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Abstract

Embryogenic suspensions that involve extensive cell division are risky in respect to genome and epigenome instability.
Elevated frequencies of somaclonal variation in embryogenic suspension-derived plants were reported in many species,
including coffee. This problem could be overcome by using culture conditions that allow moderate cell proliferation. In view
of true-to-type large-scale propagation of C. arabica hybrids, suspension protocols based on low 2,4-D concentrations and
short proliferation periods were developed. As mechanisms leading to somaclonal variation are often complex, the
phenotypic, genetic and epigenetic changes were jointly assessed so as to accurately evaluate the conformity of
suspension-derived plants. The effects of embryogenic suspensions and secondary embryogenesis, used as proliferation
systems, on the genetic conformity of somatic embryogenesis-derived plants (emblings) were assessed in two hybrids.
When applied over a 6 month period, both systems ensured very low somaclonal variation rates, as observed through
massive phenotypic observations in field plots (0.74% from 200 000 plant). Molecular AFLP and MSAP analyses performed
on 145 three year-old emblings showed that polymorphism between mother plants and emblings was extremely low, i.e.
ranges of 0–0.003% and 0.07–0.18% respectively, with no significant difference between the proliferation systems for the
two hybrids. No embling was found to cumulate more than three methylation polymorphisms. No relation was established
between the variant phenotype (27 variants studied) and a particular MSAP pattern. Chromosome counting showed that 7
of the 11 variant emblings analyzed were characterized by the loss of 1–3 chromosomes. This work showed that both
embryogenic suspensions and secondary embryogenesis are reliable for true-to-type propagation of elite material.
Molecular analyses revealed that genetic and epigenetic alterations are particularly limited during coffee somatic
embryogenesis. The main change in most of the rare phenotypic variants was aneuploidy, indicating that mitotic
aberrations play a major role in somaclonal variation in coffee.
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Introduction

Among micropropagation methods, somatic embryogenesis has

the best potential for rapid and large-scale multiplication of

selected varieties in a wide range of economically important

species. Schematically, the initial step of dedifferentiation leading

to the acquisition of embryogenic competence is common to most

plant species, whereas for the following step of proliferation of

embryogenic material, efficient procedures can be classified under

two main strategies. The first is the proliferation through

secondary embryogenesis (SCE) which involves first differentiating

the somatic embryos before enhancing their proliferation by

adventitious budding (Figure 1). The second consists of establish-

ing embryogenic suspensions (ESP) to favor large-scale embryo-

genic cell proliferation before the subsequent embryo differenti-

ation step. In order to come up with an industrial procedure, the

development of ESP represents the best option to ensure

synchronous and massive somatic embryo production [1]. In
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addition, ESP allows the production of large numbers of

embryogenic-competent cells and this process can be easily scaled

up. Nevertheless, tissue culture systems such as somatic embryo-

genesis that involve the acquisition of competence for pluripoten-

tiality and extensive cell division are more risky with respect to

genome and epigenome instability [2]. The use of ESP has

frequently been associated with an increased risk of genetic

instability and somaclonal variation in the regenerated plants [3–

5]. Although ESP has been developed for some important crops, it

has therefore not been widely applied for commercial purposes.

Somaclonal variation in ESP-derived plants is probably related to

the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), which is

often essential for maintaining proliferating cells in an embryo-

genic, undifferentiated state [6,7]. This auxin could enhance

somaclonal variation through the stimulation of rapid disorganized

growth that can influence the mitotic process, resulting in

chromosomal aberrations [8,9].

The term ‘somaclonal variation’ (SV) describes the tissue

culture-induced stable genetic, epigenetic or phenotypic variation

in clonally propagated plant populations [10]. Somaclonal

variation is considered to be one of the main bottlenecks in the

development of micropropagation procedures, especially in view

of large-scale commercial operations, for which the strict

maintenance of genetic and agronomic traits from selected

individuals is required. An analysis of the progeny of phenotypic

variants showed that some of the variations produced by somatic

embryogenesis can occur in the form of stable and heritable

mutations [8,11]. In maize, Kaeppler and Phillips [12] also

reported stable segregation of somaclonal variant phenotypic

qualities in several seed generations. It has also been well

documented that somaclonal variants commonly present cytolog-

ical aberrations such as chromosomal rearrangements (deletions,

duplications, inversions and translocations), and sometimes more

severe alterations like aneuploidy or polyploidy [12–16].

Although most mutants segregate in a Mendelian fashion upon

selfing and outcrossing [12], SV is sometimes present in the form

of transient mutations, suggesting the involvement of epigenetic

events [11]. Epigenetic traits are heritable changes associated with

chemical modification of DNA without alteration of the primary

DNA sequence [17]. Cytosine methylation has been proposed as a

possible cause of SV [11,12]. Epigenetic modifications (methyla-

tion) can mediate the transmission of an active or silent gene in the

short-term (mitotic cell division) or long-term (meiotic divisions

leading to transmission across generations) [18]. DNA methylation

in plants commonly occurs at cytosine (5-methylcytosine, m5C)

bases in all sequence contexts: the symmetric CG and CHG (in

which H could be A, T or C) and the asymmetric CHH contexts

[17,18]. Molecular marker approaches like methylation-sensitive

amplified polymorphism (MSAP) and Met-AFLP have proved

efficient in the analysis of methylation patterns [19,20]. The

existence of zones susceptible to methylation variations was

recently shown in somatic embryogenesis-derived plants (emblings)

in grapevine [21] and barley [20]. SV was also associated with the

activity of mobile DNA elements or retroelements [22,23]. Novel

mechanisms such as RNAi directed demethylation have recently

been proposed to explain retrotransposon activation [2,24].

Coffea arabica is an allotetraploid tree species (2n = 4X = 44)

characterized by low molecular polymorphism [25]. Somatic

embryogenesis is currently applied industrially for large-scale and

rapid dissemination of selected F1 hybrids that provide a highly

significant increase in the yield of high quality coffee [26,27].

Regarding industrial-scale micropropagation, upgrading produc-

tion to several million vitroplants per production unit would

undoubtedly boost economic profitability. This would require

switching from an SCE- to an ESP-based protocol. However,

former field observations revealed that SV occurs at relatively high

rates in ESP-derived C. arabica plants [28,29]. Apart from different

phenotypic variants easily identifiable through morphological

characteristics, we did not discover in trees showing a normal

phenotype any variations involving agronomically important

quantitative and physiological characteristics [30]. In view of

true-to-type propagation of selected C. arabica hybrid varieties, we

previously developed improved ESP protocols based on the use of

low exogenous 2,4-D concentrations and short proliferation

periods, allowing reliable somatic embryo mass regeneration

[27]. For potential commercial applications, here using two C.

arabica hybrids we verified the conformity of suspension-derived

plants with that of plants obtained by secondary embryogenesis,

i.e. the industrial process currently in use. The objectives were to

assess large-scale phenotype conformity in commercial field plots,

to quantify genetic and epigenetic modifications in the regenerated

plants through AFLP (Amplified fragment length polymorphism)

and MSAP molecular markers, and to cytologically characterize

the karyotype of different phenotypic variants detected in the

study.

Results

Frequency of phenotypic variants
Embling batches of hybrids HI and H3 obtained from both

SCE and ESP were checked for phenotype variation at both

nursery and field levels. The frequency of phenotypic variants

assessed among more than 600 000 plants in the nursery was very

low (approx. 0.1%) and not significantly affected by the

proliferation system nor the hybrid variety (Table 1). Observation

of around 200 000 emblings in the field two years after planting

revealed roughly an additional 0.74% of abnormal phenotypes,

still without any significant difference between the two prolifer-

ation systems and hybrids. Apart from these phenotypic variants,

all the other studied trees flowered, grew and produced normally.

In conclusion, the overall phenotypic variation rate obtained by

pooling the data obtained both in the nursery and in the field was

less than 1% and no significant differences were noted between the

proliferation systems or between the hybrids used.

Both proliferation systems generated the same kind of pheno-

typic variants (Figures 2A, B), with the Dwarf and Angustifolia

types (Figures 3E, B) being the most frequent. Note that the

secondary embryogenesis proliferation system specifically en-

hanced the occurrence of Dwarf variants, whereas the embryo-

genic suspensions favored the occurrence of the Angustifolia type.

This latter phenotype can easily be detected and eliminated at the

nursery level along with the Variegata variant (Figure 3C). A

comparison of Figures 2A and 2B clearly shows that elimination in

the nursery is not efficient for the Dwarf type. This somaclonal

variation is more easily observable 2–3 years after planting in the

field thanks to the characteristic grouped canopy morphology and

low yield. Similarly, the Giant and Bullata (Figure 3F) phenotypic

variants could only be detected in the field on well-developed trees.

Locus specific polymorphisms revealed by AFLP
In order to verify the induction of molecular polymorphism by

the somatic embryogenesis process, AFLP analysis (four primer

combinations, Table 2) was carried out on mother plants and their

derived emblings. From a total of 204 bands obtained, only one

polymorphic fragment of 173 bp in size (Eco-ACT/Mse-AGT)

shared by two emblings of hybrid H1 and exhibiting a normal

phenotype, was found (Table 3). From a total of 198 bands

obtained, no polymorphism was found in emblings of hybrid H3.

Somaclonal Variation in Suspension-Derived Plants
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All variants had the same AFLP pattern as the mother plants. For

both hybrids, no significant quantitative effect on AFLP was

detected when comparing SCE and ESP.

Methylation changes revealed by MSAP
In order to evaluate the occurrence of possible epigenetic

modifications in the micropropagated plants, a study on the

alteration of methylation patterns was performed by MSAP

analysis using eight primer combinations (Table 2). Only clear and

reproducible bands were selected for the analysis. More than 395

fragments were considered. First, MSAP patterns were obtained

from DNA digested by the two isoschizomers (HpaII and MspI), as

illustrated in Figure 4. They were further compared with those of

mother plants to classify the amplified fragments according to the

methylation pattern, as shown in Table 4. The percentages of

monomorphic fragments (pattern 1) were elevated and similar for

both hybrids at nearly 91%. The remaining 9% of fragments

(8.5% for H1 and 9.1% for H3) almost exclusively corresponded to

pattern 3.

A comparison of amplification patterns in mother plants and

their respective progeny are reported in Table 5. All differences

between mother and derived plants were switches between

patterns 1 and 3 and vice versa, i.e. likely modifications in the

restriction ability of HpaII. Among the polymorphic bands, eight

bands corresponded to a change from pattern 3 in mother plants

towards the unmethylated pattern 1 in emblings, suggesting

Figure 1. Schematic representation of two somatic embryogenesis processes applied at the industrial level. The first somatic
embryogenesis process (upper section of the flow diagram) involved a proliferation step based on secondary embryogenesis in RITAH temporary
immersion bioreactors (photos 1A, 1B). The second process (lower section of flow diagram) included a proliferation step based on embryogenic
suspensions (photos 1C, 1D). 1A, initial developmental stages of secondary embryos at the root pole of primary somatic embryos; 1B, clusters of
primary and secondary embryos; 1C, clusters of embryogenic cells in suspension; 1D, embryogenic cells in suspension.
doi:10.1371/journal.pone.0056372.g001

Somaclonal Variation in Suspension-Derived Plants
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demethylation. Changes associated with certain polymorphic

MSAP bands were more frequent than others (Table 5). Seventy

percent of the changes were linked to only five polymorphic bands.

The detected polymorphism was very low and similar for both

hybrids (Table 6) but slightly higher (0.07–0.18%) when compared

to AFLP molecular markers. Similar to the AFLP results, the total

MSAP polymorphism was not significantly different between the

two proliferation systems nor between the two hybrid varieties.

Most emblings showing changes in MSAP pattern had only one

or two methylation polymorphisms (Figure 5). We did not find any

emblings with more than three methylation polymorphisms. The

same polymorphic bands were shared by plants from both

proliferation systems and/or both hybrids in approximately half

of the cases (Table 5). No relation was established between the

variant phenotype and a particular MSAP pattern (Table 6).

Chromosome counting of somaclonal variants
Chromosome numbers were assessed in 2 phenotypically

normal emblings and 11 somaclonal variants (Fig. 6). Table 7

shows that the two normal regenerants exhibited the expected
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Figure 2. Proportions (%) of the different types of phenotypic
variants in comparison to the total number of variants. Variants
representing less than 1% of somatic embryogenesis-derived plants
were observed in C. arabica embling batches at nursery (A) and field (B)
levels, depending on the proliferation system used, i.e. secondary
embryogenesis (SCE) or embryogenic suspension (ESP). In the nursery,
the data were obtained from 239 009 emblings derived from SCE and
402 576 emblings from ESP. In the field, the data were obtained
through the observation of 100 257 emblings derived from secondary
embryogenesis and 108 784 from embryogenic suspensions.
doi:10.1371/journal.pone.0056372.g002
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chromosome number for the allotetraploid C. arabica species

(2n = 4x = 44) whereas 7 of the 11 variant emblings showed a

different chromosome number (aneuploids). In almost all cases, the

aneuploid karyotypes were characterized by the loss of 1–3

chromosomes. One Angustifolia variant had an extra chromo-

some. Moreover, the results showed that different chromosome

numbers - including the normal number - could be observed for

the same variant phenotype and that abnormal chromosome

numbers were obtained for most of the variant phenotypes.

Discussion

Until now, relatively high somaclonal variation rates have been

reported in C. arabica emblings, particularly with embryogenic

suspensions [28,29,30]. The variant frequency was found to

strongly increase in embryogenic suspensions after 6 months

proliferation (25% after 12 months) in the presence of 4.52 mM

2,4-D [29]. The presence of disorganized rapid growth phases in

tissue culture, such as callus and cell suspension cultures, has often

been considered as one of the factors that cause SV [8,31]. In view

of true-to-type propagation, we further established processes with

limited disorganized rapid growth phases. The first was based on

SCE proliferation in temporary immersion bioreactors enhanced

by the addition of cytokinin, similar to methods described in other

woody plants such as rubber [32], oak [33] and tea [34] and is

currently used on a commercial scale for coffee. The second

involves the proliferation of ESP in the presence of both auxin and

cytokinin albeit at a very low level of 2,4-D (1.36 mM) with a short

proliferation time (6 months). These conditions allow sufficient

amplification of embryogenic material to ensure the cost-

effectiveness of the industrial process. A large-scale phenotypic

evaluation for each process: 230 000–400 000 emblings in the

nursery and 100 000 in the field was performed to obtain valuable

and accurate information on genetic stability. The present study

showed for the first time that, for both somatic embryogenesis

processes, the variant phenotype frequencies were extremely low

(less than 1%) and not statistically different. Moreover no statistical

difference could be noted between the two studied hybrids. This

clearly demonstrates that it is possible to control SV by optimizing

the ESP culture conditions. In another cultivated Coffea species, i.e.

the diploid C. canephora, Ducos et al. [35] found 2–4% of a low-

vigor phenotype off-type among 5 067 emblings derived from 5–7-

month-old ESP. In contrast to the C. arabica protocol, all somatic

embryogenesis steps for C. canephora were performed with

cytokinins as sole source of growth regulator. Hence, in coffee,

both auxin and cytokinin could probably be involved in the

generation of SV. The Angustifolia, Variegata and Dwarf variants

were the most frequent types, irrespective of the proliferation

strategy employed, confirming previous studies conducted on a

lesser scale [29,30]. Interestingly, except for the Dwarf variant

which seems to be tissue culture specific, all the phenotypic

variants observed in the somatic embryogenesis progenies were

also observed among C. arabica seed-derived progeny. Indeed,

phenotypic mutations are frequent in coffee nurseries, and Krug

and Carvalho [36] previously characterized the numerous

different morphologies in detail.

In several cases, AFLP markers have proved useful in the

detection of genetic variation in tissue culture derived plants

[20,37–40]. In coffee, the genetic stability of coffee emblings has

been poorly evaluated by molecular markers and limited to plants

derived from experimental protocols. The present study revealed

no or extremely limited mutations at the DNA level in large-scale

somatic embryogenesis-propagated plants. From a total sample of

145 plants analyzed belonging to two hybrid varieties, only 1 out

of 204 bands was polymorphic in only two SCE-produced plants.

ESP-derived plants showed no AFLP polymorphism when

compared with mother plants. Our results significantly differed

from those previously reported in C. arabica. In a first approach on

only 27 plants, Rani et al. [41] used different DNA markers

Figure 3. Examples of different C. arabica phenotypic variants
in plants mass propagated through somatic embryogenesis. A,
plant exhibiting a normal phenotype in the nursery; B, Angustifolia
variant in the nursery; C, Variegata variant in the field; D, plant showing
a normal phenotype in the field; E, Dwarf variant in the field; F, Bullata
variant in nursery.
doi:10.1371/journal.pone.0056372.g003

Table 2. Primer combinations used for AFLP and MSAP analyses.

AFLP primer combinations (Eco+3 labeled/Mse+3) MSAP primer combinations (Eco23/Hpa+2 labeled)

Eco-ACT/Mse-AGT C1 Eco-AAC/HPA-AA

Eco-AGG/Mse-AGT C2 Eco-AAC/HPA-AT

Eco-CGC/Mse-CCA C3 Eco-AGG/HPA-AA

Eco-CAC/Mse-CCA C4 Eco-AGG/HPA-AT

C5 Eco-ACT/HPA-CA

C6 Eco-ACT/HPA-CT

C7 Eco-AGA/HPA-CA

C8 Eco-AGA/HPA-CT

Fluorescent dyes for marked primers correspond to 5’-FAM TM and 5’-HEX TM

doi:10.1371/journal.pone.0056372.t002
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(RAPD, random amplified polymorphic DNA and SSR, simple

sequence repeat) to assess the genetic integrity of C. arabica

emblings obtained from embryogenic calli, and they found a

higher polymorphism level (4%) in the nuclear genome. By

performing RAPD analyses on Norway spruce emblings, Heinze

and Schmidt [42] concluded that gross somaclonal variation was

absent in their plant regeneration system. In contrast, RAPD and

SSR markers allowed the detection of high genetic variation in

cotton emblings regenerated in the presence of 2,4-D [39]. AFLP

analysis of 24 rye emblings led to the scoring of 887 AFLP

markers, among which 8.8% identified the same polymorphism in

plants obtained independently, revealing putative mutational hot

spots [38].

DNA cytosine methylation plays an important role in plant

regulation and development [43,44]. Since the pioneer studies on

maize emblings [12], substantial evidence has been obtained

which indicates that demethylation can occur at a high frequency

during somatic embryogenesis and can be an important cause of

tissue culture induced variation [45]. DNA methylation has also

been implicated in gene silencing and transposable element

reactivation [24,46]. To our knowledge, epigenetic deregulation

during coffee micropropagation has not yet been studied. The very

low total methylation polymorphism values obtained for both

somatic embryogenesis processes and both hybrids (0.07–0.18%

range) indicated that the tissue culture procedures employed in

coffee weakly affected DNA methylation of the regenerated plants.

This finding is in accordance with the 0.87% total polymorphism

recently found in Freesia hybrid emblings by Gao et al. [40].

Moreover, the low number of methylation polymorphisms per

embling (range 1–3) confirmed that neither SCE nor ESP induced

additional stress at the methylation level during embryogenic

material proliferation. In contrast, a significantly higher accumu-

lation of methylation changes in some emblings has been regularly

observed in other species [20,21,47,48]. For example, in

grapevine, most emblings showed between zero and three changes,

similar to our findings, but a few accumulated up to 18 [21]. It has

also been well demonstrated that auxin levels strongly alter DNA

methylation of embryogenic cell cultures [49]. However, similar to

our results, examples of stable MSAP patterns have already been

reported using bamboo tissues at different developmental stages of

somatic embryogenesis [50]. The timing of plant regeneration

from proliferating callus cultures could be crucial for the

appearance of variation. In callus-derived hop plants, an increase

in the variation was detected by MSAP in prolonged callus

cultures [20]. Our results demonstrated that very few changes are

possible by limiting both the auxin level and culture duration.

MSAP markers have already been successfully used to

demonstrate epigenetic instabilities (methylation alteration) in-

duced by somatic embryogenesis in a great variety of plants, such

as the ornamental flower Freesia, banana, barley, grapevine and

maize [20,21,40,51–53], also indicating that demethylation events

were generally the most frequent. Although occurring at low

frequency, our results also indicated demethylation events and

mainly the loss of methylation in the internal cytosine of the 5’-

CCGG-39 sequence to produce a new HpaII band not detected in

mother plants but present in the amplification pattern of the

isoschizomer MspI. The detection of the same MSAP polymorphic

fragments in independent plant samples from different hybrids and

somatic embryogenesis processes suggests the existence of hotspots

of DNA methylation changes in the genome. The existence of

non-randomly behaving methylation polymorphic fragments in

micropropagated plants has already been described using Met-

AFLP [20,48] and MSAP [21,53–55].T
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Gross changes, such as variation in ploidy level, number of

chromosomes and structural changes, are mitotic aberrations that

represent major genomic alterations of in vitro plants often

generated during in vitro proliferation and differentiation [12,56–

58]. Variations in chromosome number and structure have been

described among emblings for several species [59–62]. We

demonstrated that gross changes occur during coffee somatic

embryogenesis and are related to SV, whereas genetic and

Figure 4. Representation of MSAP electropherograms observed for coffee mother plants and embling progeny using the
isoschizomers HpaII and MspI. Illustration of the pattern variation obtained for normal and variant phenotypes within the embling progeny.
doi:10.1371/journal.pone.0056372.g004

Table 4. MSAP patterns corresponding to different methylation states of the symmetric sequence CCGG, as revealed by the
specificity of the restriction enzymes Hpa II and Msp I.

Restriction enzymes MSAP patterns after enzymatic digestion

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Hpa II 1 1 0 0

Msp I 1 0 1 0

Methylation state Unmethylated Hemi-methylated Fully-methylated Fully-methylated

Methylation position None External cytosine Internal cytosine External cytosine

Schematic representation CCGG
GGCC

CH3

CCGG
GGCC

CH3

CCGG
GGCC
CH3

CH3

CCGG
GGCC
CH3

doi:10.1371/journal.pone.0056372.t004

Somaclonal Variation in Suspension-Derived Plants

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e56372



T
a

b
le

5
.

M
SA

P
m

e
th

yl
at

io
n

p
at

te
rn

s
in

m
o

th
e

r
p

la
n

ts
an

d
m

o
d

if
ie

d
p

at
te

rn
s

in
e

m
b

lin
g

s.

P
o

ly
m

o
rp

h
ic

M
S

A
P

fr
a

g
m

e
n

ts
(s

iz
e

in
b

p
)

M
S

A
P

m
e

th
y

la
ti

o
n

p
a

tt
e

rn
s

P
ro

li
fe

ra
ti

o
n

sy
st

e
m

a
ff

e
ct

e
d

b
y

th
e

m
e

th
y

la
ti

o
n

ch
a

n
g

e
P

re
se

n
ce

o
f

th
e

m
e

th
y

la
ti

o
n

ch
a

n
g

e
d

e
p

e
n

d
in

g
o

n
th

e
p

la
n

t
p

h
e

n
o

ty
p

e
N

o
.

o
f

m
e

th
y

la
ti

o
n

ch
a

n
g

e
s

fo
r

e
a

ch
fr

a
g

m
e

n
t

M
o

th
e

r
p

la
n

ts
E

m
b

li
n

g
s

H
y

b
ri

d
H

1
H

y
b

ri
d

H
3

N
o

rm
a

l
V

a
ri

a
n

t
N

o
.

(%
)

C
3

-
1

0
7

b
p

P
at

te
rn

3
P

at
te

rn
1

SC
E,

ES
P

SC
E,

ES
P

+*
*

2
8

9
.8

C
2

-1
2

7
b

p
P

at
te

rn
3

P
at

te
rn

1
0

ES
P

+
2

1
1

.2

C
4

-1
3

4
b

p
P

at
te

rn
3

P
at

te
rn

1
0

SC
E

+
2

4
4

.8

C
1

-
2

5
1

b
p

P
at

te
rn

1
*

P
at

te
rn

3
SC

E,
ES

P
0

+
2

1
2

1
4

.6

C
3

-
2

5
3

b
p

P
at

te
rn

3
P

at
te

rn
1

0
SC

E
+

2
2

2
.4

C
2

-
3

0
2

b
p

P
at

te
rn

3
P

at
te

rn
1

0
SC

E,
ES

P
+

+
1

6
1

9
.5

C
3

-
3

1
6

b
p

P
at

te
rn

3
P

at
te

rn
1

0
SC

E
+

+
4

4
.8

C
6

-3
7

0
b

p
P

at
te

rn
3

P
at

te
rn

1
SC

E,
ES

P
ES

P
+

+
1

0
1

2
.2

C
8

-
3

7
0

b
p

P
at

te
rn

3
P

at
te

rn
1

SC
E,

ES
P

SC
E,

ES
P

+
+

1
2

1
4

.6

C
5

-
3

8
7

b
p

P
at

te
rn

1
P

at
te

rn
3

SC
E

SC
E

+
2

1
3

1
5

.8

N
o

.
ch

an
g

e
s

8
2

R
e

la
ti

o
n

w
it

h
th

e
ty

p
e

o
f

C
.

a
ra

b
ic

a
h

yb
ri

d
,

ty
p

e
o

f
p

ro
lif

e
ra

ti
o

n
sy

st
e

m
[s

e
co

n
d

ar
y

e
m

b
ry

o
g

e
n

e
si

s
(S

C
E)

an
d

e
m

b
ry

o
g

e
n

ic
su

sp
e

n
si

o
n

(E
SP

)]
an

d
re

g
e

n
e

ra
n

t
p

h
e

n
o

ty
p

e
.

*P
at

te
rn

1
:

Fr
ag

m
e

n
t

p
re

se
n

t
in

b
o

th
H

p
aI

I
an

d
M

sp
I

re
st

ri
ct

io
n

d
ig

e
st

s
(1

:1
);

P
at

te
rn

3
:

Fr
ag

m
e

n
t

ab
se

n
t

in
H

p
aI

I
d

ig
e

st
s

an
d

p
re

se
n

t
in

M
sp

I
d

ig
e

st
s

(0
:1

).
**

R
e

la
ti

o
n

sh
ip

w
it

h
a

p
ar

ti
cu

la
r

p
h

e
n

o
ty

p
e

is
in

d
ic

at
e

d
w

it
h

(+
)

fo
r

p
re

se
n

ce
an

d
(2

)
fo

r
ab

se
n

ce
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
5

6
3

7
2

.t
0

0
5

Somaclonal Variation in Suspension-Derived Plants

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e56372



epigenetic (methylation) alterations are very weak. Until now, by

using flow cytometry analysis, normal ploidy levels were reported

in coffee emblings [29,63] but chromosome counting was not

performed in these studies. The sensitivity of flow cytometry

analysis was probably not sufficient to identify aneuploid plants.

Nevertheless, the presence of mitotic aberrations, including double

prophase, lagging chromosomes, aneuploids and polyploid cells,

has previously been described in leaves [64,65] and embryogenic

calli [64] of C. arabica but not in the later steps of somatic

embryogenesis, and without establishing any relation with SV.

Figure 5. Methylation polymorphism accumulation in coffee
emblings showing a normal vs. variant phenotype depending
on the somatic embryogenesis process used. For the secondary
embryogenesis process, data were derived from the analysis of 59
phenotypically normal and 19 variant emblings. For the embryogenic
suspension process, 59 phenotypically normal and 8 variant emblings
were studied.
doi:10.1371/journal.pone.0056372.g005
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Figure 6. Mitotic cells at metaphase or prometaphase stages and observed ploidy levels of some normal and variant emblings from
the allotetraploid C. arabica species (2n = 44). Karyotype analyses were performed by counting chromosomes on four to eight clear metaphase
spreads obtained from root tips of three year-old plants.
doi:10.1371/journal.pone.0056372.g006

Table 7. Summary of chromosome counting in some normal versus variant C. arabica hybrids derived from somatic
embryogenesis.

Embling phenotype (normal or
variant)

Somatic embryogenesis
process Code No. of metaphases analyzed No. of chromosomes

Normal ESP N1 8 44

Normal SCE N2 7 44

Angustifolia ESP A1 4 44

Angustifolia SCE A2 8 45

Angustifolia ESP A3 8 43

Bullata ESP B1 4 44

Dwarf SCE D1 5 42

Dwarf ESP D2 4 44

Giant ESP G1 6 41

Giant ESP G2 6 43

Giant SCE G3 6 43

Variegata ESP V1 6 43

Variegata SCE V2 4 44

The chromosome numbers obtained from root tips are indicated for 3 year-old emblings derived from embryogenic suspensions (ESP) or secondary embryogenesis
(SCE) showing normal or abnormal phenotypes.
doi:10.1371/journal.pone.0056372.t007
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The presence of aneuploidy has also been well documented in

embryogenic calli of Hordeum vulgare [66] and sweet orange [60].

The mechanisms underlying SV remain largely theoretical and

unclear [16]. Thus it is often difficult to correlate a well-described

genetic or epigenetic mechanism to a variant phenotype. For

example, although DNA methylation has often been suggested as a

possible cause of SV, a number of studies have reported high levels

of methylation variation with no effect on the plant phenotype

[20,21,52]. Another example is given by oil palm emblings,

approximately 5% of which exhibit the ‘mantled’ phenotype

affecting the formation of floral organs in both male and female

flowers. Although a decrease in DNA methylation was observed, it

was not possible to determine the nature of the epigenetic

deregulation [67]. In the present study, it was possible to reveal a

large proportion of aneuploid karyotypes in different variant

phenotypes, hence showing that chromosomal rearrangements

could be directly involved in the occurrence of phenotypic

variation. The addition or subtraction of a single chromosome

has a greater impact on phenotype than whole genome

duplication, i.e. polyploidy [68]. It was clearly demonstrated in

Arabidopsis thaliana that certain phenotypic traits are strongly

associated with the dosage of specific chromosomes and that

chromosomal effects can be additive [69]. Similarly, in maize

seedlings, trisomic plants showed characteristic features such as

reduced stature, tassel morphology changes and the presence of

knots on the leaves, suggesting a phenotypic effect caused by the

altered copy of specific chromosome related genes [70]. A similar

mechanism could explain most of the variant phenotypes observed

in C. arabica. The observation of a variant phenotype in plants with

the expected chromosome number could be explained by the

coexistence of monosomic and trisomic chromosomes in the same

genome or by other chromosomal-like structural changes associ-

ated with undetected deletions, duplications, inversions or

translocations of specific chromosomal segments [10,71]. The

karyotype analyses performed in the present study were limited to

chromosome counting and did not enable observation of such

chromosomal alterations.

Conclusions

This report shows that somatic embryogenesis is reliable for

true-to-type and large-scale propagation of elite varieties in the C.

arabica species. Both ESP and SCE ensured high proliferation rates

along with very low SV rates, as observed through massive

phenotypic observations in a commercial nursery and field plots.

Molecular analysis (AFLP and MSAP) performed on 145 emblings

derived from two proliferation processes and two different F1

hybrids showed that polymorphism between mother plants and

emblings was extremely low. Consequently, it can be concluded

that genetic and epigenetic alterations were also particularly

limited during somatic embryogenesis in our controlled culture

conditions. C. arabica is a young allopolyploid still having the most

of its genes in duplicated copies [72]. It could be hypothesized that

the impact of genetic or epigenetic variations on phenotype was

restricted because of the buffer effect due to polyploidy. The main

change in most of the rare phenotypic variants was aneuploidy.

Although further studies are necessary for an accurate under-

standing of the chromosome anomalies involved in the acquisition

of a particular phenotype, it is now obvious that mitotic

aberrations play a major role in SV in coffee. The identification

and use of molecular markers at the heterozygous state in mother

plants (i.e. polymorphic between the two parental lines) would be

required to further investigate this type of chromosome abnor-

mality. Current studies based on the use of long-term embryogenic

cultures [73] are aimed at establishing the full range of cytological,

genetic and epigenetic (with a special focus on transposable

elements) mechanisms underlying SV.

Materials and Methods

Plant material and somatic embryogenesis
Selected F1 hybrids of C. arabica [26] obtained by crossing

traditional dwarf American varieties (Caturra, Sarchimor T5296)

and wild accessions originating from Ethiopia and Sudan are

disseminated in Central America through somatic embryogenesis.

In the present study, emblings derived from the two hybrids

Sarchimor T5296 x Rume Sudan and Caturra x ET531, named

respectively H1 and H3, were analyzed to assess the SV level.

Large-scale phenotypic observations were performed in Nicaragua

both at the nursery (more than 600 000 young emblings) and field

level (more than 200 000 three year-old emblings) on 11 coffee

plots belonging to the ‘La Cumplida’ coffee research experimental

sites in the Matagalpa region (Nicaragua). Nursery and field

phenotypic observations were done on balanced amounts of plants

from hybrids H1 and H3 (Table 1). Field observations were

performed for all trees by visual evaluation of growth and

morphology, flowering and fruit yield during the first and second

production years. No specific permits were required for the

described field studies that were performed with the authorization

of the Coffee Research Department of ‘La Cumplida’, owner of

the experimental sites. These sites are not protected and the

studies did not involve endangered or protected species. Molecular

marker analysis was applied on F1 hybrid mother plants

propagated by rooted horticultural cuttings (four for each hybrid)

and used as source material for in vitro propagation, as well as on

adult emblings (3 years after planting) for which plants exhibiting

an abnormal phenotype (phenotypic variant) were distinguished

from plants with a normal phenotype and productivity (Table 8).

Molecular marker patterns obtained for emblings were systemat-

ically compared with those obtained with mother plants (four

plants per hybrid propagated by horticultural cutting) used as

reference.

The somatic embryogenesis process (Figure 1) involved the

following stages:

1) Production of embryogenic callus: pieces of young leaves were

surface-sterilized and used as explants. The explants were cultured

for 1 month on a 1/2 strength MS [74] ‘‘C’’ callogenesis medium

[75] containing 2.3 mM 2,4-D, 4.9 mM indole-3-butyric acid (IBA)

and 9.8 mM iso-pentenyladenine (iP), and then transferred for 6

months to MS/2 ‘‘ECP’’ embryogenic callus production medium

[75] containing 4.5 mM 2,4-D and 17.7 mM benzylaminopurine

(6-BA). All media were solidified using 2.4 g/l Phytagel (Sigma,

Steinheim, Germany). These steps were carried out at 26–27uC in

the dark.

2) 6-month multiplication step and embryo regeneration. Fully developed

somatic embryos were mass regenerated via two distinct multipli-

cation processes, i.e. either secondary (or repetitive) embryogenesis

or embryogenic suspensions (Figure 1).

Secondary embryogenesis (SCE). Two hundred mg of embryo-

genic aggregates were placed in a 1 liter-RITAH temporary

immersion bioreactor (CIRAD, Montpellier, France; [76]) along

with 200 ml of ‘‘R’’ MS/2 regeneration medium [75] containing

17.76 mM 6-BA, in darkness for 6 weeks. An immersion frequency

of 1 min every 12 h was applied. Proliferating embryo masses

were then placed in 1/2 strength MS [74] regeneration medium

containing 5.6 mM 6-BA and subcultured once every 6 weeks for

three proliferation cycles. Secondary embryos were produced with

an immersion frequency of 1 min every 12 h and a high culture
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density (approx. 10 000 embryos). The cultures were kept at 27uC,

with a 12 h/12 h photoperiod and 50 mmol m22 s21 photosyn-

thetic photon flux density.

Embryogenic cell suspensions (ESP). Embryogenic calli were

transferred to 100 ml Erlenmeyer flasks at a density of 1 g/L in 1/

4 MS strength Yasuda liquid proliferation medium [77] with

1.36 mM 2,4-D and 4.4 mM 6-BA. Suspension cultures were

maintained by the monthly transfer of 1 g/L of embryogenic

aggregates into fresh medium. Six month-old suspensions were

used for somatic embryo regeneration. Embryo differentiation was

initiated by transferring embryogenic aggregates at a density of

1 g/L in 250 ml Erlenmeyer flasks in a full strength MS medium

containing 1.35 mM 6-BA. Fully developed torpedo-shaped

embryos were obtained after two 4 week subcultures in such

conditions. All suspension cultures were shaken at 110 rpm at 27

uC under 50 mmol m22 s21 photosynthetic photon flux density.

3) Pre-germination in a bioreactor. Germination was triggered by

applying a low culture density of around 800–900 embryos per 1 l-

RITAH bioreactor. An "EG" embryo germination medium [75]

containing 1.33 mM BA was used for 2 months and finally, for 2

weeks, the ‘‘EG’’ culture medium was supplemented with 234 mM

sucrose. By the end of the in vitro culture stage, each bioreactor

contained around 700 pre-germinated cotyledonary somatic

embryos with an elongated embryonic axis and a pair of open,

chlorophyllous cotyledons. Pre-germination was conducted in the

light (12/12 h, 50 mmol m22 s21).

4) Plantlet conversion was obtained after direct sowing of mature

somatic embryos in the nursery. Mature embryos were sown

vertically on top of the substrate (two parts soil, one part sand, one

part coffee pulp) sterilized by chemical treatment (Dazomet

(DMTT), Union Carbide). The somatic embryo culture density

in the plastic boxes (l.w.h = 30/21/10 cm) was approximately

3600 m22. The cultures were placed under a transparent roof that

provided 50% shade, and were watered for 2 min twice daily.

Conversion of somatic embryos into plants was generally observed

12 weeks after sowing, and characterized by the emergence of a

stem bearing at least two pairs of true leaves.

5) Growth and hardening in the nursery (21 weeks). Plantlets grown

from somatic embryos were transferred to 0.3 L plugs on a

substrate comprising peat-based growing medium (Pro-mix,

Premier Tech Ltd, Canada) and coffee pulp (3/1, v/v) under

conventional nursery conditions until they reached the required

size for planting in the field (approx. 30 cm). During this stage, the

shade (50% light interception) and relative humidity (80%) were

gradually reduced over 4 weeks to 0% light interception, with

natural RH ranging from 65 to 90%.

Molecular analysis
DNA extraction. Young fully expanded leaves were selected

on three year-old plants for molecular analysis. Genomic DNA

was isolated from 100 mg of lyophilized leaves using Dellaporta

buffer [78] containing sodium dodecyl sulfate (SDS) detergent and

sodium bisulfite 1% w/v to avoid leaf oxidation. DNA was purified

in spin-column plates as described in the DNeasy plant kit protocol

from QIAGEN.

AFLP markers. AFLP analysis was carried out as described

by Vos et al. [79], with a total of four primer combinations

(Table 2), using 5-FAM or 5-HEX fluorescently labeled EcoR1 (+3)

and unlabeled MseI (+3) primers. A touchdown PCR program for

selective amplification was performed in an Eppendorf thermo-

cycler under the following conditions: 3 min at 94uC, 12 cycles of

45 s at 94uC, 12 cycles of 45 s at 65uC and 1 min at 72uC; the

annealing temperature was decreased by 0.7uC per cycle from a

starting point of 65uC during this stage, with a final round of 25

cycles of 94uC for 45 s, 56uC for 45 s, 72uC for 1 min and a final

elongation step of 72uC for 1 min. The same PCR conditions were

found to be appropriate for MSAP in preliminary tests.

MSAP markers. MSAP analysis was carried out as described

by Reyna-López et al. [19] with minor adaptations for capillary

electrophoresis. The MSAP protocol is an adaptation of the AFLP

method for the evaluation of different states of methylation in the

symmetric sequence CCGG. In the MSAP protocol, the frequent

cutting endonuclease (MseI) was replaced by the two isoschizo-

meric restriction enzymes HpaII and MspI with different sensitivity

Table 8. Plant material used in molecular marker analyses.

Somatic embryogenesis proliferation
step Type of plant material No. of plants per C. arabica hybrid Total no. of plants

H1 H3

Secondary embryogenesis Emblings normal phenotype 28 31 59

Emblings variant phenotype 5 14 19

Angustifolia (A) 0 4

Bullata (B) 2 4

Dwarf (D) 0 2

Variegata (V) 3 4

Total 33 45 78

Embryogenic suspension Emblings normal phenotype 25 34 59

Emblings variant phenotype 1 7 8

Angustifolia (A) 1 2

Dwarf (D) 0 1

Variegata (V) 0 4

Total 26 41 67

Total number of plants analyzed from two F1 Coffea arabica hybrid lines (H1 and H3) corresponding to somatic-embryo derived 3 year-old plants (emblings) with
normal or variant phenotypes along with their respective mother plants as reference. The numbers of emblings for each variant phenotype are also given.
doi:10.1371/journal.pone.0056372.t008
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to the methylation state of the symmetric sequence CCGG

(Table 4). Specifically, HpaII is able to recognize and cut only

when the CCGG sequence is unmethylated or hemi-methylated

on the external cytosine. MspI is able to cut when CCGG sequence

is unmethylated or if the internal cytosine is fully or hemi-

methylated. Both HpaII and MspI are unable to cut if the external

cytosine presents full methylation. DNA methylation in plants

commonly occurs at cytosine bases in all sequence contexts: the

symmetric CG and CHG, in which (H = A, T or C) and the

asymmetric CHH contexts [17]. Selective amplification included a

total of eight primer combinations per isoschizomer (Table 2).

HpaII (+2) primers were fluorescently labeled with 5-FAM or 5-

HEX while EcoR1 (+3) remained unlabeled. In order to reduce the

possibility of technical artifacts, two repetitions using different

DNA extractions were performed for each primer combination.
Capillary electrophoresis and data analysis. PCR prod-

ucts were separated by capillary electrophoresis with Pop 7
TM

polymer in a 16 capillary 3130 XL Genetic Analyzer from Applied

Biosystems using an internally manufactured 524 ROX fluor-

ophore as sizing standard. The fragments used for fingerprinting

were visualized as electropherograms in applied Biosystems

software GeneMapperH version 3.7. Informative fragments were

mostly found in the 100–450 bp range. All amplified fragments

were classified based on the primer combination used and their

size. The sample fingerprint data was converted to binary code,

with ‘‘1’’ denoting the presence of the fragment and ‘‘0’’ the

absence. Different binary matrices were constructed for compar-

ative analysis depending on the kind of molecular marker.

As shown in Table 4, the MSAP patterns were classified as

follows: Pattern 1 when a comigrating amplified fragment was

obtained from the DNA template digested by both restriction

enzymes HpaII and MspI; Pattern 2 and 3 when an amplification

fragment was obtained only from the DNA template digested by

HpaII or MspI, respectively.

Before analysis of the embling versus mother plant population,

we successfully verified, on a set of plants from the Caturra variety,

that the same MSAP patterns were systematically generated

whatever the plant age and the leaf developmental stage (data not

shown). Hence, a possible developmental variability in the studied

plant material does not seem to introduce any additional source of

variation in the methylation state. Nevertheless, in all experiments,

only leaves from the same developmental stage were chosen.

Slide preparation and karyotyping. Root tips were har-

vested from individual adult emblings and placed in an aqueous

solution of 8-hydroxyquinoline (2.5 mM) used as pre-treatment,

for 4 h in darkness (2 h at 4uC plus 2 h at room temperature). A

solution of Carnoy (absolute ethanol and glacial acetic acid, 3:1 v/

v) was used to fix the tissues for at least 24 h at 220uC. Fixed

material was then stored in 70% ethanol at 4uC until use for slide

preparation. The stored root tips were used for slide preparations

by employing the technique for cell dissociation of enzymatically

macerated roots, as described previously by Herrera et al. [80].

Preparations were frozen in liquid nitrogen in order to remove the

coverslips, stained with 4’,6-diamidino-2-phenylindole, DAPI

(1mg/mL), and mounted in Vectashield (Vector Laboratories,

Peterborough, UK).

In order to determine the occurrence of chromosome modifi-

cations, individual plants of C. arabica regenerated by somatic

embryogenesis showing a normal (2 plants) or variant (11 plants)

phenotype were submitted to karyotype analysis. The Angustifolia,

Bullata, Dwarf, Giant and Variegata phenotypic variants were

analyzed. During slide examination, mitotic cells at metaphase or

prometaphase stages were used for chromosome counting.

Between 4 and 8 mitotic cells from each individual were analyzed

to determine the chromosome number. The best examples were

photomicrographed at metaphase to document the chromosome

number and morphology. A Nikon Eclipse 90i epi-fluorescence

microscope equipped with a digital, cooled B/W CCD camera

(VDS 1300B Vosskühler H) was used with the appropriate filter

(UV-2E/C excitation wavelength 340–380).
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