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Floating-point (FP) addition is non-associative and parallel reduction involving this operation is a
serious issue as noted in the DARPA Exascale Report [1]. Such large summations typically appear within
fundamental numerical blocks such as dot products or numerical integrations. Hence, the result may vary
from one parallel machine to another or even from one run to another. These discrepancies worsen on
heterogeneous architectures — such as clusters with GPUs or Intel Xeon Phi processors — which combine
programming environments that may obey various floating-point models and offer different intermediate
precision or different operators [2/3]]. Such non-determinism of floating-point calculations in parallel
programs causes validation and debugging issues, and may lead to deadlocks [4].

The increasing power of current computers enables one to solve more and more complex problems.
That, consequently, leads to a higher number of floating-point operations to be performed; each of them
potentially causing a round-off error. Because of the round-off error propagation, some problems must be
solved with a wider floating-point format. Two approaches exist to perform floating-point addition without
incurring round-off errors. The first approach aims at computing the error that is occurred during rounding
using FP expansions, which are based on an error-free transformation. FP expansions represent the result
as an unevaluated sum of a fixed number of FP numbers, whose components are ordered in magnitude
with minimal overlap to cover a wide range of exponents. FP expansions of sizes 2 and 4 are presented
in [5] and [6]], accordingly. The main advantage of this solution is that the expansion can stay in registers
during the computations. But, the accuracy is insufficient for the summation of numerous FP numbers
or sums with a huge dynamic range. Moreover, their complexity grows linearly with the size of the
expansion. An alternative approach to expansions exploits the finite range of representable floating-point
numbers by storing every bit in a very long vector of bits (accumulator). The length of the accumulator is
chosen such that every bit of information of the input format can be represented; this covers the range
from the minimum representable floating-point value to the maximum value, independently of the sign.
For instance, Kulisch [[7]] proposed to utilize an accumulator of 4288 bits to handle the accumulation
of products of 64-bit IEEE floating-point values. The Kulisch accumulator is a solution to produce the
exact result of a very large amount of floating-point numbers of arbitrary magnitude. However, for a long
period this approach was considered impractical as it induces a very large memory overhead. Furthermore,
without dedicated hardware support, its performance is limited by indirect memory accesses that make
vectorization challenging.

We aim at addressing both issues of accuracy and reproducibility in the context of summation. We
advocate to compute the correctly-rounded result of the exact sum. Besides offering strict reproducibility
through an unambiguous definition of the expected result, our approach guarantees that the result has



the best accuracy possible. However, the general use of correctly rounded sums has been considered
impracticable since computing the exact sum was deemed to be too costly [8]. We revisit this assumption
and show that: 1. The computation of the exact sum can be carried out at the affordable cost using a large
fixed-point accumulator, which is called a superaccumulator; 2. The overhead can be made negligible on
large sums with low dynamic range using vectorized FP expansions.

Most prior works on exact accumulation have been targeting ill-conditioned problems that could not
be satisfied using the accuracy provided by the conventional floating-point accumulation. We instead focus
on computing a deterministic and accuracy-guaranteed result for sums that are typically evaluated using
the floating-point arithmetic today. We expect such sums to be well-conditioned and cover a moderate
dynamic range.

We introduce a multi-level algorithm, where the accumulation of FP numbers is split into five levels;
this decomposition is suitable for the nested parallelism of modern architectures. Thus, the first level
consists of FP expansions to filter large numbers, which are expected to be the major part of all inputs.
The second level is only invoked whenever the accuracy provided by expansions is not enough. Threads
will send the values that are too small to be accumulated exactly in the expansions, as well as the results
of partial sums accumulated during the first step, to private superaccumulators. During the third step,
inside each processor, private superaccumulators are merged into a single scalar superaccumulator. In
the fourth level, all scalar superaccumulators are combined together into one single superaccumulator
accessible by all threads. Finally, the fifth level consists in rounding the global superaccumulator back to
the target floating-point format in order to produce the correctly rounded result.

We present implementations of the multi-level algorithm on the whole range of parallel platforms: Intel
desktop and server processors, Intel Xeon Phi accelerators, and both NVIDIA and AMD GPUs. These
implementations strive to use all resources of modern processors: SIMD instructions, fused multiply-add,
and multi-threading on multi-core CPUs and Xeon Phi; local memory and atomic instructions on GPUs.
We verify the accuracy of our implementations by comparing the computed results with the ones produced
by the multiple precision MPFR library [9]].

We show that the numerical reproducibility and bit-perfect accuracy can be achieved at no additional
cost for large sums that have dynamic ranges of up to 90 orders of magnitude by leveraging arithmetic units
that are left underused by standard reduction algorithms. Furthermore, we demonstrate that the multi-level
correct summation outperforms the other recently proposed reproducible summation algorithms — like the
Demmel’s and Nguyen’s algorithm [8] — and, moreover, it offers correct rounding. More information can
be found in our technical report [10].
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