 2005). This,

together with the associated informed value ordering provided by

these local consistencies, explains why the CFN approach out-

performs the DEE/A* method. Considering ILP, it is known that

the LP relaxation lower bound used in ILP is (by duality) the

same as the Optimal Soft AC (Cooper et al., 2010) lower bound

when no upper bounding occurs. Because OSAC dominates all

other local consistencies at the arc level, this provides an explan-

ation for the efficiency of cplex compared with Osprey. Finally,

compared with ILP, the formulation of the deeply non-linear

problem is more direct in CFN. This likely contributes, together

with the upper bounding, variable and value ordering heuristics

of toulbar2, to the efficiency of the CFN approach compared

with ILP.

3.3 Suboptimal ensemble generation

We also performed computational design tests to assess the abil-

ity of the CFN method to generate an ensemble of provably

near-optimal sequence-conformation models in addition to the

GMEC. The performance of the CFN approach was compared

against DEE/A*. For this purpose, the 35 design cases of the

benchmark set (Supplementary Table S1) were again investigated

using the CFN toulbar2 solver and the DEE/A* implemented in

Osprey software to access the set of sequence-conformation

models comprised within an energy window of 2kcalmol�1 of

the GMEC energy.
Out of the 35 design cases, the CFN solver toulbar2 managed

to produce the suboptimal ensembles of solutions for 30 design

cases, whereas the DEE/A* approach only successfully handled

one instance (Table 2).
The DEE/A* approach failed for 34 instances owing to time

(30 cases) or memory (4 cases) limits. It only identified the set of

near-optimal models for one instance (1SHF) among the 18 suc-

cessfully handled for the GMEC problem (Table 1). Although

this solved instance corresponds to one of the smallest investi-

gated combinatorial spaces (�1034) (Supplementary Table S1),

�37h of computation were needed to find the ensemble of low-

energy models compared with51 s for the CFN approach. This

running time is even4�7h required by the CFN method in the

worst case (1L63) including an important combinatorial space

(�1094) and a large number of suboptimal solutions (8� 108).
The CFN method only failed to identify the near-optimal en-

semble on the five instances (1PGB, 1ENH, 2CI2, 3HHR, 1STN)

for which the GMEC problem was also unsolved (Table 1). In

addition to the high success rate achieved by CFN, the method

was also efficient: 10 cases were solved by CFN in51min, 15

required several minutes and only five instances needed several

hours (Table 2).

While the task of finding a set of low-energy sequence-con-

formation models proved to be an insurmountable computa-

tional hurdle for DEE/A* as implemented in Osprey, the CFN

solver toulbar2 successfully solved most of the design cases

tested. Moreover, the CFN approach gave access to sets of prov-

ably suboptimal solutions with outstanding running time

performances.
The CFN approach efficiently uses the knowledge of the

GMEC solution in the enumeration procedure of the near-opti-

mal models. The GMEC defines an upper bound corresponding

to the energy of the GMECþ 2kcalmol�1. In CFN, this upper

Table 2. CPU-time for generating the ensemble of suboptimal models

(Ecut¼ 2kcal.mol�1) using DEE/A* (osprey) and CFN (toulbar2)

PDB Times (s) Number of

sequence-

conformation

solutions

Number of

different

sequencesDEE/A* CFN

1MJC TA* 42.73 2.11eþ 06 91

1CSP MA* 6.29 1.18eþ 05 794

1BK2 MA* 6.75 3.18eþ 05 2.19eþ 03

1SHG MA* 13.58 6.46eþ 05 542

1CSK MA* 9.04 4.48eþ 05 199

1SHF 1.20eþ 05 0.99 3.07eþ 04 26

1FYN TDEE 14.13 4.05eþ 05 7.02eþ 03

1PIN TDEE 9.36 1.62eþ 04 310

1NXB TA* 997.46 4.67eþ 07 526

1TEN TA* 123.68 6.42eþ 06 294

1POH TA* 1.76eþ 04 7.56eþ 08 177

2DRI TDEE 226.3 4.94eþ 06 340

1FNA TA* 1.83eþ 03 9.87eþ 07 3.94eþ 03

1UBI TA* 12.07 3.04eþ 05 194

1C9O TDEE 76.42 3.37eþ 06 1.65eþ 03

1CTF TA* 421.4 1.96eþ 07 3.06eþ 04

2PCY TA* 6.28 2.28eþ 05 144

1DKT TA* 2.07eþ 04 1.00eþ 09 2.83eþ 04

2TRX TA* 2.27eþ 04 1.01eþ 09 132

1PGB TDEE T n.d n.d

1CM1 TDEE 113.53 3.01eþ 06 5.18eþ 03

1BRS TDEE 1.70eþ 03 2.10eþ 06 2.09eþ 04

1ENH TDEE T n.d n.d

1CDL TDEE 922.6 1.22eþ 05 2.54eþ 03

1LZ1 TA* 251.2 9.87eþ 06 546

2CI2 TDEE T n.d n.d

1GVP TDEE 1.50eþ 04 4.32eþ 08 3.13eþ 05

1RIS TDEE 3.24eþ 03 1.11eþ 08 1.24eþ 04

2RN2 TA* 594.4 2.32eþ 07 4.00eþ 03

1CSE TA* 2.43eþ 03 8.00eþ 07 61

1HNG TA* 3.30eþ 03 1.08eþ 08 1.3eþ 03

3CHY TA* 385.1 3.52eþ 06 8.56eþ 03

1L63 TA* 2.24eþ 04 8.00eþ 08 6.03eþ 03

3HHR TDEE M n.d n.d

1STN TDEE M n.d n.d

Note: A ‘M’ indicates an exceeded memory size (128GB) and a ‘T’ indicates an

exceeded computation time (100h). For the DEE/A* approach, the A* and the

DEE associated with M or T indicate the step during which occurred the exceeding

of memory or computation time. ‘n.d’ indicates not determined.
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bound is systematically compared with the lower bound provided

by local consistency enforcing. The DEE implemented in Osprey

uses the same upper bound (parameter pruningE) but exploits a

weaker lower bound. This likely explains the performance gap

compared with the toulbar2 CFN solver.

3.4 Suboptimal ensemble analysis

First, we analyzed the sequence and conformational variability

of the near-optimal models obtained for four design cases

(1CSK, 1TEN, 1UBI, 2PCY) of proteins adopting distinct struc-

tural folds (Supplementary Table S2). These instances include

from 9 to 16 mutable residues and from 21 to 30 flexible residues

(Supplementary Table S1).
Within awindowof 2 kcalmol�1 of theGMEC, theCFN-based

approach produced4105 sequence-conformation models for each

of the four design cases (Table 2). The score of these models is

lower by as much as �20kcalmol�1 than that of the wild-type

model (Supplementary Figs S2c–S5c). In these ensembles of

models, 144, 194, 199 and 294 unique sequences were found, re-

spectively, for 2PCY, 1UBI, 1CSK and 1TEN design cases.
Only few unique sequences were then generated compared with

the high number of enumerated models within a small energy

window of 2 kcal mol�1 of the GMEC energy. However, when

the experimental construction of the protein library is considered,

it is important to have access to a larger ensemble of distinct se-

quences. For this purpose, the outstanding performances of the

CFN solver (Table 2) could be harnessed to provably predict

suboptimal models distributed on a wider energy window of the

GMEC and thus attempt to generate more diverse sequence

ensembles.

For the four design cases, the wild-type amino acid was the

most often either substituted by an amino acid of slightly larger

size or conserved (Supplementary Figs S2a–S5a). Nevertheless,

the entire wild-type sequence of the protein was never found

within the suboptimal ensembles. It is noteworthy that the mut-

able residues of glycine type were not found substituted by an-

other amino acid type (Supplementary Figs S2a, S3a and S4a).

The number of conformations adopted by each sequence de-

creases gradually as the energy value of the sequence becomes

more unfavorable (Supplementary Figs S2d–S5d). The superpos-

ition of the best conformation of each unique sequence showed

that each flexible residue adopts almost the same rotamer in all

best conformations (Supplementary Figs S2b–S5b). Moreover,

the orientation of mutable residue side-chains is similar in all

the best models regardless the assigned amino-acid type.
For the protein design problems studied here, we expected that

mutations would favor the introduction of bulkier amino acids to

fill up the free space available in the core of proteins. However,

changes in amino acid sizes were subtle. A visual inspection of the

3D structures of mutants suggests that some slight adjustments of

side chains and/or backbone of surrounding residues could enable

accommodation of larger side chains, which were here assigned

with high interaction energies. This lack of conformational relax-

ation seems also to be at the origin of the observed conservation of

glycine amino acid types. Therefore, the sequence selectionmaybe

biased and restricted by the lack of flexibility of surrounding resi-

dues. These results highlight the key role of the local molecular

flexibility to extend the accessible sequence space, as shown by

previous work (Bordner and Abagyan, 2004). We then subjected
each unique sequence of the four suboptimal ensembles to energy
minimization to assess the effect of the relaxation of side chains

and backbone freedom degrees on the energy ranking of the se-
quence ensembles. Overall, the minimization decreased the energy
values of these models from �20 to 60 kcalmol�1 depending on

the design case (Supplementary Figs S2c–S5c). Nonetheless, the
superposition of the structures before and after minimization only
showed slight rearrangements of protein side chains and back-

bone. This clearly indicates that slight geometrical adjustments
can significantly lower model energies. The conformational vari-
ability of these low-energy sequences were further investigated by

carrying out an optimization step (with a Ecut of 0.2kcalmol�1),
which enables all variable amino acids (mutable and flexible) to be

repacked. Despite an Ecut value, which is 10 times smaller, the
number of conformations adopted by each unique sequence was
found extremely highwhatever the energy ranking of the sequence

(Supplementary Figs S2d–S5d). Therefore, the significant differ-
ences observed among mutants before minimization step, is prob-
ably the result of the discretization of conformational freedom

degrees. The minimization step thus allows us to extend the ac-
cessible conformational space. Current trends in CPD refine the
exact DEE/A* approach along various directions, allowing, re-

spectively, for continuous rotamers (Georgiev et al., 2008a,b;
Gainza et al., 2012), for continuous (Georgiev and Donald,
2007) or discrete (Georgiev et al., 2008a,b) backbone conform-

ation adjustments or both (Hallen et al., 2013). The CFN ap-
proach could further be extended to handle such flexibilities
descriptions.

In addition to lowering the energy and increasing the conform-
ational variability of models, the geometry relaxation step reranks

the sequence ensemble. The GMEC obtained after minimization
(refined GMEC) does not match with the original GMEC. The
energy values of the minimized suboptimal models are spread

within an energy window up to �6 kcalmol�1 of the refined
GMEC (Supplementary Figs S2c–S5c). Therefore, with a Ecut of
2 kcalmol�1, from 92 to 185 unique sequences depending on the

design casewould be removed of theseminimized ensembles. Even
on a small energy window, these results demonstrate the advan-
tage of the post-minimization to re-rank and post-screen the most

promising candidate sequences to evaluate experimentally.

4 CONCLUSION

In this article, we have formulated a novel open-source based
computational framework to provably identify the GMEC as

well as a set of low-energy protein sequences within the context
of atomic protein design. This CFN-based approach provides
remarkable speedups, allowing us to explore vast sequence-

conformational spaces much more efficiently than the DEE/A*
algorithm or state-of-the-art ILP algorithms. Despite the
significant change in terms of problem complexity, it is surprising

to see that this efficiency extends to the generation of gap-free
sets of suboptimal solutions. This article and the companion
open-source computational tools we offer will therefore facilitate

the optimization of new CPD systems, without requiring expen-
sive computational resources.
Ultimately, we hope that CFN technology will allow complex

CPD problems, mixing optimization of flexible systems and
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discrete integration (capturing entropic effects and affinity) to be

directly tackled.
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